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ABSTRACT

This study uses the local ensemble transform Kalman Þlter to assimilate Atmospheric Infrared Sounder
(AIRS) speciÞc humidity retrievals with pseudo relative humidity (pseudo-RH) as the observation variable.
Three approaches are tested: (i) updating speciÞc humidity with observations other than speciÞc humidity
(ÔÔpassiveqÕÕ), (ii) updating speciÞc humidity only with humidity observations (ÔÔunivariateqÕÕ), and (iii)
assimilating the humidity and the other observations together (ÔÔmultivariateqÕÕ). This is the Þrst time that the
performance of the univariate and multivariate assimilation of q is compared within an ensemble Kalman
Þlter framework. The results show that updating the humidity analyses by either AIRS speciÞc humidity
retrievals or nonhumidity observations improves both the humidity and wind analyses. The improvement with
the multivariate- q experiment is by far the largest for all dynamical variables at both analysis and forecast
time, indicating that the interaction between the speciÞc humidity and the other dynamical variables through
the background error covariance during data assimilation process yields more balanced analysis Þelds. In the
univariate assimilation of q, the humidity interacts with the other dynamical variables only through the
forecast process. The univariate assimilation produces more accurate humidity analyses than those obtained
when no humidity observations are assimilated, but it does not improve the accuracy of the zonal wind
analyses. The 6-h total column precipitable water forecast also beneÞts from the improved humidity analyses,
with the multivariate q experiment having the largest improvement.

1. Introduction

Humidity is an important dynamical variable in nu-
merical weather forecast models because it not only
determines the occurrence of precipitation, but also

changes temperature through evaporation and conden-
sation processes and affects winds by changing the
pressure gradient. However, because of the special error
characteristics of humidity variables, the poor quality of
observations, and the model errors related with mois-
ture parameterizations (Dee and da Silva 2003), hu-
midity data assimilation remains a challenging problem.

Several studies have shown that assimilation of hu-
midity observations improves the accuracy of analysis
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states with an appropriate selection of humidity variable
type within variational data assimilation framework
(e.g., Dee and da Silva 2003; Holm et al. 2002). Ensem-
ble Kalman Þlters (EnKF; Evensen 1994; Houtekamer
and Mitchell 2001; Anderson 2001; Bishop et al. 2001;
Whitaker and Hamill 2002; Ott et al. 2004; Hunt et al.
2004, 2007), a different type of data assimilation scheme,
have been used to assimilate real observations with en-
couraging results (Miyoshi and Yamane 2007; Szunyogh
et al. 2008; Whitaker et al. 2008); however, so far, there
has been no systematic study on how best to assimilate
humidity observations within EnKF framework and
what is the impact of different representation of rela-
tionship between humidity and the other variables on
humidity data assimilation. A unique feature of EnKF is
its ability to explicitly estimate background error co-
variance among different dynamical variables in each
data assimilation cycle, so that it can naturally use one
type of observations to update the analyses of the other
dynamical variable types based on the ßow-dependent
background error covariance. In this study, we use the
local ensemble transform Kalman Þlter (LETKF; Ott
et al. 2004; Hunt et al. 2007), one type of EnKF, to do
both multivariate assimilation and univariate assimila-
tion of Atmospheric Infrared Sounder (AIRS) speciÞc
humidity retrievals (provided by C. Barnet 2007, per-
sonal communication). In multivariate assimilation, the
humidity variable interacts with the other dynamical
variable types through the background error covariance
during data assimilation; while in univariate assimilation,
humidity analyses are updated by humidity observations
only (section 3). AIRS is a high-spectral-resolution in-
strument, and it has been shown that the humidity re-
trievals are of high quality (Susskind et al. 2003). The
questions we address here, in addition to investigating
the impact of the humidity retrievals on the analyses,
include whether the humidity analyses can be improved
by coupling the humidity background errors with those
of the other variables, and whether the multivariate as-
similation of humidity improves the accuracy of the
analyses of the other dynamical variables (e.g., winds)
compared to the univariate assimilation.

The paper is organized as follows: section 2 brießy
describes the LETKF and the data assimilation system,
section 3 provides a detailed description of the experi-
mental design and veriÞcation methods, section 4 pre-
sents the results of the numerical experiments, and
section 5 summarizes our main Þndings.

2. The LETKF and data assimilation system

The LETKF is an efÞcient type of EnKF derived from
both the local ensemble Kalman Þlter (LEKF; Ott et al.

2004) and the ensemble transform Kalman Þlter (ETKF;
Bishop et al. 2001) algorithms. Hunt et al. (2007) provide
a detailed description of the LETKF and explain how it
differs from the other formulations of ensemble-based
Kalman Þlters. Here, we discuss only the analysis steps
that are essential to explain the humidity assimilation
experiments with the LETKF.

In the LETKF, the background perturbations and the
interpolation of the background ensemble forecasts to
observation space are computed globally, but most of
the other steps are performed locally at each grid point,
assimilating only the observations within a certain dis-
tance of the given grid point.

The global background ensemble perturbation matrix
Xb is the difference between the ensemble forecastsxb(i)

and the ensemble forecast mean statexb veriÞed at the
analysis time; theith column of Xb is xb(i) � xb. We use
the superscriptsb and a to denote the background and
analysis state, respectively. The nonlinear observation
operator h(�) transforms each ensemble forecast mem-
ber xb(i) f i 5 1, 2,. . . , kg to observation space to obtain the
global background observation ensembleyb(i) 5 h(xb(i)),
f i 5 1, 2,. . . , kg, wherek is the total number of ensemble
members. The difference between the background ob-
servation ensembleyb(i) and the mean of the background
observation ensembleyb is the background observation
ensemble perturbation matrix Yb; its ith column is
yb(i) � yb. When calculating the analysis mean state and
analysis perturbations, Xb, Yb, yb and the observation
vector yo are all deÞned on a local region centered at
each grid point. We follow the notation of Szunyogh
et al. (2008) using the subindex (l) to indicate a quantity
deÞned on a local region. According to Hunt et al.
(2007), the analysis mean statexa

(l) in the center of a local
region is equal to

xa
(l) 5 xb

(l) 1 Xb
(l)w, (1)

where w is the mean weighting vector given by

w 5 [YbT
(l) R� 1

(l) Yb
(l) 1 (k � 1)I]� 1Yb

(l)R
� 1
(l) (yo

(l) � yb
(l)). (2)

The observation error covariance R is assumed to be
diagonal. Equations (1) and (2) indicate that the mean
analysis increment is a linear combination of the back-
ground perturbations Xb

(l) ; the weighting vector is a
function of the assimilated observational increments
(yo

(l) � yb
(l)). The local analysis perturbation matrix is

Xa
(l) 5 Xb

(l) [(k � 1)~P(l)

a
]1/2, (3)

where ~P
a
(l) 5 [YbT

(l) R� 1
(l) Yb

(l) 1 (k � 1)I]� 1 is the analysis
error covariance matrix in the subspace of the background
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ensemble perturbations. The analysis perturbationsXa
ðlÞ

are thus obtained by a transformation of the background
perturbations Xb

ðlÞ. The global ensemble analyses are ob-
tained by assembling the local analyses at each grid point.

Szunyogh et al. (2008) and Whitaker et al. (2008) have
implemented the LETKF on the National Centers for
Environmental Prediction (NCEP) Global Forecast Sys-
tem (GFS; at T62L28 resolution) for the assimilation of
nonradiance observations. In data-sparse regions, both
studies obtained better performance with the LETKF
than with the statistical spectral interpolation (SSI;
Parrish and Derber 1992) of NCEP. In the system of
Szunyogh et al. (2008), which does not assimilate hu-
midity observations, the speciÞc humidity analyses are
obtained by simply copying the background forecasts in
each analysis cycle. This experimental setup provides the
control run in our experimental design, except that we
also assimilate AIRS temperature retrievals (see details
in section 3). In section 3, we describe several different
ways to update humidity in this system, and compare the
results in section 4.

3. Experimental design and veriÞcation methods

We assimilate AIRS speciÞc humidity retrievals with
the LETKF. From Dee and daSilva (2003), we know,
however, that speciÞc humidity observation errors have
a non-Gaussian distribution, with abrupt value changes
in both space and time. Thus, speciÞc humidity obser-
vations have to be transformed to a new variable that
has more Gaussian error distribution, as required by the
data assimilation algorithm.

Relative humidity has a more Gaussian error distri-
bution than speciÞc humidity, but it has the disadvantage
of having a strong error correlation with temperature
observations; this correlation is usually neglected in data
assimilation. The logarithm of speciÞc humidity has more
Gaussian error distribution than speciÞc humidity, and
the error has no correlation with temperature, but a small
value must be substituted when speciÞc humidity is zero;
this introduces a bias. Dee and da Silva (2003) proposed
to convert humidity observations to pseudo relative hu-
midity (pseudo-RH), which they deÞned as the ratio be-
tween observed speciÞc humidity and the saturated
speciÞc humidity from background forecast. Like relative
humidity, the newly formulated variable has a more
Gaussian error distribution than speciÞc humidity. Also,
since the saturated humidity used for normalization co-
mes from the background, it does not have error cor-
relations with temperature observations; nor does it
introduce a bias in the case of zero humidity. On the other
hand, this approach has the potential disadvantage that
the errors in the humidity observations could become

correlated with the errors in the background, leading to a
different violation of the assumptions made in the for-
mulation of the analysis schemes.

Liu (2007) tested the use of pseudo-RH in the EnKF
framework and found that, in practice, it provided more
accurate humidity analyses than either speciÞc humidity
or relative humidity. Motivated by these results, in the
present study we convert the AIRS speciÞc humidity re-
trievals to pseudo-RH observations, and obtain the ob-
servation error variance by numerical experimentation.

In assimilating pseudo-RH with the LETKF, we
normalize the local speciÞc humidity observationsqo

(l) by
the mean background saturated speciÞc humidityqsb at
the observation locations as follows:

yo
(l) 5 E� 1qo

(l) , E 5 diag[h(qsb)] (l) . (4)

Here, E is the diagonal matrix whose entries are the
mean background saturated speciÞc humidity values
interpolated to the observation locations. The corre-
sponding background pseudo-RH at the observation
location is equal to

yb
(l) 5 h(xb) 5 h

1
K

�
K

i5 1
D� 1qb(i)

(l)

0

@

1

A , D 5 diag(qsb)(l) . (5)

Here, D is the diagonal matrix whose entries are the
mean background saturated speciÞc humidity values at
the model grid points. (Notice that the dimensions of E
and D are different.) Thus, the humidity components of
the ensemble perturbations at observation locations are

Yb(i)
(l) 5 h D� 1qb(i)

(l)

� �
�

1
K

�
K

i5 1
h D� 1qb(i)

(l)

� �
. (6)

In applying the observation operator in Eqs. (5) and (6),
we Þrst do normalization, and then do spatial interpo-
lation. Our motivation is that the spatial variability of
the normalized speciÞc humidity perturbations is less
than that of the speciÞc humidity perturbations, so that
the spatial interpolation of normalized perturbations is
more accurate.

The humidity components of the background en-
semble perturbation matrix Xb in Eqs. (1) and (2) are not
affected by the change of observed variable and they
remain as speciÞc humidity: theith column is equal to
(qb(i)

(l) � qb
(l)). Thus, substituting Eqs. (4), (5), and (6) into

Eqs. (1) and (2), we obtain the mean and the perturbed
analyses in speciÞc humidity units.

The goals of our study are to explore the impact of
winds, temperature, and surface pressure observations
on humidity analyses through the background error
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covariance and also to examine the differences between
univariate assimilation and multivariate assimilation of
humidity observations. To reach these goals, we design
four experiments (Table 1). The Þrst experiment is the
control run, in which the speciÞc humidity analyses are
copied from the background as in Szunyogh et al. (2008),
and the updated state variables include only winds,
temperature, and surface pressure. The observations
include all observations that were operationally assimi-
lated at NCEP between 0000 UTC 1 January 2004 and
1800 UTC 31 January 2004, with the exception of sat-
ellite radiances, but including all satellite-derived wind
observations. In addition, we assimilate AIRS temper-
ature retrievals provided by C. Barnet (2007, personal
communication), which were not assimilated opera-
tionally by NCEP. Figure 1 shows an example of ob-
servation coverage for temperature around 500 hPa in a
particular day (i.e., 22 January 2004).

The observation error standard deviation for opera-
tional assimilated observation data is provided along
with the observations by NCEP. The observation error
standard deviations for AIRS temperature retrievals
were also provided by C. Barnet (2007, personal com-
munication). To compensate for the neglect of obser-
vation error correlations between retrieval values in the
same vertical column that are the result of overlaps
between the weighting functions of the different chan-
nels, we increase the magnitude of the estimates of these
observation errors by a factor of 2.

The second experiment, ÔÔpassiveq,ÕÕ assimilates the
same observations as the control run. The difference
between passiveq and the control run is the inclusion of
speciÞc humidity as part of the state vectorxb in the
passive-q experiment. With this change, the speciÞc
humidity analyses are not copied from the background
ensemble any longer, but are updated during the data
assimilation based on the nonhumidity observations
through the error covariance term between the speciÞc
humidity and the other dynamical variables. A com-
parison between passiveq and the control run shows the
impact of winds, temperature, and surface pressure ob-
servations on the quality of speciÞc humidity analyses.

The third experiment, ÔÔunivariateq,ÕÕ has two parallel
assimilation cycles. One is the same as the control run,
which creates the updated winds, temperature, and
surface pressure state variables. The other is the uni-
variate assimilation of AIRS speciÞc humidity retrievals,
which uses the AIRS speciÞc humidity observations to
update the speciÞc humidity component of the state
vector. The Þnal analysis is the concatenation of the
Þrst analysis with the univariate humidity analysis. As
explained earlier, in assimilating the speciÞc humidity
AIRS retrievals, we convert the speciÞc humidity ob-

servations to pseudo-RH as proposed by Dee and da
Silva (2003). The AIRS speciÞc humidity retrievals
have the same observation coverage as AIRS temper-
ature observations (gray dots and bottom bar plot in
Fig. 1). However, since the quality of the AIRS spe-
ciÞc humidity retrievals between 1000 and 700 hPa is
relatively poor (C. Barnet 2007, private communica-
tion), we exclude the humidity retrievals between these
levels.

The last experiment, ÔÔmultivariateq,ÕÕ fully couples
winds, temperature, surface pressure, and speciÞc hu-
midity during the data assimilation through the error
covariance: the AIRS speciÞc humidity observations are
used to simultaneously update winds, temperature, sur-
face pressure, and speciÞc humidity components of the
state vector. As in the univariate-q experiment, we con-
vert speciÞc humidity to pseudo-RH. A comparison
between the multivariate-q and the univariate-q exper-
iments will show the impact of the speciÞc humidity
observations on the analyses of the other state vector
components. In our discussion, we will use the phrase
ÔÔhumidity runsÕÕ to refer to all three experiments (i.e.,
passiveq, univariate q, and multivariate q) that update
the humidity state vector during the analysis process.

We run each experiment for a month from 0000 UTC
1 January 2004 to 1800 UTC 31 January 2004, with the
analysis states being updated every 6 h. The analysis
states (sections 4a, 4b, and 4c), and short-term fore-
casts (sections 4d and 4e) are veriÞed against the higher-
resolution (T256L28) operational analyses of NCEP,
which were obtained by assimilating a large number of
radiance observations in addition to the conventional
observations. Because of the higher resolution and the
assimilation of a much larger number of observations,
which include humidity observations (but do not include
AIRS data), the veriÞcation analyses are much more
accurate (Whitaker et al. 2008), and were also used as
veriÞcation states in Szunyogh et al. (2008) and Whitaker
et al. (2008). In addition, unlike conventional observa-
tions (black dots in Fig. 1) that are commonly used as
veriÞcation data, the operational analyses have uniform

TABLE 1. Summary of the experimental design (u 5 zonal wind,
y 5 meridional wind, T 5 temperature, ps 5 surface pressure, and
q 5 speciÞc humidity).

Experimental
name

Updated dynamical
variables

Observed
variables

Control run u, y, T, ps u, y, T, ps

Passive-q u, y, T, q, ps u, y, T, ps

Univariate -q u, y, T, ps u, y, T, ps

q q
Multivariate -q u, y, T, q, ps u, y, T, q, ps
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coverage throughout the globe, which is essential to
assess the impact of assimilating the AIRS humidity
retrievals that have the highest concentration over the
oceans.

Two statistical quantities are used to show the differ-
ence in accuracy between the humidity runs and the
control run. One is root-mean-square (rms) error (Figs. 2
and 6), which shows the absolute magnitude of the

FIG . 1. (top) The spatial coverage of temperature observations (gray dots are the AIRS temperature retrievals; black dots are the
conventional temperature observations) around 500 hPa on 22 Jan 2004. The AIRS speciÞc humidity retrievals have the same spatial
coverage as the temperature retrievals. (bottom) Total number of AIRS speciÞc humidity retrievals assimilated in a time interval of every
6 h at 505 hPa.
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