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ABSTRACT

Sequential data assimilation schemes approaching true optimality for sizable atmospheric models are becoming

a reality. The behavior of the Kalman filter (KF) under difficult conditions needs therefore to be understood. In
this two-part paper the authors implemented a KF for a two-dimensional shallow-water model with one or two

* layers. The model is linearized about a basic flow that depends on latitude; this permits the one-layer (1-L) case
to be barotropically unstable. Constant vertical shear in the two-layer (2-L) case induces baroclinic instability.
The stable and unstable 1-L cases were studied in Part I. In the unstable case, even a very small number of
observations can keep the forecast and analysis errors from the exponential growth induced by the flow’s insta-
bility. In Part II, the authors now consider the 2-L, baroclinically stable and unstable cases. Simple experiments
show that both cases are quite similar to their barotropic counterparts. Once again, the KF is shown to keep the
estimated flow’s error bars bounded, even when a small number of observations—taken with realistic fre-

quency—is utilized.

1. Introduction and motivation

As the amount and diversity of data available to op-
erational meteorological centers increases, more so-
phisticated methods for performing data assimilation
are required to optimize the use of these diverse data.
There is a continuous effort by some of the major
weather and climate prediction centers to base their
analysis systems on more advanced assimilation meth-
ods that incorporate error-covariance dynamics. It is
now widely recognized at these centers that traditional
schemes like optimal interpolation (OI) or its more re-
cent cousin, the three-dimensional variational (3D-
Var) method, encounter difficulties in providing mid-
range forecasts and analysis error bars that are both
reliable. Due to a variety of reasons, the performance
of these schemes is least reliable in the vicinity of
strong atmospheric instabilities. One of these reasons
is the horizontal homogeneity and vertical separability
of the correlation models employed by all forecast-er-
ror covariance representations in current analysis sys-
tems (e.g., Heckley et al. 1993; Mitchell et al. 1993;
Parrish and Derber 1992; Pfaendtner et al. 1995); these

* Sabbatical affiliation: Laboratoire de Météorologie Dynamique
du CNRS, Ecole Normale Supérieure, Paris, France. .

T Current affiliation: Universities Space Research Association,
NASA/Goddard Space Flight Center, Greenbelt, Maryland.

Corresponding author address: Dr. Ricardo Todling, Data Assim-
ilation Office, Code 910.3, NASA/GSFC, Greenbelt, MD 20771.

TR g 1A0R American Matenrnlnoinal Saciety

two assumptions break down in the presence of strong
horizontal or vertical shear, respectively. The work of
Bartello and Mitchell (1992) on nonseparable structure
functions, and that of G. Gaspari and S. E. Cohn (1995,
personal communication) on inhomogeneous correla-
tions, presents methods for the development of more
general covariance models that will eventually be used
in operational forecast and analysis systems. In the pro-
cess, some current analysis systems are already becom-
ing more flexible in allowing the relatively easy imple-
mentation of general correlation representations; see,
for instance, Da Silva et al.’s (1995) NASA/Goddard
physical-space statistical analysis system.

The behavior of advanced data assimilation schemes
in the presence of instabilities has become a topic of
great interest in the past few years. Rabier and Courtier
(1992) showed that a four-dimensional variational
(4D-Var) method converges in following strongly un-
stable baroclinic developments. Two modifications of
the extended Kalman filter (EKF) by Miller et al.
(1994) produce very accurate and reliable state esti-
mates in the presence of strong instabilities and nonlin-
earities that arise in simple dynamical systems, like the
stochastically driven double-well potential and the Lo-
renz (1963) system. These modifications consisted in
the monitoring of the innovation sequence or an appro-
priate estimate of the model-error statistics. Another
modification of the EKF by Biirger and Cane (1994),
using linearization about a previously selected flow re-
gime, was also shown to produce reliable results when
applied to the Lorenz (1963) system. As strong atmo-
spheric and oceanic instabilities are associated with the
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interaction of vorticity concentrations, Ide and Ghil
(1996, manuscript submitted to Dyn. Atmos. Oceans)
have applied the EKF to vortex dynamics showing that,
given a theoretically optimized observing pattern, the
filter tracks the entire flow field reliably with a number
of observations approximately equal to that of the iso-
lated vortices. Ghil and Ide (1994) and Ghil (1996,
manuscript submitted to J. Meteor. Soc. Japan) review
a number of observability questions related to the EKF
as applied to planetary flows, atmospheric and oceanic.
The above-mentioned EKF studies were all for rela-
tively simple models, and extension of these results to
more realistic dynamics is still pending.

Todling and Ghil (1994, hereafter referred to as Part
I) have described a methodology to study the behavior
of the linear Kalman filter (KF) in the presence of dy-
namical instabilities. The linear KF represents a very
idealized framework to explore the problems of atmo-
spheric data assimilation since in actuality the presence
of nonlinearities, lack of information on dynamical and
statistical parameters and computational requirements
make the assimilation problem much more complex. In
principle, nonlinearities can be dealt with by utilizing
the EKF or its modifications (Cohn 1993; Biirger and
Cane 1994; Miller et al. 1994). Adaptive schemes can
help estimate unknown parameters in the covariance
models (Dee et al. 1985; Dee 1995) or in the determin-
istic part of the model dynamics (Hao 1994; Hao and
Ghil 1995). The computational barrier to fully optimal
EKF implementation will, most likely, always manifest
itself since the tendency in numerical weather prediction
has been to increase model resolution—to the extent
permitted by the computing capability available at any
given moment—rather than to maintain the resolution
and allocate a much larger share of the increasing com-
putational resources to more advanced data assimilation
methods. Attempts like those of Boggs et al. (1995),
Cohn and Todling (1996), and Verlaan and Heemink
(1995; 1996, manuscript submitted to Stochastic Hy-
drol. Hydraul.) represent a few of the approaches to
reduce part of the computational burden involved in per-
forming KF-based data assimilation. A review of many
of these issues is given by Ghil and Malanotte-Rizzoli
(1991), Cohn (1996, manuscript submitted to J. Me-
teor. Soc. Japan), and Ghil (1996, manuscript submitted
to J. Meteor. Soc. Japan).

The linear KF provides a very convenient framework
for addressing basic and, so far, poorly understood ques-
tions like those related to unstable dynamics. Indeed,
standard KF results on observability and filter conver-
gence only exist for linear dynamics (Gelb 1974; Ja-
zwinski 1970). The linear shallow-water model with
one (1-L) or two (2-L) layers of Part I served as the
testbed dynamics for addressing the desired issues. Re-
sults for the barotropically unstable 1-L case showed that
the KF is able to keep the forecast and analysis errors
from growing without bounds. A single well-located ob-
servation accomplishes the job of tracking the exponen-
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tial growth of the instability, since the flow is dominated
by the instability’s known pattern and the observation
basically serves to determine its amplitude. The stable
1-L version of the shallow-water model was used to
study the impact of the assumed spectral characteristics
of the model-error covariance matrix’s spectrum on the
accuracy attained by the assimilation procedure. It was
found that an exponentially decaying eigenvalue spec-
trum allows better reduction of analysis errors. This is
due to the larger correlation radii that result and, con-
sequently, the resulting KF spreads further—and still
correctly—the effect of each observation on the esti-
mated fields; in contrast, a spectrum corresponding to
energy equipartition between modes results in much
smaller radii and a lessened impact of observations (see
also Cohn and Parrish 1991).

In Part IT of this work, we present KF assimilation
experiments on the shallow-water model’s 2-L version
for both stable and unstable cases. Todling and Ghil
(1992) presented preliminary results comparing the KF
performance, discussed in Part I, with that of a simu-
lated version of OI in the 1-L case. Todling and Cohn
(1994) and Cohn and Todling (1996) carried out a
careful comparison among a variety of suboptimal al-
ternatives to the KF, including OI, for both stable and
unstable barotropic dynamics. A similar comparative
study for the present 2-L, baroclinic case is not ex-
pected to yield results that differ significantly from the
1-L case.

The purpose of Part 11 is, therewith, to study further
the performance of sequential estimation methods in
the presence of strong baroclinic instability. In section
2 we briefly recall the methodology of Part I and the
atmospheric model under consideration here. Section 3
presents results for the 2-L assimilation experiments
with stable and unstable dynamics. Conclusions are
drawn in section 4.

2. Model and assimilation scheme

The model used in this work, as described in Part I,
is governed by the 1-L or 2-L shallow-water equations
linearized about a basic state with no meridional ve-
locity component and a zonal wind that can depend on
latitude. In Part I, we have used the 1-L barotropic ver-
sion of the model simulating both stable and unstable
situations, depending on the choice of the basic zonal-
wind profile. We have constructed, for the stable and
unstable cases of both the 1- and 2-L model versions,
an error covariance matrix based on the slow modes of
each system. These covariance matrices were used in
the data assimilation experiments as model error co-
variances and initial analysis error covariances, follow-
ing Cohn and Parrish (1991). In particular, we have
looked at different model error spectra and concluded
that strong energy decay with the modes’ wavenumber
is fundamental in specifying model errors and induces
significant forecast and analysis error reduction in the
assimilation process.
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TaBLE 1. The 2-L shallow-water model parameters.

Stable Unstable
Number of grid points I = J — 1 16 16
Extent of channel L, = L, 6000 km 4000 km
Grid size Ax'= Ay 385 km 250 km
Time step At \ 10 min 5 min
Coriolis parameter f; ‘ 1.0 x 107*s7" 1.0 X 107%s7!

[S-plane parameter

Upper-layer mean geopotential height @,
Lower-layer mean geopotential height &,
Upper-layer mean velocity U,
Lower-layer mean velocity U,

Density ratio between the two layers «a,

1.5x 107" m™ 57!
10 X 10* m?s™2
3 X 10°m?s72

1.5%x 107" m™'s!
1.5 X 10* m?s72
1.5 X 10*m?*s72

20m s~} 20ms™’
20ms! 10ms™’
0.95 0.95

Due to the linearity of the problem, it suffices to
concentrate on the behavior of the error covariances
(Ghil et al. 1981). Hence, we refer only to the covari-
ance evolution equation,

P/ = WP WS + Q,, C(2.0)
and covariance update equation,
Pi = (1 - KH)PY, (2.2)

where optimality is achieved by using the Kalman gain
matrix K, '

K. = P/HI(H;P/H] + R) ", (2.3)

at every time t,. For the sake of consistency with Part
1, we continue to adopt here the notation of Ghil (1989)
and Ghil and Malanotte-Rizzoli (1991), rather than the
“World Meteorological Organization standard’” pro-
posed by Ide et al. (1996, manuscript submitted to J.
Meteor. Soc. Japan). A detailed explanation of the
quantities in the equations above can be found for in-
stance in Ghil (1989). Briefly, P/ refers to the forecast
(f) and analysis (a) error covariance matrices; Q, and
R, are the error covariances for the model and obser-
vations, respectively; and H, is the interpolation oper-
ator that takes the forecast quantities to observation lo-
cations.

The matrix W, represents the model dynamics; in the
present context, it is the operator corresponding to the
finite-difference discretization of the linear 2-L. shal-
low-water model:

ou,, ou, O o
o + U, o + ax(and)l + ) —(f— U, =0,
' (2.42)
o, o, -0 _
E n 6)( + ay (and)l + ¢2) +fun - Os (24b)
ad)n 6¢n aun av" ’ —_—
By + U, Ox + (I),,< ax + ay) + @,,v,, = (),

(2.4c¢)

where u,, v, are the velocity perturbations, ¢, are geo-
potential perturbations, f = f, + By is the Coriolis pa-
rameter, and the basic flow satisfies

fU, + (a,®, + &,)" = 0. (2.5)

The primes denote differentiation of variables depend-
ing on y only, n = 1, 2 refers to the upper and lower
layers, respectively, and o = 1, a, = p,/p,, where p,
are the densities of each layer.

3. Results
a. Stable case

In this section we apply the KF to the stable case of
the 2-L shallow-water model described in Part I, using
the model parameters given in Table 1; this table is
identical to Table 3 of Part I and is reproduced here for
the reader’s convenience. The difference between this
system and the barotropic 1-L system studied in Part I
is that the fluid densities in the two layers are different
and their ratio is given by the parameter «,. In our data
assimilation experiments for the stable case we assume
that the two model layers are of equal thickness—equal
to one-half of the total height of the 1-L atmosphere
discussed in greater detail in Part I (see Table 1
there ) —and represent the 500- and 850-mb levels of
the atmosphere, respectively. Assuming the observa-
tions to be composed of radiosondes measuring wind
and heights at 6-h intervals, their standard deviations
follow Dey and Morone (1985) and are equal to

1

o5, =34ms™!, !

00 =34ms",
(3.1)

oy, =18ms™".

(3.2)

We consider a network with 80 stations scattered ran-
domly over the channel, as depicted in Fig. 1 for the
model domain using 16 X 17 grid points.

We start the assimilation experiments by taking an
initial analysis error covariance matrix 200 times larger
than the model error covariance matrix, which was con-

oy =121 m,

1

o 80m, o, =18ms ",

S
I



OCTOBER 1996

T T T i i T T T T T T T T T
- ) 2 ¢ o [/ o .
- 2 8 o 2 o @ o
- 2 o ) o 2
- 8 o 2 o .
- ® 2 2 o @ ) -
= 2 8 e o e o -
- ® ] 2 o e e -
= [ o 2 ~
= e @ e ° ) .
- 2 2 -
- o 2 o o o0 e o -
o o ) .
- 0 ) 2 0 2 -
- 2 o o ? ) o 0 -

1 i 1 | L 1 ! | 1 1 1 1 L 1

F1G. 1. Observational network composed of 80 stations positioned
randomly at gridpoint locations.
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structed following the procedure described in Part I,
with an exponentially decaying energy spectrum. This
choice of spectrum is made on the basis of the studies
in Part I, where it was shown that such a spectrum
allows the assimilation scheme to achieve smaller anal-
ysis errors. In Fig. 2 we show the results for experiment
S1 in Table 2. The evolution in time of the domain-
averaged expected root-mean-square (ERMS ) error, up
to 2 days, is used as an indicator of the behavior of the
KF. The errors in each model variable are displayed
separately.

Three main results emerge from this picture. First,
the ERMSs asymptote toward a bounded, periodic be-
havior, with a period of 6 h and the minima occurring
at update time. This behavior was noticed already in
the one-dimensional (1D), linear, shallow-water model
of Ghil et al. (1981) and Cohn (1982) and many KF
studies since. It was exploited in a computationally ef-
ficient KF implementation of Fukumori et al. (1993);
see also Ghil (1996, manuscript submitted to J. Me-
teor. Soc. Japan) for additional references on compu-
tational implications of this periodicity. Second, the er-
rors evolve quite similarly in the two layers, with anal-
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218.0
313.5
9.8
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0 ) 1 |
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20 T T T T 20 T T T T
18 - — 18 - -1
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-

=
a8

| 1 1 1
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time (days)
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S|
[SISEESTESEESTEE SN SN SIS S

1.6 2.0
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FiG. 2. Domain-averaged ERMS errors for stable case; the assimilation uses 80 radiosondes
observing all variables in both layers at 6-h intervals for 2 days. Panels (a), (b), and (c) are for
heights, zonal, and meridional winds, respectively. Dashed lines are for lower-layer quantities and
solid lines for upper-layer quantities; velocity errors in meters per second and height errors in

meters.
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TABLE 2. Experiments performed with the
2-L shallow-water model.

Observation

Experiment frequency
number Observation pattern (h)
Stable case
Si 80 points/both layers 6
S2 80 points/lower layer only 6
Unstable Case
Ul No update 0
U2 Point (8, 9) 6
U3 Point (8, 14) 6
U4 Line 8,7),j=2,...,16 6
us 80 points 6

ysis errors approximately the same for each pair of
corresponding variables. Third, the analysis errors in
the meridional wind and the heights at both levels are
just about equal to the corresponding smallest obser-
vational error level, that is, the lower-layer observa-
tional errors; the zonal wind errors are somewhat above
-that level, a fact that is also true for the 1-L stable
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barotropic case (see Fig. 4 of Cohn and Parrish 1991).
The upper-layer height and meridional wind reach error
levels that are in fact below the observational error
level in this layer. It follows that information propa-
gates in this stable case rather efficiently in the verti-
cal—from the lower, more accurately observed level
to the upper, less well observed one—as in the hori-
zontal, from observed to unobserved grid points. Ex-
periments with an increasing number of observations
(not shown) confirm that the errors eventually drop
well below the observational error level in both layers
and all three fields.

The relative inefficiency of error reduction in the
zonal wind—noticed already in the 1D, 1-L shallow-
water model of Ghil et al. (1981) and in the 2D, 1-L
model of Cohn and Parrish (1991) and of Part I—is
probably associated with the fact that the errors in ob-
serving this component and the meridional one are
equal, while the actual magnitudes are not. In a
Rossby wave—the dominant phenomenon in a stable
atmosphere, whether 1- or 2-L-—the major quasi-
geostrophic balance occurs between zonal perturba-
tions in the height gradient and meridional ones in the
wind (e.g., Fig. 2.7 in Ghil and Childress 1987). As
a result, dynamic perturbations in the zonal wind are

45 .9 . T r
O
_31.5%
%27.@
£22.5
Z218.0
213_5
9.0 .
4.5 | .
N/ 1 i 1
2 .4 8 1.2 1.6 2.0
time (days)
(b) (c)
20.0 T T T T 20.9 T T T T
18.0 | - 18.0 | -
16.0 | - 6.0 | -
T14.0 B0 - B14.0 t+ -
8120 [ - $12.0 [ —
e1e.0 | ¢ 918.0
Feeor A i 44 38°
LN S VRSN $ 0.0
840} A O = -y
2.8 | . 2 2.0 | .
N 1 i 1 1 2 1 1 1 1
@ .4 .8 1.2 1.6 2.0 @ 4 8 1.2 1.6 2.0
time (days) ".ime (days) ’

F1G. 3. Same as in Fig. 2 but with an observational network composed of 80 radiosondes
observing in the lower layer only, at 6-h intervals.
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FIG. 4. Same as in Fig. 2 but for the unstable case with no update. Curves are now normalized
by their corresponding maximum values and extend to day 20.

typically quite a bit smaller than in the meridional
winds, while the measurement errors in the two wind
components are equal for all observing systems in
practical use.

As in the 1-L case, the forecast error correlations
(not shown) resemble very closely the model error cor-
relations shown in Fig. 7 of Part I. This has been dis-
cussed in detail by Cohn and Parrish (1991) and also
in Part I for the barotropic 1-L case; in short, it is due
to the fact that the observing network is quite uniform,
as depicted in Fig. 1. Figure 7 of Part I shows wind—
wind correlations that are extremely localized, espe-
cially those related to cross correlations that involve a
zonal wind component in either layer (compare also
Fig. 3 of Part I for the stable 1-L case).

The stable case is illustrated further in experiment
S2 of Table 2, with results displayed in Fig. 3. Now
the 80 radiosondes of Fig. 1 only observe in the lower
layer. The same update interval of 6 h is used, as in-
dicated in Table 2, and the experiment is followed for
2 days as before. Wind and mass error reduction occur
in the upper layer, too, due to the interaction between
layers. The number of observations in the lower layer
does not suffice, however, to lower the analysis errors
below the observational error levels there. Both wind

error components in the lower layer are only slightly
less accurate than in experiment S1 (Fig. 2). The height
error in the bottom layer increases significantly,
though, due to not observing the heights in the layer
above: the height—height forecast error cross correla-
tions between the two layers are strong, while the
wind—-wind ones are not (see again Fig. 7 of Part I).
The largest increase in error level occurs in the upper-
layer zonal wind for the reasons already stated.

b. Unstable case

To simulate the unstable case, the model parameters
are changed according to the specifications in Table 1.
The layer thicknesses are increased to prevent the in-
terface between them from intersecting the free surface
or the surface of the earth (see Todling and Ghil 1990).
The first experiment we conduct, Ul in Table 2, in-
cludes no error covariance update due to observations,
that is, the initial analysis error covariance evolves
solely according to the dynamics W, as we make, in
addition, the perfect model assumption of Q, = 0 at all
times. Hence the error covariance evolution in (2.1)

reduces to that of the predictability error covariance
Pi:
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FiG. 5. As in Fig. 4 but with update every 6 h of all six variables of the model at the central
grid point (8, 9). Errors normalized by their corresponding maximum values for the case with no

update (see Fig. 4).

P, =WPi_ W], (3.3)
Equation (3.3) allows us to study the effect of the
baroclinic instability on P ,{ = P/ without interference
from either observations or model errors. As for the
1-L unstable case (see Fig. 13a of Part 1), Fig. 4 shows
the ERMS error averaged over the whole domain, for
all variables of the model up to day 20. Each curve has
been normalized by its maximum value. Errors grow
exponentially as the instability develops.

Following the experiments reported in Part I for the
unstable barotropic case, we adopt again the setup of a
single-station observation, while keeping—unlike in
Part I—the perfect-model assumption of the no-obser-
vation experiment Ul. We assume for the present, un-
stable case that the two model layers simulate the 250-
and the 500-mb levels of the atmosphere, respectively,
and we take observation errors to be

00, =59ms™", ¢y =59ms™",

(3.4)

o9 =254m,

1

— - 1
o, =34ms™,

oy, =34ms™,
(3.5)

o5, =12.1m,

according to the values used for these levels at the Na-
tional Meteorological Center (NMC) and listed in Dey
and Morone (1985). The observational errors are,
therewith, larger in this unstable case, with the errors
in the lower layer now equal to those used for the upper
layer in the earlier, stable case.

Experiments U2 and U3 have all six model variables
being observed at 6-h intervals. In experiment U2 the
observation is located along the symmetry axis of the
channel, at grid point (8, 9), while in experiment U3
the observing station is moved northward to point (8,
14). Figures 5 and 6 display the ERMS error evolution
for the 20-day assimilation period. Each of the curves
in the figure has been normalized by its corresponding
maximum value in experiment U1, the control run.

The errors are now kept bounded due to the frequent
update and the KF’s knowledge of the model dynam-
ics, and hence of the instability’s spatial pattern. In con-
trast to the unstable 1-L case (see Figs. 13b and 14a,b
of Part I), in the 2-L case there is very little difference
between observing in the middle of the channel, as in
experiment U2, or at another location, as in experiment
U3. This is a consequence of the absence of the merid-
ionally dependent jet that was present in the unstable
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FiG. 6. As in Fig. 5 but with observation point moved northward to grid point (8, 14).

case studied in Part I for the 1-L. model. The relatively
small difference that is present between corresponding
panels in Figs. 5 and 6 can be attributed to the £ effect.
While the zonal wind errors are again the largest rela-
tive to the no-update case (notice change in vertical
scale), there is almost no change with the position of
the observation station.

The forecast and analysis errors of experiments U2
and U3 do not grow exponentially anymore. Still, a
single observing station is not sufficient to actually re-
duce the initial errors in those cases. In experiment U4,
we observe along a meridional section (8, j), j = 2,
- -+, 16, in the upper layer only. Figure 7 shows that,
in this case, the initial errors are reduced gradually and
steadily, and there is no growth due to flow instabilities
at all. The errors in the lower layer are somewhat higher
than the errors in the upper layer since the observations
are taken only in the latter. It is interesting to notice
that observing along a meridional section solely in one
layer is enough to track the instability. In fact, asymp-
totic error levels using only 45 scalar observations in
this unstable case—but without model errors—are
substantially lower than in the stable case where model
errors are present and 480 scalars are being observed
(see Fig. 2).

Further aspects of experiment U4 are shown in Fig.
8 by plotting maps of the forecast-error standard de-
viation in the height fields for both layers. Figure 8a
displays the height error fields at day 2, while Fig. 8b
is for day 5. The contour interval of 1 m is the same in
the two panels, showing immediately the decrease in
the overall error field from day 2 to day 5, as already
seen in the ERMS plots in Fig. 7.

Figure 8 illustrates the interaction between the two
layers, with the errors in the upper layer, where mea-
surements are taken, being only slightly smaller than
in the lower layer. It is in fact remarkable that the strong
gradient in the error fields, which is indubitably due to
the observation pattern, is much clearer in the lower
layer, where no observation is actually taken. This is a
consequence of the fact that the KF utilizes the dynam-
ics optimally during the assimilation procedure and that
the northwest—southeast propagation of Rossby waves
(Held 1983) has larger amplitude in the upper layer.
The overall propagation of information from the north-
west to the southeast has already been observed in the
studies of Parrish and Cohn (1985) and Todling
(1992), for the 1-L, barotropically stable version of
this model. The novel and interesting fact apparent here
is that this propagation is more pronounced in the upper
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FiG. 7. As in Fig. 5 but observations are located along the line (8,j),j = 2, ---, 16, in

the upper layer only. Curves are not normalized and shown out to 5 days only.

layer, where the observations are taken, while the sig-

nature of the observing network lasts longer in the
unobserved lower layer.

The maps of forecast-error standard deviations in the
zonal wind are shown in Fig. 9. They still demonstrate
considerable persistence of the observing pattern in the
reduced errors of both layers. The propagation of in-
formation in the zonal wind is along the zonal direction
in both layers, with relatively large error gradients left
along the north and south walls, as shown already in
the barotropic stable version of Parrish and Cohn
(1985) and Todling (1992).

For the final experiment, we consider nonzero model
errors, constructed exclusively on the basis of the slow
modes of the unstable dynamics, as explained in sections
3b-d of Part I. We use a decaying spectrum. for the
model-error covariance matrix as before (see section 3a
above). Experiment U5 of Table 2 uses the observa-
tional network of Fig. 1 with radiosondes in both layers.
The assimilation results are shown in Fig. 10.

The error evolution is practically indistinguishable
from that in Fig. 2: the error growth in between obser-
vations is- completely dominated by the model error,
with no visible contribution from the exponential
growth due to the model dynamics. Interestingly

enough, the only analysis errors not reaching levels be-
low the observation threshold are the ones for the zonal
component of the velocity in the lower layer. Compar-
ing this result with the one shown in Fig. 2—where
the observation errors are much lower—for the stable
no-shear case, we are led to conclude that the presence
of shear and the instability it entails enhance the

"exchange of information between the layers and the

associated analysis-error reduction.

4. Concluding remarks

In Part I of this work (Todling and Ghil 1994) we
have set up one- and two-layer (1-L and 2-L) versions
of a 2D, linear, shallow-water model in a midlatitude
B channel, with periodicity in the zonal direction. The
performance of the KF in assimilating sparse and in-
accurate data was studied there for the 1-L version,
both for a stable and an unstable basic flow profile, as
a function of data distribution and the assumptions
made in constructing the model-error covariance ma-
trix. The main conclusions of Part I were that the latter
assumptions matter and that the error variance (or en-
ergy) should decay with wavenumber; that the KF is
able to keep forecast and analysis errors bounded in the
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(b)

FiG. 8. Forecast error standard deviation in the height field in both layers, for observations along a
meridional section (same as Fig. 7): (a) at day 2 and (b) at day 5. Contour interval is 1 m.

presence of strong barotropic instability, while using
very few observations; and that forecast-error correla-
tions become quite anisotropic and inhomogeneous due
to the instability.

In the present paper, Part II of the work, we have
studied KF performance for the model’s 2-L version in
a stable and an unstable case. Baroclinic instability was
induced by vertical shear between the two layers with
no horizontal shear present. The key point of the re-

sults, as in Part I, is that the KF’s knowledge of the
dynamics—and hence of the instability’s spatial pat-
tern—helps track the unstable flow, even when using
observations that are quite sparse and inaccurate.

To simulate the irregular network of conventional
observing stations over a relatively data-dense area like
the Northern Hemisphere’s land areas, we have used a
random pattern (Fig. 1) with 80 stations out of a total
of 16 X 17 = 272 (horizontal) grid points; that is, less
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than 30% of the points, at most, are observed. In the
stable case, observing all model variables, £, u, and v,
in both layers (that is, six scalars per horizontal grid

FiG. 9. As in Fig. 8 but for the errors in the zonal wind. Only the result at day 5 is displayed,

(b)

(a)

and the contour interval is 1 m s™'.
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point) suffices, when starting with very high initial er-
rors, to reduce the ERMS errors in all variables to the
observational error levels, taken equal to those used at
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FiG. 10. As in Fig. 5 but with the 80 observing stations of Fig. 1, used in both layers.
The perfect model assumption is not made in this case, and curves are not normalized.
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NMC for the corresponding pressure levels (Fig. 2),
over a 2-day interval.

The only exception are the zonal winds, a fact al-
ready observed by Ghil et al. (1981) and Cohn and
Parrish (1991) in simpler, 1-L versions of this model
(first 1D and then 2D), which can be explained by the
large observational errors in this component, relative
to its total magnitude. Using lower-layer observations
only at the same stations still leads to an asymptotically
periodic ERMS evolution (Fig. 3), with only the up-
per-layer zonal wind showing a substantial, but not di-
sastruous, loss of accuracy. In this case we deal with a
mere 13% of scalar model variables being observed
every 6 h for a few update times, and the relative ac-
curacy of the results is well explained by the in-layer
and layer-to-layer spatial (cross-) correlations of the
various fields, as shown in Todling (1992) and Part 1.

In the absence of either observations or model noise,
the ERMS in the unstable case grows exponentially,
after day 5. The initial transient apparent in Fig. 4 is
due to lack of self-adjointness of the linear operator
defined by Eqs. (2.4) and (2.5). This leads to faster
growth of certain modes of the short-term symmetric
propagator, overtaken eventually by the fastest modal
instability of the linear operator itself [ see Lacarra and
Talagrand (1988) and the discussion of Fig. 4 of Part
I1. Maintaining, for illustration purposes, the hypoth-
esis of no model errors (implicit in the adjoint-method
implementations of 4D-Var), we have shown that a
single station, observing in both layers, suffices to keep
the ERMS bounded (Fig. 5). Since the basic state in
the baroclinically unstable case studied here has only
vertical shear, the position of this single station matters
relatively little (compare Fig. 6 to Fig. 5), unlike in the
barotropically unstable case of Part I, where horizontal
shear is present and of paramount importance.

In the absence of model errors, observations along a
meridional cross section, in the upper layer only, suf-
fice to reduce the error in all variables, in both layers,
asymptotically to zero (Fig. 7). Thus, ‘‘knowing’’ the
spatial pattern of the instability, it suffices for the KF
to observe the unstable wave as it travels through, as
was already the case for the neutrally stable waves in
the 1D, 1-L model of Ghil et al. (1981, see Fig. 2
there): for m update times, the error is reduced in pro-
portion to m~'"*. The analogy with the well-known case
of repeated independent observations of a single scalar,
constant in time, is striking and illustrates the full in-
genuity of the KF.

Finally, reinstating the model noise to the same level
and with the same decaying spectrum as in the stable
case (Fig. 2), but restricted to the slow modes only
[ following Phillips (1986) and Cohn and Parrish
(1991) in the 1-L case], still permits one to attain an
asymptotically periodic ERMS evolution in less than 2
days (Fig. 10) when using the random observing pat-
tern of Fig. 1. In fact, the analysis and forecast error
levels are lower relative to the observational error lev-
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els than for the stable case of Fig. 2, showing the dom-
inant role of the instability in propagating flow infor-
mation.

It is clear that nonlinear saturation and interaction of
multiple instabilities, barotropic and baroclinic, in a
more realistic model will complicate substantially the
optimistic picture obtained in this two-part study. But
the study’s results do encourage us to hope that com-
putationally efficient implementations of the extended
Kalman filter will permit the accurate tracking of these
interacting instabilities with the limited number of very
diverse observations actually available for most atmo-
spheric and oceanic problems.
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