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ABSTRACT

An icosahedral-hexagonal shallow-water model (SWM) on the sphere is formulated on a local Cartesian
coordinate based on the general stereographic projection plane. It is discretized with the third-order AdamÐ
Bashforth time-differencing scheme and the second-order Þnite-volume operators for spatial derivative
terms. The Þnite-volume operators are applied to the model variables deÞned on the nonstaggered grid with
the edge variables interpolated using polynomial interpolation. The projected local coordinate reduces the
solution space from the three-dimensional, curved, spherical surface to the two-dimensional plane and thus
reduces the number of complete sets of basis functions in the Vandermonde matrix, which is the essential
component of the interpolation. The use of a local Cartesian coordinate also greatly simpliÞes the mathe-
matic formulation of the Þnite-volume operators and leads to the Þnite-volume integration along straight
lines on the plane, rather than along curved lines on the spherical surface. The SWM is evaluated with the
standard test cases of Williamson et al. Numerical results show that the icosahedral SWM is free from Pole
problems. The SWM is a second-order Þnite-volume model as shown by the truncation error convergence
test. The lee-wave numerical solutions are compared and found to be very similar to the solutions shown in
other SWMs. The SWM is stably integrated for several weeks without numerical dissipation using the
wavenumber 4 RossbyÐHaurwitz solution as an initial condition. It is also shown that the icosahedral SWM
achieves mass conservation within round-off errors as one would expect from a Þnite-volume model.

1. Introduction

Atmospheric global models may be categorized into
spectral or gridpoint models depending on the mathe-
matical representation of model variables. Since the
advent of the fast Fourier transform in the early 1970s
(e.g., Orszag 1970), spectral models have gained tre-
mendous popularity over gridpoint global models and
have since been used in most operational weather
forecast centers around the world. However, there are
drawbacks for spectral models in terms of operational
counts in high-resolution models and global communi-
cation overheads in massively parallel processors. In
recent years, these have led to the active developments
of a new kind of gridpoint global model formulated on
the geodesic grid with various numerical local discrete
schemes. The most uniformly distributed geodesic grid
is the icosahedral grid, which can be conÞgured as the

icosahedral-hexagonal grid consisting of a large number
of hexagonal cells with 12 embedded pentagons. This
grid is particularly suitable for Þnite-volume numerics
(e.g., van Leer 1977; Lin and Rood 1997) in which
conventional Þnite-difference operators are replaced by
numerically approximated line integrals along circular-
type cell boundaries.

To investigate the novel idea of the icosahedral global
model, Williamson (1968) and Sadourny et al. (1968)
approximated the shallow-water model (SWM) on the
icosahedral grid with Þnite-difference approaches. Their
pioneering studies have been further extended by other
researchers with different numerical schemes. Heikes
and Randall (1995) and Tomita et al. (2001) solved an
icosahedral-hexagonal SWM with Þnite-volume ap-
proaches. Thuburn (1997) developed a potential vorticityÐ
based, icosahedral-hexagonal SWM with a shape-
preserving advection scheme. Stuhne and Peltier (1996)
employed a Þnite-element multigrid method to solve a
barotropic model on the icosahedral grid, which was
further extended into SWM by Stuhne and Peltier (1999).
Ringler and Randall (2002) developed an icosahedral-
hexagonal SWM that conserves the potential enstrophy
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and energy within the time truncation error. The
Deutscher Wetterdienst developed a new icosahedral-
hexagonal global model for operational global weather
forecasts (Majewski et al. 2002). Bonaventura and
Ringler (2005) analyzed the conservation properties of
C-type staggering on Delaunay triangulations of the
sphere. Tomita et al. (2004) developed a nonhydrostatic
general circulation model (GCM) formulated on the
icosahedral-hexagonal grid and successfully ran superhigh-
resolution GCM simulations without cumulus parame-
terizations.

Even though an icosahedral grid provides a quasi-
uniform coverage over the sphere, the grid distances
between the two nearest grid points are by no means
regular. The irregularity in grid spacing, although small,
requires special numerical treatment. For example,
Tomita et al. (2001, 2002) relocated each icosahedral
grid point to the gravitational center of the cell after
spring dynamics had been applied. Heikes and Randall
(1995) and Majewski et al. (2002) included the irregular
spacing into the basis functions of the Vandermonde
matrix for polynomial interpolation. Heikes and Randall
(1995) used six basis functions for the curved surface
Þtting on the sphere, and Majewski et al. (2002) used
Þve basis functions with a least squares minimization
to approximate spatial derivatives on the sphere. These
basis functions are determined by the locations of the
nearest six neighbors surrounding the cell to which the
polynomial interpolation is approximated. However,
the use of the Vandermonde matrix on spherical coor-
dinates requires more than six basis functions for the
second-order-accurate approximation because of the
curved surface on the sphere. In mathematical terms,
the second-order-accurate Vandermonde matrix requires
six basis functions, and thus a stencil operation involv-
ing six neighboring grid points, only if these Vander-
monde stencil points are coplanar. However, the ico-
sahedral grid points on the sphere are not coplanar.
Thus, Heikes and Randall (1995) designed a recursive
procedure to reduce the coverage area of Vandermonde
stencil points in an effort to bring the stencil points
closer to a tangential plane. The procedure is repeated
until these points are nearly coplanar. This recursive
procedure not only requires extra computations, but
also fails to make these points exactly coplanar as required
for a true second-order scheme. The goal of a coplanar
stencil can be achieved if one formulates the Vander-
monde matrix on a locally projected plane rather than
on a spherical coordinate whose surface is curved in a
three-dimensional space.

The purpose of this study is to develop a Þnite-volume
icosahedral SWM formulated on a locally projected
plane with the second-order Vandermonde coplanar

stencil points. The local plane is deÞned on the two-
dimensional general stereographic coordinate (GSTC;
Lee et al. 1995) whose projection center is formulated
ßexibly at any given point on the earth. The formulation
of SWM on a locally projected plane not only allows us
to correctly use the Vandermonde coplanar stencil, it
also greatly simpliÞes the mathematic formulation of
Þnite-volume operators from three to two dimensions.
The choice of the Þnite-volume scheme in this study is
twofold. First is its ßexibility in the line integration
along any irregular cells and its excellent conservation
properties inherited in the method. Second, unlike Þnite-
difference schemes, the Þnite-volume scheme allows
discontinuity existing on cell boundaries, which ac-
commodates slight discontinuity that may be caused by
local projections. Note that the mass conservation over
discontinuous interfaces is achieved by computing mass
ßuxes deÞned at cell interfaces using the piecewise up-
wind scheme (van Leer 1977).

Section 2 shows the GSTC formulation upon which we
formulate the continuous form of SWM and Þnite-volume
operators with the map factor. Section 3 describes nu-
merical aspects of the model, including the icosahedral
grid generation, discretizations of Þnite-volume opera-
tors on the locally projected grid, and the polynomial
interpolation with the Vandermonde matrix. Numerical
experiments based on standard test cases of Williamson
et al. (1992, hereinafter W92) are given in section 4.
Conclusions are presented in section 5.

2. SWM formulation on GSTC

Heikes and Randall (1995) show that it is more ac-
curate to apply polynomial interpolation on a set of
coplanar points. In this study, the coplanar interpolation
stencil is achieved by the use of a local projection to
project the stencil points from the curved earth surface
onto the two-dimensional plane of the GSTC, upon
which model variables are deÞned and numerical cal-
culations are undertaken.

a. GSTC coordinate

Map projections typically have been used in regional
models to map the curved earth surface onto a plane
(e.g., Haltiner and Williams 1980). One such mapping
often used in regional atmospheric models is the polar
stereographic projection. However, its mapping factor,
the ratio of the distance between two points on the map
and on the sphere, increases as the grid point moves away
from the projection center (i.e., the North or South
Poles). In the context of a large-scaleb-plane system,
Philips (1973) introduced a stereographic projection sim-
ilar to the polar stereographic projection with the tangent
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plane located at the point of longitude l 5 0 and lati-
tude u 5 u0, where u0 can be placed at midlatitude to
reduce the mapping factor and, therefore, to approxi-
mate the b-plane system better. However, in many ap-
plications, the center of the area of interest may not be
located at the Greenwich line (i.e., l 5 0). Lee et al.
(1995) extended the prime meridian stereographic
projection to a GSTC with the tangent plane located at
any longitude and latitude on the earth. In their study,
the GSTC was placed at the center of the wind proÞler
network from which data were sampled and studied.

In this study, GSTC is placed at the icosahedral grid
point located at, say, latitudeu 5 u0 and longitude l 5 l 0.
The portion of the earthÕs surface covering the target
grid point and its surrounding stencil points necessary
for the interpolation is projected onto the GSTC by the
antipodeof thetangentialpointat l 5 p 1 l 0 andu 5 2 u0.
The transformation between the spherical and GSTC
is given by

x 5 m[acosusin(l � l 0)],

y 5 m a[sinucosu0 � cosusinu0 cos(l � l 0)]f g , and

m 5
2

[1 1 sinusinu0 1 cosucosu0 cos(l � l 0)]

5
4a2 1 x2 1 y2

4a2
,

where m is the map factor, a is the radius of the earth,u
is the latitude, and l is the longitude. These transfor-
mation formulas are the same as those in Philips (1973)
when l 5 0. The center of the GSTC is at the tangent
point where x 5 0 andy 5 0. In the transformed system,
the positive x axis is directed toward the east of the
origin along the latitudinal circle of u 5 u0 and the y axis
is deÞned positive poleward of the origin along the
meridian l 5 l 0. The mathematic formulations of wind
components are given as follows:

um 5 us cos(a) 1 ys sin(a) and

ym 5 � us sin(a) 1 ys cos(a),

where

cos(a)5
cos(u0)cos(u) 1 [11 sin(u0)sin(u)]cos(l � l 0)
11 sin(u0)sin(u)1 cos(u0)cos(u)cos(l � l 0)

,

sin(a)5
� [sin(u0)1 sin(u)] sin( l � l 0)

11 sin(u0) sin(u)1 cos(u0) cos(u) cos(l � l 0)
,

and (um, ym) and (us, ys) are zonal and meridional wind
components on GSTC and the spherical coordinate,

respectively. Note that at the target icosahedral grid
where l 5 l 0 and u 5 u0 the wind components on GSTC
and the spherical coordinate are identical. The wind
vector transformation coefÞcients of cos(a) and sin(a)
depend only on the location of winds and the central
projection point and can be precalculated to save com-
putational time. Thus, the extra computations arising
from the use of GSTC are reduced to just a few addition
and product operations, which are negligible.

b. SWM on a local coordinate

SWMs have traditionally been used by the global
modeling community as a vehicle for testing novel nu-
merical approaches in the development of global
models. SWMs on a sphere are typically formulated and
solved on the spherical coordinate. However, as previ-
ously discussed, to have coplanar Vandermonde stencil
points, we chose to formulate the SWM on a locally
projected plane even though icosahedral grid points are
on the spherical surface. In our solution procedure, all
of the Vandermonde stencil points on the sphere are
projected onto a common plane for numerical compu-
tations such as ßux exchanges between the target and
surrounding cells.

Shallow-water equations (SWEs) on GSTC are writ-
ten as follows:

‰um

‰t
� ( f 1 z)ym 1 m

‰(Ek 1 f )
‰x

5 0, (1)

‰ym
‰t

1 ( f 1 z)um 1 m
‰(Ek 1 f )

‰y
5 0, and (2)

‰f
‰t

1 m2 ‰(umf /m)
‰x

1
‰(ymf /m)

‰y

� �
5 0, (3)

where t is for time and the velocity components of um

and ym on GSTC have been deÞned previously. The
relative vorticity is denoted as z, f is the Coriolis pa-
rameter, Ek is the kinetic energy, andf is geopotential.
The kinetic energy Ek is deÞned as 0.5(u2

m 1 y2
m). Note

that the map factor is close to 1 in the control volume
over which numerical calculations are operated. Thus,
SWEs are essentially those on simple Cartesian coor-
dinates. The subscript ofm in um and ym will be omitted
hereinafter for simplicity.

The governing equations shown in Eqs. (1)Ð(3) are a
typical set of SWEs (e.g., Arakawa and Lamb 1981)
formulated on a locally projected plane with the map
factor. These equations are solved with the Þnite-volume
approach that deÞnes model variables as mean quanti-
ties over the area of control volume (van Leer 1977).
For any model variable, x is expressed as an area mean
as follows:
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x 5
1
A

ð

A
x̂ dA,

where x is the cellular-averaged value, the symbolx̂
denotes the point value of x, A is the area over the
target icosahedral cell, and the subscriptA in the inte-
gration stands for the integration over an area of A. In
this study, the symbol b( ) is used to denote the point
value as opposed to the cellular-averaged value.

The governing equations include three partial deriv-
ative terms: the mass ßux terms in the continuity
equation, the relative vorticity, and the gradient terms
in the momentum equations. These derivative terms are
represented by three Þnite-volume operators: the di-
vergence operator representing the mass ßux, the vor-
ticity operator representing the relative vorticity, and
the gradient operator for the gradient terms. The di-
vergence operator is written as

dx 5
1
A

ð

A
= �

x̂V̂
m

 !

dA 5
1
A

ð

S

x̂V̂
m

� n

 !

ds, (4)

where dx is the divergence ßux of the scalar variablex
and the subscripts ofA and S in the integrations stand
for the area and line integrations, respectively. The line
integration is carried over a closed curveS around the
target cell; the norm vector n is deÞned as the unit
vector normal to the line integration of S. The Þrst
equality means that the divergence ßux of the tracer is
deÞned as the areal average of the divergence operator
of the tracer multiplied by the velocity over the icosa-
hedral cell. The area integration of the divergence op-
erator can be approximated by the Gauss theorem and
reduced to the line integration as in the second equality
shown above. Note that the map factor squaredm2 is
omitted from the above equation because it is equal to
1 at the cellular center, which is also the projection
center. The vorticity operator is written as

z5
1
A

ð

A
= 3

V̂
m

 !

dA 5
1
A

ð

S

V̂
m

� l

 !

ds, (5)

where the line vector l is deÞned as the unit vector
tangential to the line integration of S. Positive l is de-
Þned in the counterclockwise direction. The Þrst
equality means that the vorticity z is deÞned by the areal
average of a curl operator of velocity over the icosa-
hedral cell. The area integration of the curl operator can
be approximated by the Stokes theorem, which reduces
the two-dimensional area integration into the one-
dimensional line integration as shown by the second
equality. The gradient operator is written as

=x 5
1
A

ð

A
=(m̂x) dA 5

1
A

ð

S
(m̂xcn) ds, (6)

where x̂c is evaluated at the midpoint along the line
integral of S as shown in Tomita et al. (2001).

3. Numerical grid and discretization

The governing equations shown in Eqs. (1)Ð(3) are
discretized on the icosahedral-hexagonal grid with spa-
tial derivatives approximated by Þnite-volume line in-
tegrations along the cellular edges. Model variables are
deÞned on the nonstaggered icosahedral grid (i.e., the
Arakawa-A grid), and the third-order AdamÐBashforth
scheme is used to discretize time-tendency terms. The
explicit AdamsÐBashforth scheme, which requires only
one evaluation of force term per time step, is an accu-
rate and efÞcient scheme for numerical weather pre-
diction models (e.g., Durran 1991; MacDonald et al.
2000). Details of the AdamsÐBashforth scheme can be
found in Durran (1991) and will not be repeated here.

a. Icosahedral grid generation

An icosahedral geodesic grid is generated from an
icosahedron that has 12 vertices and 20 equilateral
spherical triangles with 30 edges. Each edge is a segment
of a great circle on the sphere. The icosahedral grid
provides a quasi-uniform coverage of the sphere and
allows hierarchical reÞnements of grid spacing. There
are many ways to construct icosahedral grids depending
on the choice of orientations, subdivisions, and so on.
The icosahedral grid generator used in this study gen-
erally follows the twisted icosahedral grid described by
Heikes and Randall (1995) but without the twist. In this
study, one vertex is placed at the North Pole and the
opposite one is placed at the South Pole; the orientation
is Þxed by aligning one of the edges emanating from the
vertex at the North Pole with the prime meridian. Once
the orientation of the original icosahedron is decided, a
hierarchical-resolution, discrete grid is obtained by
subdividing each planar triangle of the icosahedral into
four small triangles by bisecting the edges and then
connecting the new split edges into small triangles. The
new vertices created from the planar triangles are pro-
jected onto the spherical surfaces.

This bisecting process can be recursively applied for a
number of times, sayl times, to create a model grid with
desirable resolution. The total number of grid points n
and the number of divisions l obey the following power-
of-two law:

n 5 10(2l� 1)2 1 2.

A PRIL 2009 L E E A N D M A C D O N A L D 1425

�8�Q�D�X�W�K�H�Q�W�L�F�D�W�H�G���_���'�R�Z�Q�O�R�D�G�H�G���������������������������������$�0���8�7�&



The number of divisions l is referred to as the icosahe-
dral grid level in this study. For example, G0 refers to
the lowest grid level l 5 0, in which the total number of
grid points is n 5 12 (the original 12 icosahedral points)
and G5, G6, and G7 correspond to n 5 10 242, 40 962,
and 163 842, respectively. The resolution is doubled
when the grid level is increased by 1. Even though the
construction of the icosahedral grid starts from the
equilateral triangles covering the icosahedron (n 5 0),
the resulting icosahedral triangles are no longer equi-
lateral. This is because the process of splitting the tri-
angles and then projecting the corners onto the spheri-
cal surface changes edges unequally so that they are no
longer equal in length. Thus, the icosahedral triangles
with l . 0 are no longer equilateral. However it is still
the most uniformly distributed geodesic grid. It can be
shown analytically that the ratio of the grid maximum
distance to the minimum distance is 1.19 for grid levels
of l . 0. If the target resolution in a particular level is
deÞned as 1, then the grid spacing in this particular grid
level spreads from about 0.9 to 1.1. The target resolu-
tions for G5, G6, andG7 are approximately 240, 120, and
60 km, respectively.

The icosahedral grids constructed as above include
triangular cells, which are referred to as icosahedral-
triangular grids. These triangular cells are used as the
basis for the construction of an icosahedral-hexagonal
grid on which typical Þnite-volume icosahedral models
are formulated. The icosahedral-hexagonal grid is con-
structed by connecting the Voronoi corner points as
shown in Fig. 4 of Heikes and Randall (1995). These
Voronoi cells are all shaped hexagonally, except for the
12 pentagon cells surrounding the original 12 points of
the icosahedron. It is important to note that each cell
has Þve or six neighbors, all of which share an edge with
it, and there is no neighbor with which it shares only a
vertex. In other words, each cell center shares one and
only one edge with each of its neighbors. This feature
makes the icosahedral-hexagonal grid suitable for a Þnite-
volume method to compute ßux exchanges between the
target cell and its surrounding cells because there is only
one edge shared by two adjacent cells.

Even though the icosahedral grid provides a quasi-
uniform coverage over the sphere, slight grid variations
among the pentagon and hexagon cells are enough to
create numerical noise around the pentagon cells where
the grid variations are largest. Heikes and Randall
(1995) optimized the icosahedral grid with a quadratic
function of the difference between the midpoints of the
cell edge and the segment connecting the two grid points
perpendicular to the cell edge. Tomita et al. (2001, 2002)
developed another kind of grid optimization scheme
based on the spring dynamic that is designed to reduce

the internal variations of standard icosahedral grids.
These studies demonstrated that the use of an optimized
grid lead to better numerical results. Unless stated oth-
erwise, numerical experiments shown in this study are
performed on the optimized spring dynamic grid.

b. Discretization of Þnite-volume operators

One of the main purposes of formulating SWM on a
locally projected two-dimensional plane is to discretize
the Þnite-volume operators, shown in Eqs. (4)Ð(6), on
the two-dimensional Cartesian coordinate on GSTC
rather than on the spherical surfaces, which curve in
three-dimensional space. The line integral of the diver-
gence operatordx shown in Eq. (4) may be discretized
on the two-dimensional plane as follows:

dxk
5

1
Ak

�
n

i5 1

xk, iVk, i � nk, i

mk, i

� �
Dsk, i , (7)

where the subscriptsk and i denote the kth cell and the
ith edge of the cell k. The area for the cell k is denoted
asAk; andVk,i, nk,i, andmk,i are the velocity, the normal
unit vector, and the map factor, respectively, at the ith
edge of the cell k. The n in the summation symbol de-
notes the total number of edges in the kth cell. The
number n is 5 for the pentagon cell and 6 for the
hexagon cell. TheDsk,i is the length of the ith segment
that circumscribes the cell k. The tracer variable xk,i

is deÞned at theith edge of the cell k. To deÞne the
divergence ßuxes at cell edges, we interpolatexk,i and
Vk,i using the Vandermonde matrix. The conservative
transports are readily achieved by applying the second-
order van Leer (1977) upwind scheme with the inter-
polated edge ßuxes and summing the edge ßuxes in and
out of edges around each cell.

The line integral of the vorticity operator z shown in
Eq. (5) may be discretized on the two-dimensional plane
as follows:

zk 5
1

Ak
�

n

i5 1

Vk, i � lk, i

mk, i

� �
Dsk, i . (8)

Most variables are deÞned as those in Eq. (7), exceptlk,i,
which is the tangential unit vector at the ith edge of the
cell k. The line integral of the gradient operator =x

shown in Eq. (6) may be discretized on the two-
dimensional plane as follows:

=xk 5
1

Ak
�

n

i5 1
(mk, ixk, ink, i )Dsk, i , (9)

where all variables are deÞned the same as in the previ-
ous two equations. The direction of the gradient operator
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is deÞned by the normal vector to the edge segment. Note
that the summation operators in Eqs. (7)Ð(9) are the
discrete line integrations along the cell edges, which are
straight lines on GSTC, rather than curved lines on the
spherical surface. The summation operator in Eq. (8)
essentially approximates the vorticity with the tangential
wind vectors around the cell edges similar to the D-grid
approximation in Lin and Rood (1996), and the operator
in Eq. (7) approximates the divergence with the normal
wind vectors similar to the C-grid approximation in the
same paper. The above summation operators involve
edge variables such asVk,i and xk,i, which have to be
obtained through some kind of interpolation or surface-
Þtting functions. In this study, they are obtained using
polynomial interpolation based on the existing variables
of the surrounding icosahedral grids.

c. Polynomial interpolation on a projected plane

To compute ßux exchanges in and out of cellular
edges, it is necessary to interpolate model variables at
cellular boundaries. In this study, polynomial interpo-
lation is used to interpolate edge variables from the
model variables distributed irregularly around the tar-
get cell. Polynomial interpolation determines the in-
terpolating polynomial by forming the equations

y(xi ) 5 a0 1 a1xi 1 a2x2
i 1 � � � 1 anxn

i

for i 5 0, 1, . . . , n and solving for the unknown coefÞ-
cients a0, a1, . . . , an. The dimension of polynomial in-
terpolation, in strict terms, is determined by the span of
space in which the data pointsxi are distributed. For
example, Lee et al. (1995) use a four-dimensional
polynomial in ( xi, yi, zi, ti) to estimate observational data
from a spatially irregularly distributed wind proÞler
network collected over a period of time. In model ap-
plications, to interpolate global model variables deÞned
on the curved earth surface, to be strict, a three-
dimensional polynomial formulated on ( xi, yi, zi)
should be used.

To reduce the number of independent variables from
three to two dimensions, the polynomial interpolation is
formulated on the locally projected GSTC and is written
as follows. A model variable, b(x, y), deÞned on a lo-
cally projected two-dimensional plane is expressed as
sums of two-dimensional polynomials in the form sim-
ilar to that used in Lee et al. (1995):

b(x, y) 5 �
N

i, j
ci, jxiyi , (i 1 j # N), (10)

where x and y are independent variables deÞned on
the projected two-dimensional plane. A two-dimensional

polynomial basis function is denoted asxiy j with the
associated coefÞcients denoted asci,j. The degree of a
multidimensional polynomial is deÞned as the maxi-
mum power of any independent variable in the poly-
nomial. In this study, the interpolation uses the poly-
nomials of degree less than or equal to 2 (i.e.,N 5 2),
which includes six polynomials.

The mathematical formulation of polynomial inter-
polation can be rewritten as the following n 3 n (where
n is the number of polynomials) matrix equation:

AC 5 B, (11)

where the coefÞcients to be determined are denoted by
C, an n 3 1 column vector. The n 3 n matrix A is typ-
ically referred to as the Vandermonde matrix, which is
determined only by the locations of the surrounding
grid points, and the n 3 1 column vector B is calculated
from the model variables. The number of model varia-
bles used in the Þt should match the number of coefÞ-
cients in the Vandermonde matrix. The second-degree
polynomial used in this study includes six coefÞcients
that are matched by the nearest six model variables
surrounding the edge variable to be interpolated. The
coefÞcients of the ÞtC can be determined by the stan-
dard matrix solver with the precalculated weighting
functions that drastically reduce the computational time.

4. Numerical results

The numerical accuracy of the SWM is evaluated with
a series of the test cases proposed by W92. These are
viewed as standard test cases for SWM developers, in
part, because they provide a common platform for in-
tercomparisons among SMWs with various numerical
approximations. Note that no numerical dissipation
operators are used in the following numerical exercises.
Furthermore, the mathematical expressions ofl1, l2, and
l• error norms used in this study follow those of W92.

a. Cosine bell advection

The Þrst test case uses the cosine bell advection over
the Poles, which is a solid-body advection designed to
test the pole problems for SWM. In this case, a cosine
bell is advected by prescribed nondivergent winds along
a great circle. It returns to the original location without
changing shape over a 12-day period. The bell-shaped
cosine function and nondivergent winds prescribed in
W92 are shown as follows:

h(l , u) 5

h0

2

� ��
11 cos

p r
R

� � �
if r , R

0 otherwise

8
><

>:
,
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us 5 u0(cosucosa 1 sinucosl sina), and

ys 5 � u0 sinl sina,

where h0 5 1000 m andr is the great circle distance
between any given point at (l , u) and the center of the
cosine bell whose initial location is given as (l c, uc) 5
(3p /2, 0). The radius R is chosen asR 5 a/3, and the
velocity parameter of u0 is speciÞed asu0 5 2pa/(12 3
86 400) to provide a 12-day period for the cosine bell to
move around the sphere once. The parametera is the

angle between the axis of a solid-body rotation and the
positive polar axis of the spherical coordinate.

Figures 1a and 1b show, respectively, the initial and
Þnal states of a cosine bell fora 5 p /2 with G5 grid (i.e.,
Dx • 240-km resolution; all model results on the ico-
sahedral grid are interpolated to a latitudeÐlongitude
grid for display purposes). The maximum height of 1000 m
located initially at the center of the bell reduces to 938 m
after a 12-day integration. There are no Pole problems
during the 12-day advection passing through both

FIG . 1. The cosine bell simulation (a) at the initial time and (b) on day 12.
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Poles. There is a slight phase error and a small under-
shoot at the wake of the cosine bell shown in Fig. 1b
after a 12-day integration. These errors are not un-
common to an icosahedral SWM at similar resolution
without positive-deÞnite constraint (e.g., Fig. 6 of Heikes
and Randall 1995). Experiments repeated with different
rotational angles (i.e., different a values) suggested by
W92 conÞrm that the cosine bell solution is not sensitive
to rotational angles as expected from icosahedral SWMs.
The truncation errors and their convergence rates will
be shown in the next numerical experiment.

b. Steady-state nonlinear geostrophic ßow

The truncation error (TE), the difference between the
true and numerical solutions, arises from representing a
continuous function by a Þnite number of discrete terms.
In theory, TE reduces as grid resolution increases to
reßect the fact that the true solution is better approxi-
mated by discrete terms with Þner resolution. To quan-
tify TE, it is necessary to set up numerical experiments
with a known analytic solution. The test case 2 of W92
provides an analytic solution that has been used by
many researchers to evaluate TE in their model accur-

acy. In this test case, a circular geostrophic ßow that is a
steady-state solution to the nonlinear shallow-water
equations is used to quantify TEs and their convergence
rates as function of model resolution. The analytical
solutions of the height and velocity Þelds are in geo-
strophic balance. These analytical Þelds speciÞed in
W92 are given as follows:

f 5 gh0 � aVu01
u2

0

2

� �
(� cosl cosusina 1 sinucosa)2,

(12)

u 5 u0(cosucosa 1 cosl sinusina), (13)

y 5 � u0 sinl sina, and (14)

f 5 2V(2 cosl cosusina 1 sinucosa),

where f is the Coriolis parameter used in the analytical
solution. The parameter values used in this study are
u0 5 2pa/(12 3 86 400) andgh0 5 2.943 104 m2 s2 2.

In this test case, the analytic solution ofa 5 0 is used
to specify the initial icosahedral grid point values for u,

FIG . 2. The temporal variations of truncation errors in f with three different resolutions at G5
(label A), G6 (label B), and G7 (label C) grids.
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y, and h, which are then integrated for 5 days in our
SWM. The differences between the analytic and model
solutions are computed in terms ofl1, l2, and l• norms to
quantify TEs of the model solution. Numerical experi-
ments are undertaken with three different resolutions
on G5, G6, and G7 grids. Note that the G7 grid is 2 times
the resolution of the G6 grid, which is 2 times the res-
olution of the G5 grid. In this test case, the spring dy-
namic is applied to the G7 grid, and the low-resolution
grid points of G5 and G6 are downsampled from the G7
grid points so that high-resolution grids include all of
the points of the low-resolution grids.

Figure 2 shows the time evolution of l1 norm TE in f
at three different grid resolutions. Curves A, B, and C
are TE for the G5, G6, and G7 grids, respectively. Note
that these curves show oscillatory TEs with periods of
less than 1 day. These oscillatory TEs exist in all three
different resolutions. Of more interest is that the three
curves oscillate in a coherent way with similar oscillatory
periods independent of grid resolutions. These oscilla-
tory TEs are also found in other independent studies
such as Heikes and Randall (1995) and Tomita et al.
(2001) with icosahedral SWMs. Since this kind of oscil-

latory TE does not exist in our previous TE analysis with
similar analytic ßow on a uniform grid (see Fig. 3 in
MacDonald et al. 2000), we believe that these oscilla-
tions in TEs are caused by the quasi-uniform icosahedral
grid. Indeed, Tomita et al. (2002) decomposed these
oscillatory modes onto Hough harmonics and showed
that these oscillatory TEs are caused by the icosahedral
grid structure. The oscillatory nature of the TEs results
in oscillations in the TE ratio calculated between two
model resolutions. To remove the oscillation from the
TE ratio, the TE ratio between two model resolutions is
averaged over the whole integration period rather than
having just one ratio computed at a given time.

Figure 3 shows TEs inf for l1, l2, and l• as function of
grid resolution from G5 ( Dx • 240 km) to G7 (Dx • 60
km). Curve A in Fig. 3 shows the so-called perfect TE
convergence rate that is used as a guideline for the
evaluation of the TE convergence rate. Curves B, C, and
D show l1, l2 and l• TEs, respectively, as a function of grid
resolution. Note that the grid resolution of G6 is 2 times
that of G5, and G7 doubles the resolution of G6. For a
second-order numerical scheme, the TE from G5 to G6
and G6 to G7 should be reduced by a factor of 4. The TEs

FIG . 3. The truncation errors in f with three different error norms for the idealized curve (label
A), l1 (label B), l2 (label C), and l• (label D).
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in curve A are computed with a reduction factor of 4
between two successive grid resolutions. The slope of A
shows the perfect TE reduction rate for a second-order
numerical scheme. The TE convergence rate of our ico-
sahedral SWM is evaluated withl1, l2, and l• represented
by curves B, C, and D. These curves show that TEs
represented by three error norms reduce as the resolu-
tion increases. Thel1 error is smaller than that of l2, which
is smaller than thel• error. Most important, the slopes of
curves B, C, and D are very similar to that shown in curve
A, indicating that TE in our SWM achieves a second-
order convergence rate inf . Similar Þgures (not shown)
in u and y also show the TE reduction slopes being

similar to the perfect second-order reduction slope. This
indicates that u andy also converge at a second-order TE
reduction rate. These TE convergence rates demonstrate
that the SWM possesses a second-order Þnite-volume
accuracy that is consistent with the degree of approxi-
mation chosen in the interpolation.

c. Zonal ßow over an isolated mountain

In this test case, lee waves are generated by the im-
pinging zonal ßow on an isolated mountain. The zonal
ßow and height Þeld are speciÞed just as those in case 2
shown in Eqs. (12)Ð(14) witha 5 0, h0 5 5960 m, and
u0 5 20 m s2 1. The mountain proÞle is given as

FIG . 4. The (a) zonal, (b) meridional, and (c) height Þelds simulated on day 5. The contour
interval is 3 m s2 1 for the wind Þelds and 50 m for the height Þeld.
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hs 5 hs0 1 �
r
R

� �
,

wherehs0 5 2000 m,R 5 p /9, andr 2 5 min[R2, (l 2 l c)
2 1

(u 2 uc)
2]. The center of the mountain is chosen asl c 5

3p /2 and uc 5 p /6. With a 5 0, the initial height Þeld is a
function of latitude only, and the maximum height Þeld is
located along the equator. The zonal wind Þeld is in geo-
strophic balance with the height Þeld. The meridional wind
is initially zero.

Figures 4aÐc show the zonal, meridional and height
Þelds, respectively, on day 5. These Þgures show the dis-
turbance at this stage is conÞned to the low and mid-
latitudes. Figures 5aÐc are same as those shown in Fig. 4,

but for the simulation on day 10. The zonal and me-
ridional ßows in Fig. 5 show complex mountain-forced
waves expanding globally into high latitudes. Figure 5a
shows the negative zonal wind in the northeast of the
mountain, which indicates the reversed zonal ßow at lee
side. Figure 5c shows the deepening of the leeside
trough as well as downstream disturbances that are
consistent with zonal and meridional ßow disturbances.
Figures 6aÐc are the same as those in Fig. 5, but for the
simulation on day 15. Figure 6a shows the magnitude of
the reversed zonal ßow on the leeside increases from
2 3.98 m s2 1 on day 10 to 2 10.8 m s2 1 on day 15. Also,
the zonal wind near the North Pole converges near 1808
longitude. The intensiÞcation of the lee trough into a

FIG . 5. As in Fig. 4, but for the simulation on day 10.
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closed low shown in Fig. 6c correlates very well with the
intensifying reversed zonal ßow over the region. Also, a
closed low forms in the high latitudes of the Northern
Hemisphere next to the strong ridge. This high-latitude
closed low is consistent with the reversed zonal ßow in
the region. The height Þeld shown in Fig. 6c is found to
be very similar to several other published results [e.g.,
Fig. 4 in Lin and Rood (1997) and Fig. 6 in Thuburn
(1997)].

Because of small-scale oscillations near the upstream
of the mountain in the spectral solutions, we decided not
to undertake a direct error analysis against a spectral
reference solution. Instead, we approached the problem
in the same manner as Lin and Rood (1997). In this ap-

proach, we examined the convergence of the solutions
obtained with three different resolutions. Figures 7aÐc
show the height Þelds simulated on day 15 with grids G5,
G6, and G7, respectively. Comparisons of the height
Þelds among Figs. 7aÐc show the solutions as being al-
most identical at three different resolutions; for example,
the location and magnitude of the closed lows on the lee
side of the mountain, the ridge next to it, the closed low
pressure system at high latitude in the Northern Hemi-
sphere, and disturbances over the tropics are all nearly
identical. Thus, we may draw the same conclusion as that
of Lin and Rood (1997) that the convergence of the
forced-mountain-wave solutions has been nearly ach-
ieved at these resolutions.

FIG . 6. As in Fig. 4, but for the simulation on day 15.
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d. RossbyÐHaurwitz wave

Figure 8 shows the RossbyÐHaurwitz wavenumber-4
height Þeld used as the initial condition for SWM in-
tegrations with the G5 grid (i.e., Dx • 240-km resolu-
tion). It is well known that the RossbyÐHaurwitz so-
lution is sensitive to slight irregularities in SWM nu-
merical approximations (Thuburn and Li (2000)). Any
small amount of noise caused by inconsistent dis-
cretization is ampliÞed quickly, which destabilizes the
RossbyÐHaurwitz solution. Thus, the RossbyÐHaurwitz
wave has been used as a test solution when debugging

SWM numerical schemes. Thuburn and Li (2000)
showed that grid-related TEs excite the RossbyÐ
Haurwitz wave instability, causing the wave to break
down faster in the icosahedral model than in other
spectral or regular-grid models. Figures 8b and 8c show
the RossbyÐHaurwitz solutions at days 7 and 14, re-
spectively. The wave moves eastward and maintains a
symmetric wavenumber-4 pattern after a 2-week sim-
ulation without numerical smoothing operators. Figure
8c is similar to Fig. 20a of Tomita et al. (2001) obtained
from their icosahedral SWM with the same model res-
olution.

FIG . 7. The height Þelds simulated on day 15 with three different resolutions at (a) G5, (b)
G6, and (c) G7 grids. The contour interval (50 m) is the same in the height Þelds derived from
three different resolutions.
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The mass conservation in our SWM is also examined in
this simulation integrated up to 3 weeks. Figure 9 shows
the change of total mass to the initial total mass over the
whole model integration time. The horizontal axis rep-
resents the model integration time, from day 0 to day 21.
The vertical axis depicts the change of the total mass to
the initial total mass (i.e., the ratio of total mass at a given
time to the initial total mass minus 1). In the ideal case,
the mass conservation is represented by a straight zero
line with no changes, which means there is no loss or
addition of mass into the system. Figure 9 shows that the
change of total mass oscillates around the zero line be-

tween 2 102 15 and 102 15 during the 21-day integration.
These errors are within machine runoff errors on a 32-bit
machine with double-precision real numbers. Figure 9
shows that our Þnite-volume icosahedral SWM achieves
mass conservation within round-off errors as one would
expect from a Þnite-volume model.

5. Conclusions

A Þnite-volume icosahedral SWM formulated on a
local Cartesian coordinate has been developed and
evaluated with the standard test cases of W92. The SWM

FIG . 8. The RossbyÐHaurwitz wavenumber-4 height Þeld for SWM simulations (a) at the initial
time, (b) on day 7, and (c) on day 14. The contour interval is 100 m for the height Þelds.
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is discretized with the third-order AdamÐBashforth
scheme in time and the second-order Þnite-volume op-
erators in space. The Þnite-volume operators are ap-
plied to model variables deÞned on the nonstaggered
icosahedral-hexagonal grid. Edge variables, which are
necessary for the ßux exchanges between two adjacent
cells, are interpolated with the second-degree interpo-
lating polynomial based on the complete set of basis
functions in the Vandermonde matrix. The irregular
grid distances forming the Vandermonde basis func-
tions determine the weighting coefÞcients in the inter-
polation.

The local coordinate is deÞned on a general stereo-
graphic projection plane, which reduces the solution
space of SWM from the three-dimensional curved
spherical surface to the two-dimensional GSTC plane.
As a result, the three-dimensional Þnite-volume oper-
ators on the sphere are reduced to two-dimensional
operators that are further reduced to line integrations
along the straight-line segments, rather than on a non-
straight line along curved spherical surfaces. Thus, the
use of GSTC results in straightforward implementations
of line integration in Þnite-volume operators. More
important, the reduction of solution space also reduces
the number of complete basis functions in the second-

degree Vandermonde matrix to six and allows us to
interpolate edge variables with the model variables at
the nearest six neighboring cells. A previous study by
Heikes and Randall (1995) showed that it is more ac-
curate if polynomial interpolation approximates edge
variables with a set of coplanar points that constitute the
Vandermonde matrix. In this study, we demonstrated
that the coplanar stencil points can be achieved with
GSTC, which requires only a few additional fast com-
puter operations. In all of the numerical exercises
shown in this study, no noise is caused by the use of the
local coordinate.

The accuracy of SWM was evaluated with the stan-
dard test cases of W92. The Þrst case of W92 is the co-
sine bell advection, which demonstrated that the SWM
is free of Pole problems and that the solution is not
sensitive to rotational angles. The second test case of
W92 provides an analytic solution to quantify SWM TEs
and their convergence rates as functions of the model
resolution. We demonstrated that the SWM truncation
errors in l1, l2, and l• reduce by a factor of 4 when
doubling resolutions from G5 to G6 to G7 grids. The
truncation error convergence test demonstrated that the
SWM is a second-order Þnite-volume model. The re-
sponse of SWM to the mountain forcing was examined

FIG . 9. The change of the ratio of total mass relative to the initial total mass.
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with case 5 of the W92 in which an initially simple Þeld is
subjected to the forcing caused by the impinging zonal
ßow on an isolated mountain. SWM was integrated for
15 days, and numerical solutions on days 5, 10, and 15
were examined. The solutions were found to be very
similar to those shown in other SWMs with different
numerical grids and discrete schemes. Also, the solu-
tions on day 15 with three different resolutions were
very similar, indicating that the numerical solutions
converged with discrete resolutions.

The RossbyÐHaurwitz solution, which is sensitive to
small numerical errors, was used to test the stability of
the SWM without numerical smoothing operators. In
this study, we showed that the wavenumber-4 RossbyÐ
Haurwitz solution moves eastward and maintains a
symmetric pattern for up to 14 days in our icosahedral
SWM simulation. The mass conservation in our SWM
was also examined in the RossbyÐHaurwitz simulation
integrated up to 3 weeks. It shows that our Þnite-volume
icosahedral SWM achieves mass conservation within
round-off errors as one would expect from a Þnite-volume
model.
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