A Dual-Polarization-Radar-Based Assessment of the 8 May 2003 Oklahoma City Area Tornadic Supercell

GLEN S. ROMINE
University of Illinois at Urbana–Champaign, Urbana, Illinois

DONALD W. BURGESS
Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/National Severe Storms Laboratory, Norman, Oklahoma

ROBERT B. WILHELMSON
University of Illinois at Urbana–Champaign, and National Center for Supercomputing Applications, Urbana, Illinois

(Manuscript received 31 July 2007, in final form 9 January 2008)

ABSTRACT

On 8 May 2003, a tornadic supercell tracked through portions of the Oklahoma City, Oklahoma, metropolitan area and produced violent damage along portions of its path. This storm passed through the dense in situ radar network in central Oklahoma and provided close-range operational, prototype polarimetric and terminal Doppler weather radar observations of the storm as it made the transition into the tornadic phase. The time-evolving polarimetric features were scrutinized with regard to storm morphology, particularly as related to the development of a rear-flank downdraft pulse within the storm immediately preceding the long-track tornado event. Two new polarimetric terms are introduced, the Z_{dr} shield and K_{dp} foot, along with a discussion of the orientation of the Z_{dr} and K_{dp} columns relative to midlevel rotation signatures. Storm downdraft and gust front characteristics are discussed relative to polarimetric fields and background environment characteristics. Highlighted for this event are a “warm” forward-flank downdraft and a particularly cold rear-flank downdraft. Emphasis is also placed on demonstrating key polarimetric field characteristics relative to traditional features at low and midlevels defined in familiar conceptual models of severe storms.

1. Introduction

A continuing challenge in the study of severe storms is assessing the tornadic potential of supercell storms with strong low-level mesocyclones. While an increasing body of evidence suggests that cold pools associated with significant tornado-producing supercell storms tend to have minimal departure from the inflow environment thermodynamic characteristics (e.g., Markowski et al. 2002; Shabbott and Markowski 2006; Grzych et al. 2007), the basis behind this finding is still not well understood. There has been speculation that colder rear-flank downdrafts (RFDs) may have a tendency to “undercut” the storm updraft, including the tornado cyclone region, and this negatively buoyant air opposes vertical ascent and the subsequent stretching that might otherwise lead to tornadogenesis (Brooks et al. 1994). Wakimoto and Cai (2000) noted even subtler differences between a pair of tornadic and nontornadic storms meticulously analyzed, with the tornadic storm exhibiting a warmer downdraft core as revealed from temperature retrieval methods. Unfortunately, the relationship between tornado potential and cold pool intensity is rarely of practical use in operational warnings since storm downdrafts are infrequently sampled by the sparse operational observing network relative to the size of storm cold pools. The thermodynamic characteristics of supercell downdrafts are thought to be regulated at least to some extent by a storm’s microphysical...
makeup, as well as by the storm environment conditions and storm dynamics [see Markowski (2002) for a recent review of current understanding of rear-flank downdrafts]. Polarimetric radar observations provide information related to the time-evolving microphysical character of a storm (Straka et al. 2000). This information can potentially be utilized to help to elucidate the role that the microphysical character of hydrometeors may have in downdraft forcing, as well as subsequent surface thermodynamic characteristics of downdraft air relative to storm inflow. To help to reach the goal of better understanding polarimetric radar signatures, we detail the characteristics of a tornadic supercell, identifying prominent structures or evolution in select polarimetric fields that may provide insight into changes in storm character.

Polarimetric radars, which typically transmit energy and receive returned power at both horizontal and vertical orientations, offer supplemental observations related to differences in the orthogonal measurements in addition to the suite of products from conventional Doppler radars. Seliga and Bringi (1976) first introduced differential reflectivity (hereinafter $Z_{	ext{dr}}$) and suggested that $Z_{	ext{dr}}$ could be used to infer characteristics of a drop size distribution, with highly positive $Z_{	ext{dr}}$ associated with large median volume diameter rain within the scattering volume. Later, Sachidananda and Zrnić (1987) developed a technique for deriving the specific differential phase (hereinafter K_{dp}). They noted that K_{dp} could be used to improve rain-rate estimates. Notably, K_{dp} was drawn from the differential phase, a field that Jameson (1985) showed was related to the liquid water content along the beam path. Thus, highly positive K_{dp} measurements suggest radar volumes with substantial liquid water contents. Finally, correlation coefficient (hereinafter r_{hv}) was introduced by Balakrishnan and Zrnić (1990), which aided in discriminating mixed phase regions (such as radar volumes having both rain and hail) from radar volumes with homogeneous scattering particles.

A limited number of studies have sought to link signatures within these polarimetric fields to severe storm behavior and characteristics. Hall et al. (1984) provided early guidance in the field of hydrometeor classification, such as identifying rain by positive Z_{dr} regions. They also first identified a narrow column of positive Z_{dr} above the melting layer, which they presumed to be an indication of supercooled water. Later, Illingworth et al. (1987) linked Z_{dr} columns to updrafts within developing convective cells. Thereafter, Conway and Zrnić (1993) and Brandes et al. (1995) supplemented polarimetric radar observations of Z_{dr} columns with in situ aircraft observations of particle distributions and vertical velocity. In summary, these studies attributed the Z_{dr} column signature to a deep vertical column of supercooled water extending well above the freezing level, offset slightly from the updraft maximum. They presumed that the collision and coalescence process within the updraft periphery allowed a sparse population of drops to grow to quite large sizes (up to 5 mm and therefore particularly oblate in shape).

Wakimoto and Bringi (1988) identified another feature they named a Z_{dr} hole as a depression in the height of positive Z_{dr} values below the melting level, which they associated with a wet microburst event. The microburst was presumably within a precipitation shaft where isotropic scattering from tumbling hailstones dominated the Z_{dr} signature. The frequency of Z_{dr} hole occurrences being associated with microburst events has not been widely studied. However, Scharfenberg (2002) examined several cases of microburst occurrences, and all were noted to have signatures consistent with the Wakimoto and Bringi (1988) model. Recent results from Ryzhkov et al. (2007) suggested that Z_{dr} hole signatures may not be well detected by 5-cm-wavelength radars, which can have a resonance response that may obscure this signature.

Hubbert et al. (1998) further detailed a K_{dp} column found adjacent to the aforementioned Z_{dr} column and suggested this feature was caused by liquid drop shedding (preferentially in the 1–2-mm drop size range) from wet hailstone growth leading to high liquid water content regions aloft. Loney et al. (2002) then described in situ observations near the updraft at midlevels of a supercell thunderstorm and compared calculated polarimetric fields using aircraft-sampled particle distributions with polarimetric radar observations. Notably, they similarly related the K_{dp} column to the melting and shedding of water drops along the left flank of the updraft. They also sampled a Z_{dr} maximum along the right flank of the updraft at midlevels and sampled sparse larger drops within a region of the Z_{dr} column. Schuur et al. (2001) described disdrometer measurements coupled with polarimetric radar observations for a supercell thunderstorm. They made note of a long-duration period where very large drops were sampled, but in very small concentration, beneath a continuous region of highly positive Z_{dr} along the forward edge of a storm. Ryzhkov et al. (2005) later highlighted the presence of highly positive Z_{dr} immediately downstream of the supercell storm updraft. They attributed this feature to size sorting owing to environmental vertical shear leading to large oblate drops in the radar volume. It should be noted that there are other possible interpretations for the large drop region. For example, Ulbrich and Atlas (2007) suggested that leading convec-
tive rains often have a narrow drop size spectrum with characteristics similar to an equilibrium drop size distribution (e.g., Hu and Srivastava 1995) with large median volume diameters. Finally, Ryzhkov et al. (2005) also illustrated polarimetric signatures of tornado debris that are largely composed of anisotropic scatterers yielding identifiable characteristics. Further applications of polarimetric radar signatures to flash flood forecasting and large hail detection were described in Scharfenberg et al. (2005).

Numerous studies have documented the structure and evolution of tornadic supercell thunderstorms (e.g., Browning 1964; Lemon and Doswell 1979; Doswell and Burgess 1993), largely rooted in analysis via conventional and Doppler radar observations. Yet, despite an increasing prevalence of polarimetric radar observations, to date no studies have documented the structure and morphology of polarimetric signatures associated with tornadic storms as they relate to traditionally accepted supercell models, aside from limited links to storm dynamic–thermodynamic characteristics described above. On 8 May 2003, a tornadic supercell passed through portions of the Oklahoma City (OKC), Oklahoma, metropolitan area causing up to F4 damage along its path. This violent storm tracked through portions of southwest Oklahoma City, the city of Moore, southeast Oklahoma City, Midwest City, and Choctaw, where the relatively dense in situ radar network in central Oklahoma afforded a unique dataset of multiplatform radar observations for subsequent analysis of this significant event.

This study builds on a preliminary investigation by Burgess (2004) of the 8 May 2003 storm event. Time variation of polarimetric field variables is demonstrated and spatial relations are shown between kinematic fields and polarization variables. Combined with aspects of the rear- and forward-flank downdraft evolution captured by multiplatform observations, the potential value of polarimetric radar trends as a possible window into storm cold pool traits is demonstrated. This work will hopefully inspire similar studies of other supercell events, both tornadic and nontornadic, to determine the generality of the findings described herein.

2. Data and methodology

The transition of the 8 May 2003 storm into its tornadic phase occurred in close proximity to the central Oklahoma fixed radar network, as the tornado tracked within 15 km of three Doppler radars and two aviation routine weather report (METAR) stations for the duration of the tornado event (see Fig. 1). The polarimetric observations for this case were collected by a proof-of-concept system at Norman, Oklahoma (KOUN), for the planned polarization upgrade of the fleet of operational Weather Surveillance Radar-1988 Doppler (WSR-88D; Doviak et al. 2000). KOUN collected continuous data [modified Volume Coverage Pattern-11 (VCP-11)] from initiation through the transition into the tornadic phase of the storm. Thereafter, the radar suffered a power outage from tornado damage associated with the storm, limiting the time period of continuous collection to approximately 2048–2210 UTC on 8 May 2003. The precursor cells to the tornadic supercell developed within 70 km of the KOUN radar and passed within 30 km near the end of the observing period. While several convective features developed during the observing period within the detection range of the KOUN radar, the discussion here will focus on the cell that resulted in the significant tornado event in the Oklahoma City metro region—labeled cell B (hereinafter the OKC storm) in Fig. 2.

Radar data collected from KOUN for this event were manually preprocessed to remove ground clutter and dealias radial velocities (Dowell et al. 2004). The

1 See Schuur et al. (2003) for an overview of the KOUN scanning strategy.
manual processing by Dowell et al. was extended to include the subjective removal of polarimetric fields from nonmeteorological returns (typified by very low ρ_h, and highly "noisy" fields). Data volumes at central volume collection times were then created from the sweep sequences using echo translation with an assumed constant storm motion of 14 (8) m s$^{-1}$ in the E–W (N–S) direction. Data were then interpolated using a Cressman (1959) scheme with a 500-m radius from radar coordinates onto a Cartesian 1-km (500 m) horizontal (vertical) uniform grid. Notably, the time stamps on the KOUN radar products are believed to be 150 s (±15 s) in error (fast) based on comparison with the WSR-88D in Twin Lakes, Oklahoma (KTLX), and the Terminal Doppler Weather Radar at Will Rogers World Airport, Oklahoma City (TDWR), products, and as such were adjusted prior to processing.

Additional radar observations from the KTLX WSR-88D (e.g., Crum and Alberty 1993) and TDWR (e.g., Vasiloff 2001) were also utilized for portions of this study, particularly for their time continuity (KTLX and TDWR), diverse view perspective (KTLX) relative to KOUN, and high temporal and spatial resolution of near-surface confluence boundaries (TDWR). The differences in the radar characteristics for systems used in this study are summarized in Table 1. Composites of the near-surface gust front evolution were created from spatially coherent radial convergence signatures in low-elevation scans from the KTLX and TDWR radars, translated using the mean storm motion to the volume collection times similar to the treatment of the KOUN observations. Differences in the timing between the base scans from KTLX and TDWR relative to the central volume collection times for the KOUN data volumes likely resulted in minor spatial inconsistencies between field overlays; however, they are still expected to
provide a meaningful qualitative overview of the gust front evolution relative to the polarimetric field morphology. Selected TDWR and KTLX scans used for the surface gust front evolution are summarized in Table 2. The relatively close range of the storm to the KTLX (TDWR) radar led to low-elevation beam height intersections with the gust front ranging from 300–600 (150–300) m above radar level around 2146 UTC to 120–300 (30–400) m above radar level by 2210 UTC.

Data collected from an operational sounding released by the National Weather Service Forecast Office (NWSFO) at Norman (adjacent to the KOUN radar site) around 0000 UTC 9 May 2003 is graphically summarized in Fig. 3. Also, a pair of METAR stations within the Oklahoma City metropolitan area sampled portions of the OKC storm’s forward flank preceding tornadogenesis as well as during the mature phase of the tornado life cycle at close range (<1 km). The station locations relative to the regional radars are shown in Fig. 1. Meteograms of several meteorological variables are shown in Figs. 4 and 5 for the METAR stations at Oklahoma City (KOKC) and Tinker Air Force Base, Oklahoma (KTIX), respectively. Observations for both stations are available at irregular intervals during the shown period and as such connecting lines between observation points are provided only to demonstrate trends and may not accurately represent the actual rates of change.

![Fig. 3. Rawinsonde observations from the KOUN observing station for 0000 UTC 9 May 2003. (top) Temperature (heavy lines), dewpoint (heavy dashed lines), and 100-hPa mixed layer virtual parcel (thin lines) shown in skew T-logp diagram format. Half, full, and pennant wind barbs are for 2.5, 5.0, and 50 m s⁻¹, respectively. (bottom) Storm-relative hodograph with winds (m s⁻¹) and mandatory pressure levels (hPa) indicated.](image)

Table 1. Radar characteristics.

<table>
<thead>
<tr>
<th>Radar name</th>
<th>Location (°N, °W)</th>
<th>Elev (m)</th>
<th>Power (kW)</th>
<th>Pulse size (°, m)</th>
<th>Nyquist (m s⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KOUN</td>
<td>35.236, −97.462</td>
<td>381</td>
<td>750</td>
<td>0.95, 250</td>
<td>Up to 2124 UTC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>±1.5° ± 12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>≥2.5° ± 27.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2126–2210 UTC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>±27.8</td>
</tr>
<tr>
<td>KTLX</td>
<td>35.329, −97.282</td>
<td>385</td>
<td>750</td>
<td>0.95, 250*</td>
<td>≥6.2° ± 26.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.5° ± 28.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>≥8.7° ± 30.4</td>
</tr>
<tr>
<td>TDWR</td>
<td>35.276, −97.510</td>
<td>384</td>
<td>250</td>
<td>0.55, 150</td>
<td>±22.4</td>
</tr>
</tbody>
</table>

* Range resolution of the reflectivity is reduced to 1000 m.

Table 2. KTLX and TDWR scans utilized for gust front evolution.

<table>
<thead>
<tr>
<th>Radar name</th>
<th>Sweep start time (UTC)</th>
<th>Nearest volume time offset (s)</th>
<th>Beam elevation (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KTLX</td>
<td>2146:16</td>
<td>−16 to 2146 UTC</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>2151:14</td>
<td>46 to 2152 UTC</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>2156:10</td>
<td>110 to 2158 UTC</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>2206:04</td>
<td>−124 to 2204 UTC</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>2211:01</td>
<td>−61 to 2210 UTC</td>
<td>0.5</td>
</tr>
<tr>
<td>TDWR</td>
<td>2146:24</td>
<td>−24 to 2146 UTC</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>2152:24</td>
<td>−24 to 2152 UTC</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>2158:23</td>
<td>−23 to 2158 UTC</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>2205:31</td>
<td>−91 to 2204 UTC</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>2211:31</td>
<td>−91 to 2210 UTC</td>
<td>1.0</td>
</tr>
</tbody>
</table>
3. Event overview

The synoptic weather pattern in place the morning of 8 May 2003 was typical of severe weather events in the southern plains (e.g., Doswell et al. 1993). This weather event was embedded within an extended severe weather outbreak summarized by Hamill et al. (2005). A zoomed-in composite chart (Miller 1972) for the southern plains region that morning (Fig. 6) showed a lee cyclone and attendant dryline poised to surge eastward as an upper-level short-wave trough approached the southern plains at 1200 UTC 8 May 2003. Shown are 300-hPa jet axis (heavy gray line), 300-hPa divergence regions (stippled), 500-hPa short-wave axis (blue dashed line with triangles), 700-hPa thermal axis (peach squares), 850-hPa thermal and moist axes (red and green circles, respectively), 850-hPa low-level jet axis (purple heavy line), surface pressure contours every 2 hPa (thin gray lines), surface dryline (thin dashed brown line), and outflow boundaries (thin dashed gray lines). Local minima in pressure reduced to sea level are labeled with Ls.

Lee et al. (2006) demonstrated that cell merger interactions may play an important role in subsequent storm behavior. As such, the early convective evolution for the 8 May storm was detailed owing to the possible impact this evolution had on later storm characteristics. Between 2000 and 2100 UTC a few clusters of small convective cells began developing just east of the dryline across western portions of central Oklahoma, which around 2026 UTC included a group near Apache, Oklahoma (~22 km SSW of Anadarko, Okla-
The aforementioned storm cluster developed just south of a small-scale dryline bulge around 2030 UTC (see inset Fig. 2). The 0000 UTC sounding from KOUN (Fig. 3, top) showed characteristics typical of Great Plains severe weather events. A relatively deep moist layer in the lower troposphere (mean water vapor mixing ratio of 16.9 g kg$^{-1}$ in the lowest 90 hPa) bounded by a modest capping inversion and steep midlevel lapse rates (850–500-hPa lapse rates $>7^\circ$C km$^{-1}$) yielded 100-hPa mixed layer CAPE in excess of 3800 J Kg$^{-1}$. The environment freezing-level height was found near 4.2 km AGL while the freezing height for an ascending parcel was closer to 5.5 km AGL (for parcels in the updraft, the freezing height for an ascending parcel was closer to freezing-level height was found near 4.2 km AGL while layer CAPE in excess of 3800 J Kg$^{-1}$). The storm-relative hodograph (Fig. 3, bottom) showed significant veering heights owing to entrainment). The storm-relative hodograph (Fig. 3, bottom) showed significant veering of the low-level winds with height (0–3-km storm-relative environmental helicity >450 m2s$^{-2}$) and substantial deep-layer shear (surface–6-km shear of 30 m s$^{-1}$) to support storm organization. As such, both a favorable kinematic and thermodynamic storm environment was in place for supercell and tornadic development. Given the modest large-scale forcing, it is hereinafter presumed that the KOUN sounding was representative of the background environment of the OKC storm.

All discrete cells that maintained a >35 dBZ echo for two consecutive volume scans (as sampled from KOUN) within the focus region were tracked during the main observing period (2048–2210 UTC) as illustrated in Fig. 2. The greatest concentration of cell tracks focused along a line from WSW to NNE of the radar including the tornadic cell (recall as track labeled B) near the axis of enhanced low-level moisture (Fig. 7). The OKC storm underwent two splits along its left flank during the observing period, generating tracks B1 and B2 at 2120 and 2152 UTC, respectively. Further, two immature cells merged with cell B along the right flank, cells F and G, at times 2140 and 2152 UTC, respectively.

The overall evolution of the OKC storm from 2100 to 2300 UTC can best be summarized using observations from the KTLX radar owing to its continuous data collection throughout the storm’s lifetime. The early stages of the storm featured largely multicellular behavior with a gradual transition toward a more discrete classic supercell (not shown). A time–height diagram of the maximum reflectivity at each elevation angle (Fig. 8a) provides more detail about the storm’s evolution. After a very short-lived first cell (~2040 UTC), a large, strong, tall cell developed by 2100 UTC and briefly produced 65 dBZ reflectivity aloft. The initial strong cell weakened and was replaced by a new rear cell (2121 UTC; first upward-pointing arrow in Fig. 8) that quickly strengthened. As indicated by the second and third upward-pointing arrows in Fig. 8, right-flank cells merged into the storm at 2141 and 2151 UTC. After the mergers, the storm grew very strong with a 70-dBZ core that extended to heights greater than 10 km above radar level (ARL). During the time period of the F4 tornado and the mesocyclone occlusion, the strong core descended toward the surface, presumably because of a weakening updraft. After 2230 UTC, no elevated, highly reflective core was detected, although a large area of 60-dBZ reflectivity continued.

A companion time–height diagram of the maximum azimuthal shear or azimuthal vorticity (the component of vertical vorticity sensed by a single-Doppler radar) at each elevation angle (Fig. 8b) provides more details about the mesocyclone evolution. Azimuthal vorticity data are derived from an algorithm that uses two-dimensional linear least squares estimates of radial velocity derivatives (LLSDs; Smith et al. 2003). The input data are averaged and have a calculation kernel of mesocyclone size (5 km) passed over them. The mesocyclone strength vorticity did not exist at any height within the storm during the storm’s early life (prior to 2121 UTC). After the development of the new rear cell (2121–2141 UTC), weak mesocyclone-strength vorticity values began to occur aloft. During and after the merger of the two flanking cells (2141 UTC and beyond), values aloft rapidly increased to the strong mesocyclone category, reaching a maximum of about 30×10^{-5} s$^{-1}$ at 4–5-km height at tornado time. Radial convergence below cloud base increased markedly preceding the development of significant low-level vorticity and subsequent tornadogenesis, in line with previous studies (Burgess and Magsig 1993, 1998). Notably, careful analysis of close-range, high temporal resolution TDWR base data strongly suggested a single tornado event originating near 2206 UTC, which differs in tornadogenesis time (2 min later) and the segmented path detailed in official NWS survey results and the National Climatic Data Center Storm Data publication (NCDC 2003, 340–342) listed as the second and third tornadoes. The first reported brief tornado near 2200 UTC was not evident in products from any of the radars. Nevertheless, the elevated mesocyclone vorticity maxima gradually weakened and descended toward the surface during the tornado’s lifetime. The completion of the occlusion process brought an end to the life of the tornado-parent mesocyclone center at about 2250 UTC. A pair of subsequent circulation centers sequentially developed with the storm, maintaining the supercell well beyond 2300 UTC, yet neither was as strong as the prior...
tornadic circulation, and no more tornadoes were reported with this storm.

4. Discussion of polarimetric field observations

a. Early polarimetric field evolution

(2100–2140 UTC)

The OKC storm evolved from a disorganized multicell cluster into a discrete supercell with strong midlevel rotation during this period. Within the polarimetric fields, early cell evolution demonstrated several of the characteristic polarimetric field structures previously described in the literature, such as Z_{dr} and K_{dp} columns. In particular, the OKC storm possessed intermittent positive Z_{dr} columns (here defined as a vertically contiguous region of Z_{dr} of 3 dB or greater extending above the freezing level) during its formative stages. These columns typically appeared along the upshear echo edge of cells both embedded within the early multicell structure and other distinct cells. Intermittent K_{dp} columns (here defined as a vertically contiguous region of 1.5° km$^{-1}$ or greater) also appeared downshear of persistent Z_{dr} columns during the early stages of convective organization and were a well-established feature with the OKC storm beyond 2120 UTC coincident with new rear-cell development and associated weak midlevel updraft rotation (Fig. 8b). The first left split (cell B1) was traced back to a small Z_{dr} column that developed along the forward left flank of the precursor OKC storm around 2108 UTC. As a new rear cell merged into the OKC storm from 2120 to 2134 UTC, an attendant Z_{dr} column developed and merged aloft with

Fig. 7. Surface station observations at 2100 UTC 8 May 2003. Each station is labeled with air temperature (°C; top left), dewpoint (°C; bottom left), station identifier (right), cloud cover (center fill, where open represents clear), and wind speed and direction (half barb, 5 kt; full barb, 10 kt). Overlaid are subjectively derived contours of air temperature (red; regions greater than 34°C are filled) and dewpoint every 4°C (green; areas greater than 24°C are filled), along with the approximate region of storm initiation (gray filled area WSW of Chickasha, OK).
the preexisting Z_{dr} column. Simultaneously, the K_{dp} column shifted counterclockwise relative to the Z_{dr} column. A region of high Z_{dr} well below the melting level developed downshear of the updraft, with higher peak values particularly along the right flank of the dominant cell (this feature is hereinafter referred to as the Z_{dr} shield). Thus, the development of a Z_{dr}–K_{dp} column couplet along the upshear edge of the storm echo coincided with the appearance of a strong midlevel mesocyclone (Fig. 8b), as well as the development of the Z_{dr} shield downshear of the updraft. Notably, the orientation of the Z_{dr} column lying along the left flank of the updraft differs from the observations described in Brandes et al. (1995) of a multicell hailstorm where the Z_{dr} column was instead downshear of the main updraft.

b. Mature supercell polarimetric field characteristics and evolution (2146–2204 UTC)

The OKC storm, which as noted earlier acquired strong midlevel rotation by 2140 UTC, later absorbed a second right-flank merger while simultaneously displacing a second left split (cell B2) near the 2152 UTC time frame. Thereafter, a rear-flank downdraft pulse swept cyclonically across the back edge of the storm from the left- to the right-rear flank by 2158 UTC. Subsequent
strong low-level convergence along the lead edge of the rear-flank gust front preceded the development of a strong low-level mesocyclone and tornadogenesis near 2204 UTC. This event sequence is now considered with regard to both the quasi-steady and evolving aspects of the polarimetric fields during this critical period. Figures 9–13 provide key polarimetric field overlays shown on constant altitude plan position indicator (CAPPI) surfaces at 1, 3, and 5 km ARL from 2146 through 2210 UTC. Vertical cross sections aligned along the storm motion vector, oriented as shown in the upper-left panels of Figs. 9–13, provide additional insight into the vertical structure of select polarimetric features (Figs. 14–17). Discussion will begin with notable quasi-steady elements followed by the time-evolving features.

A persistent element at 1 km ARL included a large area of significant positive Z_{dr} (≥ 3 dB) along the right-forward flank of the storm, the “Z_{dr} shield,” which generally was broadest far downshear of the updraft and more tapered along the upshear extent. Recall that the highly positive Z_{dr} values are consistent with scattering from large oblate raindrops (e.g., Bringi and Chandrasekar 2001). When highly positive Z_{dr} values are collocated with modest reflectivity values and small K_{dp}, relatively sparse drop populations would be expected (Straka et al. 2000) and subsequently would provide an inefficient source of evaporative cooling at low levels within the Z_{dr} shield (Pruppacher and Klett 1997). Thus, the presence of a wide Z_{dr} shield along the right-forward flank of a tornadic supercell would be consistent with observations of weak baroclinicity along the right-forward flank (Shabbott and Markowski 2006). The depth of the Z_{dr} shield as here defined was persistently rather shallow (Figs. 14–17), generally be-
low 2 km, whereas the height of the melting level from the environment was closer to 4.2 km ARL (see Fig. 3). Physical processes that might explain this difference included the lower height of the wet-bulb melting level relative to the melting height. Further, even once ice particles begin melting, continued falling of the hydrometeors would have occurred until there was sufficient melting to change the dominant scattering media characteristics from those typical of larger ice species such as frozen drops, hail, or graupel (with Z_{dr} values closer to zero) to that of rain. Finally, self-collection of melted water drops would have become increasingly likely as the water content increased from melting particles in the column, which would have shifted the median volume drop diameter upward, with increased Z_{dr} values, with peak values controlled by balanced drop breakup. A summary of other plausible mechanisms for the development of narrow large drop spectra is included within Rosenfeld and Ulbrich (2003).

Aligned nearer the echo centerline of the storm at 1 km ARL was a downshear elongated K_{dp} maximum, hereafter referred to as the K_{dp} foot, from well left of the storm updraft and adjacent to and overlapping the left edge of the Z_{dr} shield. Note from the meteogram observations at the KOKC METAR site (Fig. 4) that large hail reports coincided with the passage of the lead edge of the K_{dp} foot overtaking the site (Figs. 14 and 15, top). From further examination of Figs. 14–17 it is apparent that the downshear extension of the K_{dp} foot lies beneath and eventually within a descending high-reflectivity center as it extended below the melting level. This reflectivity core appears to originate near the top and downshear of the K_{dp} column aloft. Near the centroid of the K_{dp} foot, the Z_{dr} values are locally lower along with a minimum in ρ_{hv} below the melting level (not shown), presumably owing to the presence of a hail shaft (e.g., Bringi et al. 1986; Brandes et al. 1995; Hubbert et al. 1998), and may also identify a downdraft source region (e.g., Wakimoto and Bringi 1988; Knupp 1988) within the forward flank of the storm. The K_{dp} foot is contiguous with the K_{dp} column aloft along the upshear edge. From 2134 to 2204 UTC, both the Z_{dr} shield and especially the K_{dp} foot expanded considerably in spatial extent at 1 km ARL (approximately 2 and 5 times larger, respectively).

Shifting attention aloft, as noted earlier the Z_{dr} and
K_{dp} columns extend above the upshear edge of the Z_{dr} shield and K_{dp} foot, respectively. The Z_{dr} column encompassed the storm updraft prior to 2140 UTC but by 2146 UTC was collocated with the bounded weak echo region of the storm. From 2158 UTC and beyond, the higher Z_{dr} values eroded along the right flank of the updraft yet persisted along the left edge of the storm updraft, adjacent to the K_{dp} column. The location of the Z_{dr} column to the left-rear flank relative to the storm updraft location was similar to the borderline supercell case described in Conway and Zrnić (1993). Transient negative Z_{dr} regions were also noted above the Z_{dr} column and particularly near the top of the K_{dp} column in the range of 6–8 km AGL, generally accompanied by low ρ_{hv}. From 2146 to 2210 UTC, the midlevel mesocyclone motion deviated sharply rightward relative to the tracks of the Z_{dr} and K_{dp} columns, particularly between 2158 and 2204 UTC as anticyclonic shear strengthened along the upshear side of the mesocyclone. There were also expanding regions of negative Z_{dr} and K_{dp} aloft downshear of the storm updraft at midlevels, suggesting the presence of prolate and/or vertically oriented particles in this portion of the storm overlaying the right flank of the Z_{dr} shield (Bringi and Chandrasekar 2001). The Z_{dr} and K_{dp} columns were flanked by midlevel counterrotating azimuthal shear centers. This yielded a perturbation flow pattern that enhanced the rearward transport of supercooled liquid water toward a region of midlevel radial convergence (not shown) along the upshear edge of the K_{dp} column. This flow may have also contributed to the apparent upshear tilt of the K_{dp} column with height toward the end of the period.

Figure 18 provides a summary view of the low-level polarimetric field evolution relative to the near-surface gust front positions presented in a ground-relative framework from 2146 through 2210 UTC. Recall that near 2152 UTC a new cell merged with the main echo along the right-rear flank while an anticyclonic cell split off the storm’s left flank. From base-scan radial velocity convergence signatures collected by KTLX and TDWR, near-surface boundaries were mapped during the focus period and overlaid with the nearest in time KOUN volume collection windows. The boundary that extended farthest downshear (upshear) and oriented quasi-parallel (quasi perpendicular) to the storm motion vector will hereinafter be referred to as the for-
ward-flank (rear flank) downdraft gust front. Owing to the boundary orientations relative to the two radars, the rear- (forward-) flank gust front was predominantly mapped from the KTLX (TDWR) radar perspective.

The main rear-flank downdraft surge originated along the left-rear quadrant of the storm (near −32.8 km) at 2146 UTC northwest of a lead forward-flank gust front (FFGF). The leading edge of rear-flank downdraft surge then swept rapidly southeastward overtaking the FFGF by 2158 UTC, then bulging eastward.

Fig. 13. As in Fig. 9 but valid at 2210 UTC, and only for the 1-km CAPPI plot.
and eventually east-northeast in a cyclonic arc at a fairly uniform speed near 20 m s$^{-1}$. The rear-flank gust front (RFGF) expanded along the entire back edge of the storm, roughly perpendicular to the storm motion, though with the surge only along the right flank. Surface observations indicated that the RFGF overcame the KOKC station near 2159 UTC. The upshear edge of the K_{dp} foot also passed over KOKC about this time. The evolution patterns of the FFGF(s) were more variable than the RFGF, but generally featured one weakly convergent boundary along the right flank of the echo edge and another closer to the echo centerline, but right of the clockwise-shifting K_{dp} maximum. These boundaries merged with the RFGF, not where the tornado cyclone developed but offset several kilometers toward the left flank. Note also that during this time window the K_{dp} maximum shifted from adjacent to the left-rear edge of the Z_{dr} maximum to the left-forward edge. The K_{dp} foot region consistently featured divergent radial velocity signatures at low levels. Since the K_{dp} foot was beneath a Z_{dr} hole signature, which has been suggested as a source for downdraft forcing (Wakimoto and Bringi 1988), it is suggested the K_{dp} foot may serve as a rough indicator for the location of the forward-flank downdraft core.

c. Forward- and rear-flank downdraft sources

The sounding shown in Fig. 3 is now examined in greater detail, particularly with regard to low-level thermodynamics in pursuit of candidate levels for the origin of the observed rear-flank downdraft. The sounding reveals a surface-based layer that was topped by a shallow, stable capping inversion with a conditionally unstable layer and another relatively well mixed dry-adiabatic layer farther aloft. Table 3 lists select thermodynamic variables derived from the KOUN sounding as well as the forward (F-XXX) and rear (R-XXX) flank downdraft samples from the KOKC and KTIK observing stations, sorted by descending wet-
bulb potential temperature. The forward-flank characteristics were similar to the surface layer environment, whereas the rear-flank samples were more similar to the conditionally unstable layer above the inversion. It was previously suggested that the forward-flank downdraft core appeared to have its source within the low-level K_{dp} maximum region, the centerline of which tracks very near the KOKC site. Sampling of storm outflow properties was limited to points entirely north of the tornado track at different stages in the storm behavior. Nevertheless, both sampled very similar thermodynamic conditions both ahead and behind the RFGF. The forward-flank downdraft thermodynamic characteristics suggested entrainment of very little, if any, environmental air within this downdraft from above the surface inversion as both stations reported surface temperatures and dewpoints that approached wet-bulb temperatures characteristic of the surface layer. Srivastava (1987) and Knupp (1988) both suggested that melting processes can be a significant downdraft source for negative buoyancy in shallow downdrafts. As previously noted, the downshear edge of the K_{dp} foot signature was consistent with hail particles descending below the melting layer, as well as observations of severe hail reported within the K_{dp} foot signature area. As such, it appears possible that in this case melting hail may have contributed negative buoyancy, enhancing the forward-flank downdraft, though perhaps not enough so aloft for the downdraft to have origins above the inversion layer. The high liquid water content within the K_{dp} foot would also contribute to precipitation drag effects aiding in the dynamic forcing for the forward-flank downdraft.

By contrast, the rear-flank downdraft air appears too cool and dry to not have at least some source air originating from 1.4 km MSL or above, depending on the degree of entrainment. By example, within the vicinity of 2–3 km MSL, modest moistening of environmental air would have led to significant negative buoyancy favorably poised to accelerate toward the surface, potentially penetrating the capping inversion. Favorable radial convergence parallel to a strong gradient in K_{dp} (liquid water content) persisted on the left-rear flank of the storm during the window of rear-flank downdraft surge development previously detailed in section 4b. A later focus of strong radial convergence also developed on the right-rear flank (begins 2152 UTC, strong by 2158 UTC) as the cyclonic anticyclonic shear pair raced.
toward the mesocyclone core with a thin strand of precipitation in its wake. However, there appears to be only modest liquid water content associated with this secondary convergence maximum and as such a reduced confidence that this also served as a source region for the thermodynamic downdraft forcing. The cool and dry conditions within the RFD of this storm stand out from the general finding of Markowski et al. (2002) of minimal departure in equivalent potential temperature relative to the environmental conditions for significant tornadic supercells. The exception case they noted (case 21) also resulted in a violent, long-duration tornado, with upper-range deficits similar to those observed for the OKC storm, on the order of 15–20 K.

A noteworthy aspect from our analysis of this case was the rather warm surface conditions within the forward-flank portion of the storm, suggestive of a shallow forward-flank downdraft below the environment inversion layer. The forward-flank downdraft core was likely aided by cooling from the melting of large hail (e.g., Srivastava 1987; Knupp 1988), though perhaps relatively modest concentrations of small drops were present despite significant liquid water content within the shallow layer. By contrast, the rear-flank downdraft source region featured a deep column of high liquid water content, and may have also benefited from updraft and environment vertical shear interaction contributing to downdraft forcing in this region of the storm (e.g., Rotunno and Klemp 1982).

d. Fit of polarimetric observations to a conceptual supercell model

Conceptual models of severe storms have often been employed as an aid in gaining greater insight into a storm’s behavior, characteristics, and the interrelations between storm features. While conceptual models rarely fit exactly with any particular event, models have nevertheless often been constructed based on prototypical case studies, such as the classic supercell models proposed by Lemon and Doswell (1979, their Fig. 7) and Doswell and Burgess (1993, their Fig. 3a). The Lemon and Doswell model features a highly occluded tornado cyclone, whereas the Doswell and Burgess model represents a more “open wave” type surface gust front analogy (without tornado). The latter is a better fit to the OKC storm prototype and is similar to the inflow and outflow balanced 8 June 1995 McLean,
Texas, long-track “tornado 4” storm detailed in Dowell and Bluestein (2002). Also, Wakimoto and Atkins (1996) documented another open-wave gust front case with a long-track tornado near Newcastle, Texas, on 29 May 1994. As such, a hybrid of both the Lemon and Doswell and Doswell and Burgess models was supplemented with polarimetric field features noted at low and midlevels in the polarimetric observations from the storm studied in this paper.

Prominent features derived from the polarimetric fields during the mature supercell stage are graphically summarized for low and midlevels in Fig. 19. Of particular note at low levels is the highly positive Z_{dr} shield along the right-forward flank of the storm. A weakly convergent boundary is shown as a FFGF along the right flank of the Z_{dr} shield. Offset left and rearward of the Z_{dr} shield is the K_{dp} foot, which may be accompanied by large hail reports at the surface and serves as the source region for the forward-flank downdraft. Another FFGF boundary was along the right edge of the K_{dp} foot, which is also the left edge of the Z_{dr} shield. Both FFGF boundaries are roughly parallel to the storm motion vector. A more baroclinic RFGF boundary extends along the entire back edge of the storm approximately perpendicular to the storm motion, similar to the inferences from streamlines in the Lemon and Doswell (1979) model, approximately trailing the upshear edge of the K_{dp} foot and column. At midlevels, a Z_{dr} column flanks the left edge of the mesocyclone, with the K_{dp} column offset farther left and flanking the Z_{dr} column, right of the midlevel anticyclone (not shown). Downshear of the K_{dp} column is an elongated high-reflectivity core, overlaying the K_{dp} foot below. Also, downshear of the storm updraft, a negative Z_{dr} region overlaid the Z_{dr} shield at lower levels.

5. Conclusions and future work

Polarimetric radar observations from the KOUN radar of a tornadic supercell that tracked through the greater Oklahoma City, Oklahoma, metropolitan area on 8 May 2003 were examined in fine detail to extract the gross characteristics and field morphology relative to changes in storm behavior and organization. Several aspects similar to previously documented case studies of severe convection were recognized, such as the presence of midlevel Z_{dr} and K_{dp} columns. However, the location of these features relative to the storm updraft...
was perhaps unique to supercells relative to previous studies of multicell storms. The transition from multicell to supercell coincided with the realignment of the K_{dp} column from downshear of the Z_{dr} column to the left flank. Further, the repositioning of the K_{dp} column between counterrotating midlevel azimuthal shear centers aloft and midlevel convergence signatures along the left-rear flank of the storm immediately preceded the development of a rear-flank downdraft surge and subsequent tornadogenesis.

The current study has also identified a few new features from the polarimetric radar observations. First,
the presence of a large area of highly positive Z_{dr} (Z_{dr} shield) at low levels was found along the right flank of the storm during the supercell phase. While another study noted the highest Z_{dr} values were immediately downshear of the storm updraft (Ryzhkov et al. 2005), here we focus on the broader expanse of relatively high positive Z_{dr} (where K_{dp} also remains low), indicative of an expanse of sparse large drops along the right flank of the storm, where evaporation rates would be relatively small. A weakly convergent boundary was noted along the right flank of the Z_{dr} shield. Next, a low-level downshear extension of high K_{dp} from the K_{dp} column aloft was identified as a K_{dp} foot. The track of the K_{dp} foot coincided with surface reports of large hail. Further, the low-level K_{dp} maximum tracked with the apparent forward-flank downdraft center as indicated by low-level radial divergence, with a weak convergent boundary at low levels along the right flank of the K_{dp} foot, which was also the left flank of the Z_{dr} shield.

Samples from observations in the forward-flank downdraft, despite some having high liquid water content present, were found to have thermodynamic characteristics quite similar to the surface layer conditions of the environment sounding profile. This suggested that the forward-flank downdraft source height was likely entirely below the capping inversion. The rear-flank downdraft samples were only from left of the eventual tornado track, though behind a continuous gust front along the back edge of the storm, immediately trailing the K_{dp} foot. These samples suggested the rear-flank air must have had significant quantities of air drawn down from above the capping inversion, where similarly cool wet-bulb potential temperature conditions were found. The rear-flank downdraft was quite cold in contrast to recent studies suggestive of warm rear-flank downdrafts as being more conducive to significantly tornadic storms.

The K_{dp} maximum was observed to track along a clockwise arc from the left-rear edge of the Z_{dr} maximum to the left-forward (downshear) edge of the Z_{dr} maximum as the storm transitioned into the tornadic phase. Consistently, the FFGF boundaries were also...
observed to rotate in a clockwise direction during this interval. Still, the FFGFs converged and intersected the RFGF well left of RFGF surge, with the tornado cyclone developing not at the location of the merging gust fronts but just left of the gust front surge nose. Whether the evolution shown for this event is an appropriate conceptual model for other tornadic supercells should be assessed to determine the possible utility of observing polarimetric field trends in anticipating changes in storm behavior. A recent investigation by Kumjian and Ryzhkov (2007) of polarimetric features within numerous supercell storms suggested broad storm-scale features noted in this study are common to supercell storm features in their wider, though less detailed, investigation. In particular, their study did not look at the temporal evolution of polarimetric fields, and as such the generality of the evolution described in this study and whether this evolution can serve as a precursor of storm behavior remains unknown. Future studies of polarimetric signatures associated with supercell storms, coupled with surface observations such as those from mobile mesonets, could explore whether the width of the Z_{dp} shield along the right-forward flank of supercell storms was useful as a proxy to baroclinicity along the FFGF, whether the large hail swath is common associated with the K_{dp} foot track, and if repositioning of the K_{dp} column is common prior to the development of rear-flank downdraft surges. Then, polarimetric observations might provide supplemental information for assessing potential hazards and highlight regions within a storm at the greatest risk for hazardous weather conditions. Further study of polarimetric variable trends could enable our ability to detect storm hazards prior to their occurrence (e.g., Scharfenberg et al. 2003) and beyond just their identification (e.g., Ryzhkov et al. 2005).

Preliminary efforts in ensemble Kalman filter based storm-scale polarimetric radar assimilation suggest a potentially greater significance to polarimetric radar information, to be reported upon in future publications. Physical ties between storm kinematics and polarimetric field evolution, as evolved by the governing equations of the assimilation system, offer the opportunity to enhance estimates of the atmospheric state variables. Further, improved or new microphysical parameterizations in numerical models guided by polarimetric observations are expected to enable a refined understanding of the role of microphysics in downdraft forcing and in the subsequent thermodynamic character of downdraft air. In turn, this work could then reinforce polarimetric field morphology precursors to changes in storm behavior and provide a greater understanding of the internal workings of supercell storms.

Acknowledgments. This material is based on work supported by the National Science Foundation under Award ATM-0449753 for the first and third authors. Funding for the second author was provided by NOAA/Office of Oceanic and Atmospheric Research under NOAA–University of Oklahoma Cooperative Agreement NA17RJ1227, the U.S. Department of Commerce, and NSF Grant ATM-0437898. David Dowell graciously provided cleaned reflectivity and dealiased velocity data from the KOUN radar used in this study, as well as the objective analysis software utilized for the radar analysis. Kevin Scharfenberg provided additional KOUN data and Valery Melnikov along with Scott Giangrande supplied radar calibration information. Kevin Scharfenberg also provided helpful discussions on polarimetric radar signatures of microbursts. Kevin Manross prepared the TDWR and KTLX radar data used in this study. Steve Nesbitt provided helpful discussions on polarimetric observation quality control issues. Rit Carbone and another anonymous reviewer offered many helpful suggestions. Some plots were generated using NCAR Command Language software.

REFERENCES

Conway, J. W., and D. S. Zrnić, 1993: A study of embryo produc-

NCDC, 2003: *Storm Data*. Vol. 45, No. 5. [Available from the National Climatic Data Center, 151 Patton Ave., Asheville, NC 28801.]

