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ABSTRACT

Meteorological model errors caused by imperfect parameterizations generally cannot be overcome simply
by optimizing initial and boundary conditions. However, advanced data assimilation methods are capable of
extracting signiÞcant information about parameterization behavior from the observations, and thus can be
used to estimate model parameters while they adjust the model state. Such parameters should be identiÞable,
meaning that they must have a detectible impact on observable aspects of the model behavior, their individual
impacts should be a monotonic function of the parameter values, and the various impacts should be clearly
distinguishable from each other.

A sensitivity analysis is conducted for the parameters within the Asymmetrical Convective Model, version 2
(ACM2) planetary boundary layer (PBL) scheme in the Weather Research and Forecasting model in order to
determine the parameters most suited for estimation. A total of 10 candidate parameters are selected from
what is, in general, an inÞnite number of parameters, most being implicit or hidden. Multiple sets of model
simulations are performed to test the sensitivity of the simulations to these 10 particular ACM2 parameters
within their plausible physical bounds. The most identiÞable parameters are found to govern the vertical
proÞle of local mixing within the unstable PBL, the minimum allowable diffusivity, the deÞnition of the height
of the unstable PBL, and the Richardson number criterion used to determine the onset of turbulent mixing in
stable stratiÞcation. Differences in observability imply that the speciÞc choice of parameters to be estimated
should depend upon the characteristics of the observations being assimilated.

1. Introduction: Parameters and parameter
estimation

Appropriate treatment of vertical mixing is an essen-
tial component of meteorological and air quality models.
Planetary boundary layer (PBL) schemes are used to
parameterize the vertical turbulent ßuxes of heat, mo-
mentum, and constituents such as moisture within the
PBL as well as in the free atmosphere. The accuracy of

the PBL scheme is critical for forecasts of local thermally
and mechanically driven ßows and air quality, and it also
affects forecasts of larger-scale meteorological phenom-
ena (Hacker and Snyder 2005). Errors and uncertainties
associated with PBL schemes remain one of the primary
sources of inaccuracies in model simulations (Pleim 2007b;
Hu et al. 2010a).

Parameter estimation offers a way to improve the accu-
racy of parameterizations such as PBL schemes. Parameter
estimation is a technique for determining the best value
of certain model parameters through data assimilation or
similar techniques. When applied to parameterizations
of meteorological processes, one hopes to identify opti-
mal parameter values within a given parameterization,
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with ÔÔoptimalÕÕ deÞned over some appropriate domain
in space and time.

For the speciÞc application of optimizing a PBL scheme,
the parameters to be estimated are not necessarily limited
to numerical constants that appear explicitly in the param-
eterization formulation. For example, one could create a
superparameterization, in which vertical mixing is com-
puted as a weighted average of the mixing produced by
various PBL schemes, and the weighting values would
be the targets of parameter estimation. Alternatively,
one could expand the set of estimable parameters within
a single parameterization to allow for structural changes
to the parameterization itself.

The set of possible parameters to be estimated is in-
Þnite. Consider a simple parameterization at grid point
i of yi in terms of xi:

yi 5 Ax i . (1)

Structurally, this is a linear approximation. But one
may generalize it as a power series in which there are
inÞnite parameters:

yi 5 �
•

j5 � •
A jx

j
i , (2)

or as a nonlocal approximation over N grid points:

yi 5 �
N

j5 1
A ij x j , (3)

or as a function of various model variables:

yi 5 A ixxi 1 A iyyi 1 A iuui 1 A iT T i . . . . (4)

The assertion that (1) is an optimal parameterization
is equivalent to the assertion that all but one of the As
in (2)Ð(4) are optimally set equal to zero. In principle, all
of the As in (2)Ð(4), and other parameters besides, are
hidden or implicit parameters that are also candidates
for parameter estimation.

The optimization problem for parameter estimation
may be deÞned locally or globally. Global parameter es-
timation involves the search for a single parameter value
that performs best in all situations. Local parameter es-
timation allows for optimal parameters to be functions of
space and time, in keeping with the idea that optimal
parameters are likely to be ßow or situation dependent.
For example, the exponent in the formulation of bound-
ary layer scaling of vertical eddy diffusivity [used in the
Yonsei University (YSU) and Asymmetrical Convective
Model, version 2 (ACM2) PBL schemes] is dependent on
stability (Troen and Mahrt 1986). Parameter estimation

permits not just optimization of a parameterization, but
optimal evolution of a parameterization.

Advanced data assimilation methods [e.g., variational
approaches and versions of the ensemble Kalman Þlter
(EnKF)] are capable of extracting from observations
signiÞcant information about the model parameters in
addition to the model state. They can be used to counter
model errors due to incorrect parameters by calibrating
those parameters simultaneously with the model state
during the analysis process. Parameter estimation using
data assimilation methods has been a common approach
to deal with model error associated with incorrect pa-
rameters (Navon 1997; Aksoy et al. 2006a,b; Zupanski
and Zupanski 2006; Tong and Xue 2008; Kondrashov
et al. 2008). In atmospheric sciences, variational data
assimilation methods are traditionally used for parameter
estimation. Only recently have ensemble-based schemes
emerged as a promising method for parameter estimation
(for a review, see Aksoy et al. 2006a).

The inverse problem of parameter estimation is es-
sentially a problem of mapping from the space of model
outputs (which is measurable) to the space of parameters.
The mapping in EnKF is realized through the covariance
between parameters and model outputs calculated from
the ensemble (i.e., EnKF adjusts parameters using obser-
vations based on the covariance between them). However
such mapping may fail under some conditions: (i) the
changes produced by parameter variations do not project
sufÞciently strongly onto observation space, thus mea-
surement errors can lead to large changes in estimated
parameter values; (ii) the model output does not vary
smoothly with the parameter to be estimated, thus the
optimal parameter value may never be found; or (iii) var-
ious parameters have indistinguishable effects on model
output, thus the wrong parameters may be adjusted. Navon
(1997) groups all three conditions under the general term
of identiÞability, while Zupanski and Zupanski (2006) refer
to (i) as observability and reserve the termidentiÞability
for (ii) and (iii). Here, we will refer to (i) as observability,
(ii) as simplicity, and (iii) as distinguishability. Thus,
successful parameter estimation requires that the set of
parameters to be estimated produce sufÞciently large,
well-behaved, and unique sensitivities in model output.

The objective of our research program is to use EnKF
to estimate the optimal values of some fundamental
parameters in the ACM2 PBL scheme in the Weather
Research and Forecasting (WRF) model and improve
the simultaneous state estimation. As a necessary Þrst
step (Tong and Xue 2008) in this program, this paper
reports on a detailed sensitivity analysis to identify the
best parameters to be estimated in ACM2. Such a sen-
sitivity analysis enables us to rank a subset of chosen
parameters according to their chances to be correctly
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identiÞed in parameter estimation and help us understand
the EnKF results (estimation of both parameters and
state). Such a comprehensive sensitivity analysis is also
useful for understanding the characteristics and sources of
systematic errors of the ACM2 scheme and other similar
PBL schemes, and may facilitate future improvements in
PBL schemes of a similar type. The overall approach is
applicable to any complex parameterization scheme.

The paper is organized as follows. In section 2, the
ACM2 PBL scheme is brießy described and potentially
identiÞable parameters in ACM2 are summarized. Sec-
tion 3 describes the model setup and diagnostic approach.
In section 4, model sensitivities to each parameter are
examined and related to physical causes. Section 5 dis-
cusses the numerical results in the context of parameter
identiÞability, seeking to identify the best parameters
for parameter estimation. The paper concludes with a
brief summary.

2. Description of the ACM2 scheme and its
potentially identiÞable parameters

The ACM2 PBL scheme (Pleim 2007a,b) includes an
eddy diffusion component in addition to the explicit
nonlocal transport of the original ACM1 scheme (Pleim
and Chang 1992). A weighting factor is used to govern
the portion of mixing due to local diffusion and nonlocal
transport. The inclusion of a local eddy diffusion com-
ponent leads to a more realistic representation of the
shape of the vertical proÞles of model variables near the
surface (Pleim 2007a). For stable or neutral conditions,
the portion of mixing due to nonlocal transport is set to
zero, thus the ACM2 scheme transits to use pure local
eddy diffusion to handle vertical mixing. The potentially
identiÞable parameters in ACM2 as implemented in WRF
version 3 are discussed in the following paragraphs. For
a full description of the ACM2 scheme and deÞnitions of
all variables, see Pleim (2007a,b). We discuss here only
those formulas and variables that are essential for un-
derstanding the nature of the potentially identiÞable pa-
rameters or that are different in the WRF implementation
of ACM2.

For the local vertical eddy diffusion, the maximum of
two methods of eddy diffusivity Kz calculation (i.e., a
PBL scaling form of Kz and a local formulation of Kz) is
applied. The PBL scaling form of Kz within the boundary
layer may be written [after Pleim (2007a), his Eq. (12)] as

K z(z) 5 k
u*
f

z(1 � z/h)p, (5)

where k is the von Ka«rma«n constant (well known to
within about 10% and therefore not very adjustable), f
is the similarity proÞle function (with different symbols

for heat f h and momentum f m), z is the height above
ground level, and h is the height above ground level of
the top of the boundary layer (PBLH). The exponent p
is a hidden parameter; Eq. (12) of Pleim (2007a) uses
the value ÔÔ2ÕÕ rather than the symbolp. The value of
p partly determines the magnitude of the diffusivity,
with smaller values leading to stronger diffusivity, and
partly determines the level at which the diffusivity is
a maximum. Whenp 5 1, diffusivity peaks in the middle
of the boundary layer; the diffusivity maximum moves
progressively lower for larger values of p. Troen and
Mahrt (1986) consider values ranging from 1 to 3 for this
parameter.

In the ACM2 implementation in WRF, f m is used for
computing the friction velocity u*, but f h is used in (5) for
computing the vertical mixing coefÞcient Kz for momen-
tum as well as for temperature and mixing ratios. In earlier
tests, little difference was found in computing a separate
Kz for momentum.

The universal functions f h and f m have been the
subject of considerable research, and a variety of for-
mulations exist (Foken 2006). For unstable conditions,
a fairly general representation of the relationship be-
tween the two universal functions is

f h 5 Pf 2
m. (6)

Here P is a hidden parameter. The ACM2 scheme
usesP 5 1 (Pleim 2007a), but other values are possible
and affect the local value of the Prandtl number. Ac-
cording to Foken (2006), the physical range ofP is small,
perhaps 0.95Ð1.35. A suitable range forP is 0.9Ð1.5.

For stable conditions, the proÞle functions of f h and
f m are given (Pleim 2007b) as

f h 5 f m 5 11 r
z
L

, (7)

while for very stable conditions (z/L . 1) they are
given as

f h 5 f m 5 r 1
z
L

. (8)

Pleim (2007b) uses 5 for the value of the hidden var-
iable r. According to Foken (2006), the presently ac-
cepted value isr 5 6, so it would be reasonable to allow
r to range from 4.5 to 7.

The local formulation of Kz in the ACM2 scheme
takes several forms depending on the value of the local
Richardson number Ri:

Ri . Rc: K z 5 K zo, (9)
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0, Ri , Rc: K z 5 K zo 1
‰U
‰z

1 �
Ri
Rc

� � 2

l2s

�
�
�
�
�

�
�
�
�
�

, (10)

Ri , 0: K z 5 K zo 1
‰U
‰z

� � 2

(1 � jRi)

" #1/2

l2s, (11)

where

l2s 5
kzl

kz 1 l

 ! 2

, (12)

K zo 5 VK yDz 1 (1 � V)K c. (13)

Here we have corrected transcription errors in Pleim
[2007b, his Eqs. (4) and (5)] and written a generalized
form for (11) and (13). The ACM2 value of j is 25 (not
0.25 as stated in Pleim 2007b), but this parameter, arising
only in cases of absolute instability, is not expected to be
observable. The local Richardson number Ri includes
the effects of moisture and is compared to a critical
Richardson number Rc for identiÞcation of the stability
regime. The ACM2 value for Rc is 0.25, with a plausible
range of values from 0.2 to 1.0. The parameterl is the
asymptotic value of the turbulent length scale. It is set to
80 m in the ACM2 scheme, but is not well constrained
and may be taken to vary from 40 to 120 m.

The current WRF (3.1) implementation of the ACM2
scheme hasKzo 5 KyDz, which, in the context of (13),
means that hidden parameterV 5 1. In this implemen-
tation Ky depends on vertical resolution. A previous im-
plementation has Kzo 5 Kc, which corresponds toV 5 0.
The formulation in (13) allows parameter estimation of
V to determine which of the two formulations is most
appropriate. ACM2 has Ky 5 0.001. It is sufÞciently
poorly known that it is plausible to allow it to range over
an order of magnitude or more. Parameter estimation
of Kc is probably not possible whenKy and V are being
estimated because of distinguishability issues.

A weighting factor of fconv is used to control the por-
tion of mixing due to the nonlocal transport (Pleim
2007a):

fconv 5 11
1

k0.1a
u*
w*

f h

f 2
m

 ! � 1

. (14)

Here w* is the conventional convective velocity scale.
The adjustable constant is 0.1a, and observations of the
vertical proÞle of temperature should directly affect the
proper value of 0.1a. The full plausible range of 0.1a is
between 0 and inÞnity, with 0 corresponding to fully
local mixing and inÞnity corresponding to fully nonlocal

mixing. The latter situation reduces to the ACM1 scheme
(Pleim and Chang 1992). In ACM2, 0.1a 5 0.72. The
fraction of similarity functions in (14) reduces to P, but in
our tests we keep the value of this fraction at 1 in (14).
Thus, all variations in the speciÞed fraction of nonlocal
mixing are subsumed into parameter 0.1a.

The ACM2 scheme is sensitive to the diagnosed height
of the top of the boundary layer ( h, also known as PBLH).
PBLH is involved in the calculation of both local and
nonlocal mixing. The height of the PBL top h is diagnosed
as the level at which the bulk Richardson number, cal-
culated from the ground up under stable conditions and
from the top of the convectively unstable layer under
unstable conditions, equals a critical Richardson num-
ber Ricrit . The designation of stable versus unstable
conditions depends uponh, the MoninÐObukhov length,
and the lapse rate between the lowest two model levels.
The top of the convectively unstable layer is identiÞed
where the potential temperature equals the potential
temperature of a buoyant plume originating from the
surface. In general, a larger Ricrit corresponds to a larger
h and greater exchange between the free atmosphere
and the PBL. In ACM2 the value of Ri crit is set to 0.25.
The plausible range of values of Ricrit is 0.2Ð1.2, corre-
sponding on the low end to an assumption of a Þnite
amount of time for turbulence to develop in the face of
instability and on the high end to turbulence producing
a stable proÞle rather than a neutral one. Note that
the parameter Ricrit is a criterion for a bulk Richardson
number and is used only in the deÞnition ofh, while Rc,
appearing in (9)Ð(11), is a criterion for a local Richardson
number and is used to determine the stability regime.
Thus, it is not inconsistent to allow Ricrit and Rc to vary
independently.

The potential temperature of a buoyant plume (used
in PBLH calculations above) is (Pleim 2007a)

us 5 uy(z1) 1 b
(w9u9y)0

(u3
* 1 0.6w3

* )1/3 . (15)

The Þrst term on the right-hand side is the virtual
potential temperature of the lowest model layer, and the
numerator is the surface heat ßux (Pleim 2007a). The
excess virtual temperature is sensitive to the scaling
factor b for the heat ßux, with larger values of b corre-
sponding to larger excess buoyancy. Holtslag and Boville
(1993) useb 5 8.5, and this value is adopted in ACM2,
but as the thickness of the lowest model layer decreases
the magnitude of the excess buoyancy relative to the
lowest model layer should also decrease. Thus,b could
potentially be much smaller than 8.5, and a plausible
range would be from 0 to 10. As b becomes small, so
does the height of the top of the PBL, h.
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Table 1 summarized the complete list of potentially
identiÞable parameters discussed above. Together, the
set of parameters affects unstable and stable mixing
and has the potential to signiÞcantly alter the perfor-
mance of the ACM2 scheme. The next step is to run an
ensemble of simulations with these variables chosen
within their full plausible range and to determine exper-
imentally the nature of the sensitivity of the WRF scheme
to each of these parameters. Then, a Þnal decision may be
made on which parameters to estimate through data
assimilation.

3. Experimental design

Three model domains are run with one-way nesting.
Figure 1 shows the domain conÞguration. The grid spac-
ings are 108, 36, and 12 km, respectively. The coarse
domain covers North and Central America, the second
covers the contiguous United States and most of the Gulf
of Mexico, and the inner covers Texas and adjacent areas.
All model domains have 43 vertical layers, and the model
top is set at 50 hPa. The lowest model eta levels are at
1.000, 0.996, 0.990, 0.980, 0.970, 0.960, 0.950, 0.940, 0.930,

TABLE 1. Potentially identiÞable ACM2 parameters

Parameter name ACM2 value Plausible range Role of parameter

p 2 1Ð3 Structure of local mixing within PBL
P Prandtl No. 1 0.9Ð1.5 Nominal ratio of momentum/heat diffusion
0.1a 0.72 0Ðlarge Controls proportion of nonlocal mixing
Ricrit Critical Richardson No. 0.25 0.2Ð1.2 Affects calculation of height of PBL
b 8.5 0Ð10 Controls excess buoyancy of surface plumes
r 5 4.5Ð7 Affects stable mixing in dimensionless proÞle
Rc Critical Richardson No. 0.25 0.2Ð1.0 Governs ßow dependence of stable turbulence
l 80 m 40Ð120 m Asymptotic value of turbulent length scale
V 1 0Ð1 Formulation for Kzo

Ky 0.001 0.0003Ð0.006 Proportional to minimumKz as function of
layer thickness

FIG . 1. Domain conÞguration and correlation between surface temperature andKy at 0000 CST
31 Aug 2006 over the no-precipitation area in domain 3.
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0.920, 0.910, 0.895, 0.880, 0.865, 0.850, 0.825, and 0.800.
All model domains use Dudhia shortwave radiation
(Dudhia 1989), Rapid Radiative Transfer Model
(RRTM) longwave radiation (Mlawer et al. 1997),
the WRF Single-Moment 6-Class Microphysics scheme
(WSM6; Hong et al. 2004), the Noah land surface scheme
(Chen and Dudhia 2001), the ACM2 PBL scheme, and
the MoninÐObukhov surface layer scheme. The Na-
tional Centers for Environmental Prediction (NCEP)
Global Forecast System (GFS) operational analyses and
forecasts are used for initial and boundary conditions.

The model start time is 0000 UTC 30 August 2006
(1800 CST 29 August) and the model run length is 48 h.
During this period, a ridge of high surface pressure ex-
tended southward into northeast Texas. Winds were
generally northerly in eastern Texas and southerly in
western Texas, with a weak sea-breeze circulation near
the coast and a southerly Great Plains low-level jet over
the Texas Panhandle during the second night. Skies were
mostly clear, except for daytime boundary layer cumulus
and clouds associated with some west Texas thunder-
storms. The period falls within an air quality Þeld program
known as the Second Texas Air Quality Study (TexAQS
II), and high concentrations of ozone were observed in
eastern Texas on both days (Parrish et al. 2009).

Two sets of deterministic simulations are conducted
to test the model sensitivities to 10 parameters in the
ACM2 scheme listed in Table 1. In one set, all param-
eters are set to their default except for one parameter,
which is assigned one of Þve values (evenly distributed
within its speciÞed range). A total of 50 WRF model runs
are performed in this set, called the single-parameter set.
In the other set, all potentially identiÞable parameters are
assigned random values within their range of variability.
A total of 50 WRF model runs are performed in this set,
called the multiparameter set.

The EnKF does not know about physical constraints
on model parameters. In order that these parameter
sensitivity simulations are as similar as possible to our
future parameter estimation simulations, a technique is
developed and implemented that constrains the model
parameters to lie within the physically realistic ranges
speciÞed in Table 1. For each model parameterx, we
create a normal parametery. Each normal parameter y
is related to x by

y 5 tan p
x � A
B � A

�
1
2

� �� �
, (16)

x 5 A 1 0.51
arctan(y)

p

� �
(B � A). (17)

With this formulation, y varies from 1 /2 inÞnity while
x varies within the range [A:B]. Parameter estimation

will be performed on y, and y will be transformed to x
prior to its use in ACM2. In the multiparameter simu-
lations, 50 pseudorandom values drawn from a normal
distribution with mean 0 and 1 standard deviation are
generated for each normal parametery. Those 50 pseu-
dorandom values are then transformed to the speciÞc
range of each parameter using (17). The transformation
has been designed such that these initial pseudorandom
values, when transformed into model parameters, popu-
late about 70% of the speciÞed ranges of those parame-
ters with a fairly ßat distribution (Fig. 2).

Alterations to the PBL parameterization produce both
direct impacts on the vertical structure of model variables
and indirect impacts on the evolution of meteorological
phenomena such as moist convection or sea breezes.
Surface-based moist convection, for example, is sensitive
to PBL parameterization schemes, and the consequences
of PBL-scheme-induced differences in simulated con-
vection can propagate upscale to affect larger phenom-
ena (Jankow et al. 2005; Nielsen-Gammon et al. 2005).
Such convection would in turn alter the boundary layer
characteristics beyond what was produced directly by the
PBL scheme. Likewise, the intensity, timing, and inland
penetration of simulated sea breezes are sometimes, but
not always, affected by the boundary layer structures
generated by different PBL schemes (Miao et al. 2009;
Zhong et al. 2007). While indirect impacts such as these
are observable and would contribute to the performance
of parameter estimation, they are also likely to be situa-
tion speciÞc and, in the case of moist convection, highly
nonlinear. For moist convection in particular, the model
response to changes in parameters may be quite erratic
and thereby violate the simplicity requirement.

With only a single case and a limited number of en-
semble members, we focus our evaluation on the direct

FIG . 2. Probability distribution of an arbitrary parameter allowed
to vary from A 5 5 to B 5 7, when transformed from a standard
normal distribution using (16).
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impacts, as revealed through horizontal averages across
the inner domain in areas free of simulated precipitation
(Fig. 1). Such horizontally averaged impacts should be
qualitatively consistent from case to case. This strategy
excludes locations under the immediate inßuence of moist
convection and averages across locally driven mesoscale
circulations such as sea breezes and mountainÐvalley
breezes. The horizontal extent of the inner domain in-
cludes a wide range of geographical conditions, from the
Gulf of Mexico to the Sierra Madre Oriental. In addition
to all portions of domain 3 without precipitation, two
other horizontal averages are computed. The Þrst is that
portion of the precipitation-free domain over the Gulf of
Mexico, and the second is that portion of the domain
covering eastern Texas, which is mostly precipitation free.

Model output intercomparison and diagnosis are car-
ried out on the inner domain (with a resolution of 12 km).
For each model parameter and each averaging area, tem-
perature, moisture, and wind speed are diagnosed. Plots of
model variables as a function of parameter values address
the issue ofsimplicity, with a linear relationship between
variables and parameter values being ideal. Standard de-
viation computed from the single-parameter output, is
a measure of the magnitude of the variability in the model
output associated with a particular parameter. A small
standard deviation for a particular parameter means a
change of that parameter across its plausible range of
uncertainty is manifested by only small changes in the
measurable model output variables. Such a parameter
would not be observable. Correlation computed from the
multiparameter output indicates to what extent variations
in a particular parameter control the model output vari-
able and suggests whether the impact of the parameter is
distinguishable from the impacts of other parameters.
The EnKF adjusts parameters using covariance in-
formation, that is, correlation multiplied by the variances
of parameter and model outputs. A small correlation
between the measurable output variable and a particular
parameter results in a small Kalman gain and little impact
on parameter values through assimilation of observations.
Correlation was also used as a diagnostic by Hacker and
Snyder (2005) to examine the efÞcacy of assimilating
some speciÞc observations using EnKF.

4. Sensitivity analysis

Figures 3Ð4 show output related to temperature:
standard deviation (Fig. 3) and correlation (Fig. 4). Both
Þgures depict the lowest 3000 m to more clearly show
shallow boundary layer impacts. All quantities are com-
puted and displayed in model space; the area-mean heights
of the model levels are provided along they axis. Above
3000 m (not shown), the variability of temperature is

largest near the model top where both stratiÞcation
and vertical grid spacing are very large. The variability
emerges Þrst forV and Ky, both of which affect vertical
mixing in highly stable situations such as are normally
found in the stratosphere.

In the lower troposphere, the parameters produce
particular sensitivity patterns associated with their role
in the ACM2 vertical mixing scheme. The Þrst Þve pa-
rameters (i.e., p, P, 0.1a, Ricrit , and b) show differing
amplitudes but broadly similar patterns in their sensi-
tivities in Fig. 3. The overall patterns (Þrst row) of these
Þve parameters are driven primarily by sensitivities over
land, as indicated by the similar patterns (and stronger
signal) over eastern Texas (third row) and dissimilar
patterns over water (second row). Sensitivities over land
during the Þrst day are weaker than those during the
second day but share a similar diurnal pattern, while
sensitivities over water evolve steadily during this epi-
sode. Among the Þve,P and 0.1a show weaker sensi-
tivities. The Þve parameters all show repeated clawlike
regions of large sensitivity over land centered around
2000 m during afternoon and evening but that Þrst ap-
pear at 1000 m. This maximum sensitivity area corre-
sponds to the entrainment zone at the top of daytime
PBL and the evening residual layer.

The middle panel shows sensitivity over the north-
western Gulf of Mexico. Because the PBL over the Gulf
of Mexico tends to be weakly unstable, the pattern of
sensitivity is similar to that over land during daytime, but
without the diurnal cycle. The maximum positive sen-
sitivity increases from 500 to over 1000 m during the
course of the simulation, implying that the marine PBL
is similarly growing. Ordinarily the marine PBL is fairly
stable in height around 500Ð600 m in the northwest Gulf
area, so this rise in PBL depth may indicate a short-
coming of the model. However, the winds were offshore
during most of the 2-day period, so it is possible that the
increase of PBL depth is real and is a response to off-
shore advection of a deeper continental PBL.

The similar pattern seen with p, P, 0.1a, Ricrit , and
b means changes of them alter the vertical mixing in
similar regions during daytime. The parameter p de-
termines the value of the local eddy vertical mixing co-
efÞcient within the convective PBL, with larger p leading
to smaller vertical mixing. Weak vertical mixing, in-
cluding reduced heat transport from the surface to the
atmosphere and reduced entrainment at the top of the
PBL, should produce a cooler PBL. Meanwhile, the re-
duced PBL height and reduced mixing from below should
have a warming effect in the thin layer of air at the top
of the PBL and the bottom of the free troposphere,
sometimes called the entrainment layer. Being thin, the
temperature sensitivity here can be much larger than
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FIG . 3. TimeÐheight sections of standard deviation of horizontally averaged potential temperature with respect to vertical mixing
parameters (see column labels) over the whole inner domain, the water portion, and eastern TX (see row labels) in single-parameter
model runs. Grid points with precipitation are not included in the calculations. Calculations are performed in model eta coordinates and
labeled according to average altitude of the eta surfaces. The bottom corresponds to the eta surface adjoining the ground or water.
Maximum values are labeled when they exceed 0.2 K.
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