
Some Experimental Lessons on Digital Filtering in the ALADIN-France
3DVAR Based on Near-Ground Examination

CLAUDE FISCHER AND LUDOVIC AUGER
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ABSTRACT

This paper deals with the characteristics and effects of digital filter initialization, as implemented in the

operational three-dimensional variational data assimilation (3DVAR) system of the Aire Limitée Adapta-

tion Dynamique Développement International (ALADIN)-France regional weather forecast model.

First, a series of findings on the properties of the initialization of the model are discussed. Examples of initial

spinup linked with inertia–gravity wave occurrence are shown, and the major sources for their generation are

listed. These experimental results are compared with past and present experiences concerning the use and

need for digital filter initialization. Furthermore, the impacts of switching to an incremental formulation of the

filter in data assimilation mode are demonstrated. Second, the effects of the filter formulation on the results of

an observation impact study are illustrated. The latter consists of implementing screen-level, 10-m horizontal

wind information into the ALADIN 3DVAR analysis. There can, indeed, be some delicate interference

between observation impact evaluation and the effects of filtering, at least on short-term forecasts.

The paper is concluded with some general considerations on the experimental evaluation of spinup and the

link between the assimilation system design and model state filtering.

1. Introduction

The term spinup is usually used within numerical weather

prediction (NWP) contexts in relation to two issues: 1) the

experimental framework that consists of launching a cou-

pled NWP model with initial conditions provided by a dif-

ferent coupler model (or any external gridded analysis

procedure) and 2) the period of time from model launch

during which all model fields undergo a process of adjust-

ment before a discretized model equation compliant three

dimensional (3D) state is achieved. The first of these issues

leads to the definition of a ‘‘spinup model,’’ as opposed to

a model run in assimilation mode, which would start using

a background state obtained from a ‘‘domestic’’ forecast. In

the Aire Limitée Adaptation Dynamique Développement

International (ALADIN)-France community, the spinup

model is also often called a dynamical adaptation model,

when the limited area model (LAM) is started with a global

uninitialized analysis coming from the Action de Re-

cherche Petite Echelle Grande Echelle (ARPEGE) sys-

tem. For general presentations of the global spectral model

ARPEGE, we refer to Courtier et al. (1991) and Geleyn

et al. (1995), and for its limited area, spectral bi-Fourier

version ALADIN, we refer to Radnóti et al. (1995) or

Horányi et al. (2006). Note that the lateral boundary

coupling in ALADIN follows the classical relaxation

method introduced by Davies (1976) and adapted to

a spectral LAM by Haugen and Machenhauer (1993).

The second issue above is the one of concern in section 2

of this paper: the spinup period of an NWP model will be

determined by the time taken by the model to adjust its

initial fields with respect to all, discretized, model equa-

tions. This spinup generally contains processes of dynam-

ical adjustment that are of a geostrophic type, with excess

energy radiated away by inertia–gravity waves, and pro-

cesses of diabatic adjustment, where model physics ten-

dencies will converge with respect to other model forcings.

Dynamical adjustment will for instance ensure that the low-

level model wind field is in balance with the local dis-

cretized orography. Diabatic adjustment will ensure that

water vapor and other microphysics species, as well as their

related physics tendencies, are in balance with the local

wind and temperature fields (e.g., convergence, vertical

shear, vertical stability, etc.).

A first possible experimental framework for launching

a (coupled) model therefore consists of letting the model
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freely go through its spinup process, expecting no actual

use of the first hours of the forecast since those will be

affected by nonmeteorological waves and possibly exces-

sive precipitation amounts. Alternatively, assuming that

most of the adjustment will occur through rapid and high-

frequency waves, as well as fairly short-term model ten-

dencies, one may force the initial state not to generate

any model tendencies that project onto high-frequency

model solutions, using some type of initial state filtering.

For instance, in nonlinear normal mode initialization

(NNMI; Machenhauer 1977), the subspace of the high-

frequency solutions is obtained from a simplified geo-

physical model, which is able to discriminate between

Rossby and inertia–gravity modes. In the practical im-

plementation of NNMI, the filtered initial state is ob-

tained after a few iterations of the scheme, which leads to

a reduction of the tendencies of the inertia–gravity wave

modes. Another prominent method for filtering is digital

filter initialization (DFI; Lynch 1990; Lynch and Huang

1992), where successive model time steps are computed

and filtered by the means of a given response function.

In ALADIN, DFI has been implemented for the us-

age of the model in dynamical adaptation mode, fol-

lowing the diabatic DFI procedure introduced in Huang

and Lynch (1993). Lynch (1997) introduces the Dolph–

Chebyshev filter as a response function for provid-

ing an effectively optimal filter. Since then, most of our

experimental knowledge about ALADIN spinup prop-

erties has been obtained by running the model in dy-

namical adaptation mode with DFI. We describe the

most common digital filter application in the ALADIN

model in the appendix, along with the definition of the

parameters that will be discussed in this paper. Typical

parameter choices for the DFI step are to run the filter

over a 2.5-h time span with a stop-band edge period of

3 h. We usually consider that after this DFI the dy-

namical spinup process is marginal, while a diabatic

adjustment still exists, over about 6–12 h. The first-order

importance of the coupling between diabatic tendencies

and vertical motion or convergence–divergence at the

mesoscale has been illustrated in Pagé et al. (2007). The

diabatic adjustment mostly is a consequence of the re-

moval by DFI of part of the convergence–divergence

patterns linked with active systems, and that could al-

ready be present in the ARPEGE analysis (despite its

lower resolution compared with ALADIN, typically 15–

20 versus 8–10 km), along with the necessary adaptation

of physics processes to the higher-resolution discretiza-

tion, and related forcings (surface heterogeneities, orog-

raphy). This diabatic adjustment exists despite the almost

identical physics parameterization packages used by

ARPEGE and ALADIN-France in Météo-France’s op-

erational implementation, for instance.

When it comes to data assimilation, our experience with

the ALADIN system remains, so far, fairly limited. We

will come back in more detail to this aspect in section 2b.

We stress that in our study, the model resolution is 9.5 km

with 46 vertical levels, and the three-dimensional varia-

tional data assimilation (3DVAR) analysis increment is

computed on the model grid and, thus, its resolution also is

9.5 km. The model time-step length is 415 s. The ALA-

DIN 3DVAR does not contain any extra penalty function

for filtering purposes (the so-called Jc term), and analysis

increments primarily are constrained by the balance and

multivariate specifications included in the background

term Jb, following the work performed within the frame-

work of the global model by Derber and Bouttier (1999)

and within the framework of the LAM by Berre (2000).

These specifications mostly consist of a statistically de-

rived linear balance and the decomposition of the control

vector of the variational problem into balanced and un-

balanced parts. The formulation furthermore includes

a horizontal scale dependency of vertical correlations for

each unbalanced component.

This paper aims to illustrate three aspects of the prep-

aration of the initial state for a model forecast: obser-

vation of spinup effects (inertia–gravity wave signals);

revisiting the pros and cons of two versions of filtering,

namely the nonincremental and the incremental ones

(we refer to section 2b for the details); and assessing the

sensitivity of observation impact studies to the filtering

strategy. Our work is primarily of an experimental nature;

we do not claim to have performed a thorough theoretical

discussion on filtering or data assimilation. Our concern

here is the discussion of a number of the results that we

have obtained over time on those three items. The paper

is organized as follows. Section 2 addresses several ex-

perimental findings concerning the spinup properties and

filtering strategies in the ALADIN-France LAM. Section

2a specifically deals with the experimental evidence and

study of some of the spinup waves. In section 2b, the

consequences of the formulation of the filter and its tun-

ing, in the case of digital filtering, are inferred and tested.

We measure the impact in terms of conventional scores

with respect to surface observations (where spinup effects

are most visible). We continue with a discussion of the

impacts of the filtering strategy within observation sensi-

tivity experiments (OSEs), comparing incremental versus

nonincremental applications of DFI (section 3). We draw

several lessons from this work in section 4.

2. Spinup and digital filtering

a. Spinup as seen on short-term model forecasts

When the 3DVAR data assimilation was tested and

implemented in the ALADIN-France system (see Fischer
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et al. 2005), the filtering of the initial state was kept the

same as in the dynamical adaptation. On the one hand, we

have considered that the move toward an assimilation

cycle should introduce a smaller amount of spinup and

a shorter spinup time, because the initial state (the anal-

ysis) then is the addition of a previous (here, 6-h lead time)

forecast (as background) plus an analysis increment. The

background 6-h forecast fields are in fairly good balance,

as we will illustrate below. Some level of mass–wind bal-

ance furthermore is present in the increment, via statistical

regression coefficients between predictors in the control

vector of the 3DVAR following the works of Derber and

Bouttier (1999) and Berre (2000). On the other hand,

some trials to move away from the DFI specifications used

in dynamical adaptation mode, mostly with the goal of

diminishing the intensity of filtering the total 3DVAR

analysis, lead to mitigated results: on the positive side, the

very-short-term forecasts often exhibited a shorter dia-

batic adjustment time when filtering less; on the negative

side, when for instance the stop-band edge period was

decreased, we also found cases of spurious onsets of pre-

cipitations in nonactive areas. Thus, the decision was

made to keep the DFI procedure within the assimilation

identical to the dynamical adaptation mode. This choice

amounted to starting any actual forecast, either within the

assimilation cycle or for the parallel, long-term production

runs, from the filtered analysis denoted as f(a) henceforth,

where a denotes the analysis.

After the first operational implementation of 3DVAR

in ALADIN-France, we reassessed the role of DFI in the

model. In doing so, we have considered classical measures

for model spinup activity, such as the domain-averaged

absolute tendency of the model fields, the root-mean

square of the model field tendencies, or time series of

model fields at specific gridpoint locations. The latter

have appeared to be the most informative diagnostics

for our concern, since they provide local information

that can give insight into some temporal or spatial aspect

of a signal (as will be shown below). Figures 1 and 2 show

time series of mean sea level pressure (MSLP) for the

five sensitivity experiments listed in Table 1, measured

for a model grid point located in the inner core of the

ALADIN-France domain and over the sea (here, the

Bay of Biscay) for Fig. 1 and a grid point positioned

inside the Davies relaxation zone (Fig. 2). The goal here

is to assess the traces of inertia–gravity waves, by means

of the differences of the various sensitivity runs with

respect to a, presumably noise-free, reference. The ref-

erence run is EX1, which is an ALADIN forecast started

using as its initial conditions a 6-h forecast. As for all five

runs, no DFI is applied in EX1. From Fig. 1, it is clear

that the time evolution of MSLP is rather smooth. There

is no graphical evidence of spinup in this restart exper-

iment, despite the fact that we do not provide all t 2 dt

fields, nor the physics tendencies for the restart time t.

Note furthermore that in EX1, we use ‘‘old’’ lateral

boundary conditions (LBCs) so that the core and LBC

fields do match at the initial time in the relaxation zone.

In EX2, we change both the initial conditions (to

a 3DVAR analysis) and the LBC data (to LBC obtained

from the up-to-date ARPEGE run, which is also de-

noted as ‘‘refreshed’’ LBC). If DFI was set on, this

configuration would be the equivalent of an operational

ALADIN-France forecast. In EX2, however, DFI is

switched off and one notices the existence of a wavy,

rather nonperiodic, pattern on MSLP right from the

start of the integration. A fairly parallel MSLP time

curve in EX2, compared with EX1, is obtained after

about 30 model time steps (about 3.5 h). Thus, the first

FIG. 1. Time series of surface pressure at a model grid point lo-

cated in the Bay of Biscay for five experiments (see Table 1). Units

are model time steps (horizontal axis, 1 h corresponds to about

nine time steps) and Pa (vertical axis).

FIG. 2. Time series of surface pressure at a model grid point lo-

cated 50 km inside the model’s relaxation zone for five different

experiments (see Table 1). Units are model time steps (horizontal

axis, 1 h corresponds to about nine time steps) and Pa (vertical

axis).
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information in EX2 is that a forecast started from an

ALADIN 3DVAR analysis, along with refreshed cou-

pling data from ARPEGE, does possess wavy structures

that are not present in a ‘‘restart’’ experiment. This result

has also been obtained for several other cases, which

shows that these patterns are not just the signature of

a meteorological feature that would have been captured

by the data analysis process in the particular situation

displayed in our graphics. This type of feature corresponds

to a pattern of spinup behavior. Operational experience

furthermore tells us that these wavy patterns are not seen

when DFI is switched on. With DFI and the tunings dis-

cussed in section 1, time series of model outputs exhibit

a smooth evolution both in their dynamical adaptation and

in data assimilation mode.

Another question of interest is to what extent the anal-

ysis increment does introduce such wavy, unbalanced, be-

havior. From other ALADIN studies, especially in relation

to so-called blending cycles (e.g., Brožkovà et al. 2001;

Širokà et al. 2001), we know that the choice of the LBC

data can have an impact on short-term forecast perfor-

mances and spinup properties. Thus, we have run experi-

ment EX3, which is started from the same initial fields

as EX1 but which uses the refreshed LBCs, like EX2.

Conversely, we have run an experiment (EX4) that is

started from the 3DVAR analysis like EX2, but that uses

the same LBCs as in EX1. In Fig. 1 and for EX3, we notice

a very clear periodic pattern associated with a wave in

MSLP passing over the point in the Bay of Biscay after

about seven model time steps. This pattern disappears

only after about 30 model time steps, which is slightly

beyond the first LBC update time (3 h) in the forecast,

since we use a 3-h coupling frequency. The MSLP curve

for EX4 first follows the evolution of EX2, until about six

or seven time steps, and then becomes dominated by a

very periodic wave signal that lasts for about the same

duration as in EX3.

Let us now compare the MSLP time series over the

Bay of Biscay with the time series for MSLP at a point in

the relaxation zone. At the latter location, the model

forecast fields will be partially controlled by the coupling

model solution. Referring now to Fig. 2, we see a smooth

MSLP evolution for EX1, a rather periodic wavy curve

for EX2 and EX3 (for about 20–30 time steps and, here,

starting right from the beginning of the simulation), and

a fairly nonperiodic wavy pattern for EX4 (over about

30 time steps). Thus, similar oscillations are observed at

both points, in the relaxation zone and in the interior

domain (Bay of Biscay).

Not shown in this paper are the spatial structures of

the wavy patterns, as obtained by simply plotting the

difference of MSLP between any sensitivity experiment

and the reference EX1, which we have done for every

1-h time step. From these plots, we have inferred that

the nonperiodic wavy feature obtained for EX2 mostly

corresponds to a spatially unstructured field in which no

specific horizontal patterns are visible. We interpret the

unstructured nature of the MSLP difference maps as

being a signature of a complex reequilibration of the

analysis in the model spinup phase. Thus, one may con-

sider the hills and valleys for EX2 in Fig. 1 as a signal of

the imbalance in the analysis increment. This imbalance

generates MSLP variations of about 0.7–0.8 hPa. With

regard to EX3 and EX4, the spatial maps of the MSLP

forecast differences have shown a fairly structured wavy

pattern, though they do not correspond to a pure sinu-

soidal signal (rather a succession of pluses and minuses

in the field, with irregular but smooth contours). Fur-

thermore, we found graphical evidence that the wavy

pattern is generated at an inflow boundary of the model

domain and very quickly propagates inward. From the

plots, and from the time of appearance of the periodic

signal on the MSLP time series of EX3 at the two points

displayed in Figs. 1 and 2, the speed of the propagation

TABLE 1. Summary of the five sensitivity experiments performed to track gravity waves due to patterns of initial spinup behavior. None

of the experiments uses DFI. In the description of the experiments, H stands for the initial time (or network) of the experimental run and

H 2 6 h refers to the previous network time 6 h earlier. Thus, the H 2 6 h global run data correspond to the ARPEGE model data

obtained from the network time prior to the initial time of the experiments (having a 6-h cycling sequence in mind). The H global run data

are ARPEGE data from the same network time than the initial time.

Expt Initial conditions Lateral boundary conditions Comments

EX1 First guess

(6-h forecast)

Interpolated from the H 2 6 h

global run (‘‘old’’ coupling data)

Quite close to a warm start

EX2 3DVAR analysis Interpolated from the H global run

(‘‘fresh’’ coupling data)

Data similar to the operational

assimilation (except no DFI)

EX3 First guess Interpolated from the H global run Run to assess the impacts of mixed

data in the relaxation zone

EX4 3DVAR analysis Interpolated from the H 2 6 h

global run

Mixed data also in the relaxation

zone but in a complementary way to EX3

EX5 3DVAR analysis 0-h coupling file is the analysis, subsequent

3-hourly files are similar to EX1 and EX4

Run to assess the impacts of imposing spatially consistent

data in the relaxation zone at the initial time
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of the corresponding wave is estimated to be about

1200 km h21. This speed would correspond to the phase

velocity of the external inertia–gravity wave for a uniform-

density fluid with an equivalent height of about 11 km.

The wave graphically appears as a broad (spatial pseudo-

wavelength of about 450 km) and deep structure, which

is the result of the imbalance within the relaxation zone,

and it is sufficient to simply use spatially mismatching

fields to produce it. Indeed, in EX3, the wavy pattern

is created despite the balanced initial state in the core

of the domain. However, the linear combination of that

forecast state with the refreshed LBC data used in the

Davies formulation is not balanced. A similar problem

affects EX4, which also has mismatching lateral bound-

ary and inner domain fields. We further notice that the

periodic signals seen in Figs. 1 and 2 are reminiscent

of signals obtained, for instance, in noninitialized High

Resolution Limited Area Model (HIRLAM) forecasts

[see Fig. 6 in Lynch and Huang (1992)].

Previous experimental studies within the ALADIN

community, for various types of 3DVAR assimilation

cycles, have indicated that spatially consistent (match-

ing) data for the inner domain and the LBC initial fields

can reduce the size of the digital filter increment around

the lateral boundaries (Širokà et al. 2001). Thus, in order

to verify whether a rather straightforward spatial match

of core and boundary initial data would be sufficient to

reduce the boundary-generated spinup, we have run ex-

periment EX5, where the 3DVAR analysis is used both

for the initial inner domain and LBC data. It turns out

that EX5 also exhibits wavy structures on the MSLP

curves, and that they are about as pronounced as in EX4.

In Figs. 1 and 2, the differences between EX1 and EX3

are striking, while the patterns of behavior of EX4 and

EX5 remain fairly similar. This graphical evidence sug-

gests that the model balance for the LBC data probably

would be even more beneficial than the mere spatial con-

sistency. As an intermediate conclusion, we exhibited two

different sources of spinup: one linked with the 3DVAR

analysis increment and the other linked with the imperfect

match of interior and lateral boundary conditions at initial

time.

b. Consequences of the use of digital filters

From the findings summarized in section 2a, we have

run alternative assimilation configurations, changing the

choices for the initial LBC data (spatially matching or

not) and the settings for the digital filtering. Namely, we

have tested reducing the filter’s time span and stop-band

edge period. Keeping in mind that ‘‘boundary waves’’

might appear occasionally, with time periods between

0.75 and 1.5 h (see Figs. 1 and 2), we have reduced the

stop-band edge ts from 3 to 2 h but not less. At the same

time, the time span also can be slightly reduced from

about 2 to 1.6 h setting N 5 9 down to N 5 7 (N as

defined in the appendix). The latter change keeps the

response function nearly untouched (similar ripple ra-

tio) while diminishing slightly the numerical cost of the

DFI. As concerns the analysis increment oscillations, it is

difficult to spot a clear time period associated with them.

The new settings proved experimentally to be valid choices

for removing these analysis-related signals. In the MSLP

time series for EX2 and EX5, one for instance cannot

notice any significant oscillatory signal with a period longer

than 2 h.

A further change of interest for the ALADIN LAM

assimilation was the switch from nonincremental filter-

ing, where forecasts are started with f(a), to incremental

filtering, where forecasts are started with g 1 f(a) 2 f(g)

(g standing for the first guess). Initialization using the

incremental formulation and digital filters is denoted

here as IDFI. The effective ‘‘total increment’’ for non-

incremental filtering is f(a) 2 g, with both an impact

coming from corrections by the observations and the

3DVAR background error covariances, and an effect

due to the application of the digital filter. We have found

on several occasions that the two signals tend to overlap,

especially in meteorologically active areas such as

frontal structures, where one still would wish the anal-

ysis to remain the dominating process of ‘‘correction of

the first guess.’’ Rewriting f(a) 2 g 5 f(a) 2 f(g) 2 [g 2

f(g)] shows that the (nonincremental filter) total incre-

ment amounts to adding to the first guess the balanced

analysis increment, but also to removing the filtered part

of the first guess. This is not a problem if the first guess

itself is in balance in the sense of the filter f, since then

g 2 f(g) vanishes. However, if we come back to digital

filtering, f behaves by definition as a temporal filter and

the term g 2 f(g) is nonzero if one admits that high

frequencies can exist in g in relation to rapidly evolving

meteorological features, for instance. Consequently, the

high frequencies present in the first-guess field will be

removed from the initial state in the nonincremental

case, although one would hypothesize that these ‘‘oscil-

lations’’ are not of the spinup type. Moreover, the total

increment f(a) 2 g may depart significantly from the

optimum in terms of assimilation theory, an aspect that is

in principle true regardless of whether DFI or IDFI are

used. Conversely, with incremental filtering, the high

frequencies in g are kept in the initial state for the sub-

sequent forecast.

The use of incremental filtering for initialization in

an assimilation cycle has been promoted in various works

in the past. Puri et al. (1982) compared incremental lin-

ear normal mode initialization with Machenhauer’s

NNMI in a hemispheric nine-level primitive equations
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model. They showed that the incremental linear version

was able to filter gravity wave noise from the analysis

while keeping a strong signal of the mean meridional

circulation, especially in the model’s tropics. They also

noticed some residual transient gravity wave activity, a

finding that they presumed to be harmless. Ballish et al.

(1992) proposed an alternative method, leaving the con-

text of a linearized initialization and transposing the in-

cremental approach to NNMI. Using the global National

Meteorological Center [NMC, now known as the Na-

tional Centers for Environmental Prediction (NCEP)]

model, they applied the NNMI code to the difference of

the model tendencies starting with the analysis and the first

guess, respectively. The result is added back to the analysis,

and a final initialization step follows before the forecast.

They claimed that this approach is less sensitive to the

way diabatic tendencies are computed, as the potential

uncertainties in the model physics, which could lead to

incorrect gravity wave removal in NNMI, are partially

canceled by the subtraction step. Their results show that

the incremental method keeps the signal of tidal waves,

especially the semidiurnal wave in their settings, much

more untouched than does the nonincremental NNMI.

They also show that the incremental NNMI produces

a better balanced state within the assimilation cycle than

Puri et al.’s linear incremental version, by removing

more efficiently transient waves. The benefit, in terms of

balances, of incremental initialization has been then

further confirmed within the context of 3DVAR global

assimilation systems (see, e.g., Courtier et al. 1998). In

four-dimensional variational data assimilation (4DVAR)

Gauthier and Thépaut (2001) have introduced an

incremental filtering formulation directly inside the data

assimilation process, by adding a weak-constraint cost

function based on digital filters (the so-called Jc-DFI

term in 4DVAR, one variant of the Jc term introduced in

section 1). This approach allows one to filter the analysis

increment while performing the data assimilation step, at

a very marginal extra numerical cost. Despite its intrinsic

linear formulation, this filtering should control non-

meteorological transient waves thanks to the presence of

the observational constraint.

The quantitative effects on objective scores when

switching from the operational, nonincremental, DFI

toward retuned IDFI are shown in Figs. 3–5 for MSLP,

and 10-m wind direction and wind speed, respectively.

We display both error bias and root-mean-square error

(RMSE). As an important point here, note that while

surface pressure is assimilated in the ALADIN-France

3DVAR, 10-m wind observations are not assimilated

in the operational version discussed in this section 2.

Accordingly, in our companion experiment using IDFI,

10-m wind observations are not included, and can be

considered to be genuine cross-validating data through-

out section 2. The scores are obtained with respect to the

French mesoscale surface network, for a period of 40 days

(20 September–31 October 2006). A further difference,

namely the overall tuning of the ratio between back-

ground and observation error variances [setting R from

1.5 to 1.2; see Fischer et al. (2005, p. 3481)], is an ad-

ditional change entering this comparison. This retuning

however does not have a significant impact on the statis-

tical scores displayed in this section. The major impact

of IDFI is a decrease on the MSLP error bias, with also

FIG. 3. Scores of biases (thick curves) and RMSEs (thin curves)

of MSLP with respect to the French surface station network, for the

operational ALADIN-France model (nonincremental DFI, solid

lines) and for the test model (incremental DFI, dashed lines). Units

are model lead times from 0 to 24 h, every 3 h (horizontal axis),

and hPa (vertical axis). Note that lead time 0 corresponds to the

initialized analysis.

FIG. 4. Scores of biases (thick curves) and RMSEs (thin curves)

of the direction of the 10-m wind vector with respect to the French

surface station network, for the operational ALADIN-France

model (nonincremental DFI, solid lines) and for the test model

(incremental DFI, dashed lines). Units are model lead times from

0 to 24 h, every 3 h (horizontal axis), and degrees (vertical axis).

Note that lead time 0 corresponds to the initialized analysis.
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a fairly small reduction of the RMSE in the short-term

forecasts, mostly felt until 6-h lead time (Fig. 3). Note

that, at other time periods when the operational MSLP

error bias was negative, IDFI further decreased the bias,

thus leading to a slightly more negative bias with respect

to the observations. Therefore, this effect of IDFI, tend-

ing to decrease the MSLP bias, cannot systematically be

considered to be an improvement. We rather interpret

this signal as an effect of the intrinsically biased nature of

the nonincremental formulation of the digital filter (see

the appendix). For the 10-m wind direction, the most

prominent impact is a much better fit of the 3DVAR 1

IDFI initial state with respect to the observations, com-

pared with the operational version (Fig. 4). This finding

is in accordance with subjective verification, which in-

dicated that the large-scale 10-m wind orientation is more

consistent with MSLP structures (gradients) in the IDFI-

derived initial model state. An apparent ‘‘drawback’’ of

IDFI is the deterioration of the initial and 3-h lead-time

10-m wind speed bias and RMSE (Fig. 5). Thus, IDFI

does have opposed effects on the wind field, in terms of

scores to observations: a positive impact is obtained for

the 10-m wind direction, and a negative one is seen on the

10-m wind intensity.

To be more specific, the overestimation of low-level

wind speed, most notably during night, is known as a

typical shortcoming of the ALADIN model version used

in our study. This overestimation was seen in routine ex-

periments of that time both in ARPEGE and ALADIN,

and for any forecast lead time corresponding to nighttime

conditions (F. Bouyssel 2009, personal communication).

Within the framework of our discussion, this aspect will be

considered to be a typical model error term whose in-

vestigation is beyond the scope of our work. To un-

derstand more in depth, however, the link between this

overestimation of wind intensity and the strategy for fil-

tering the initial state, we have run two extra experiments.

Both experiments consist of series of forecasts over the

full 40-day period, started respectively from archived

nonfiltered 3DVAR analyses (initial state is a) and ar-

chived (nonincrementally) filtered first guesses [initial

state is f(g)]. The archived data originate from the oper-

ational ALADIN-France 3DVAR and no assimilation

cycle was run for these two extra experiments. The 10-m

wind speed scores for the experiment started from non-

filtered analyses superpose almost perfectly with those of

the IDFI assimilation experiment. The scores of the f(g)

experiment reveal a drop of the bias almost to 0 and

a slight decrease of the RMSE, exactly as for the opera-

tional assimilation using nonincremental DFI. Thus, it is

DFI that brings the initial states closer to the observations

of 10-m wind speed, and not the 3DVAR analysis. Non-

incremental DFI impacts on the 10-m wind field, regard-

less of which term is the input state (an analysis a or

a forecast g), in a way leading to a better fit toward the

observations. This positive impact is however lost after

about 3 h of integration. In the IDFI assimilation, as well

as in the series of forecasts started from nonfiltered anal-

yses, the low-level wind speed differences between the

observations and model initial states are relatively close to

the differences between the observations and 6-h forecasts

(the backgrounds to the analyses). Eventually, the wind

speed error bias and RMSE will tend to approach values

representative of forecast errors.

We also checked the two extra series of 40-day fore-

casts, started from a and f(g), with respect to MSLP and

10-m wind direction scores. The scores of the forecasts

that were started from nonfiltered analyses were roughly

similar to those of the IDFI assimilation experiment, es-

pecially as concerns MSLP and 10-m wind direction biases

over the 40 days. The scores of the forecasts started from

filtered first guesses revealed increased MSLP bias and

RMSE, as well as a clearly increased 10-m wind direction

bias at 0 h, with respect to the IDFI assimilation. Actually,

the scores for the f(g) experiment were close to those of

the operational assimilation with nonincremental DFI

[remember that the f(g) experiment is not cycled, so that

model errors cannot diverge to large ‘‘climatological’’

values]. Thus, the application of the nonincremental DFI

systematically leads to an increase of the MSLP bias along

with a slight increase in MSLP RMSE. Conversely, ap-

plication of no or incremental DFI results in a systematic

drop in the MSLP error bias, compared with the non-

incremental DFI. In terms of low-level wind direction,

subjective verification reveals that low-level wind vectors

FIG. 5. Scores of biases (thick curves) and RMSEs (thin curves)

of the 10-m wind speed with respect to the French surface station

network, for the operational ALADIN-France model (non-

incremental DFI, solid lines) and for the test model (incremental

DFI, dashed lines). Units are model lead times from 0 to 24 h,

every 3 h (horizontal axis), and m s21 (vertical axis). Note that lead

time 0 corresponds to the initialized analysis.
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tend to be more consistent with the isobaric contours in

the IDFI case.

Among all aspects, formulation of the filter, tuning of

the filter parameters, and tuning of the weighting factor R

in the range [1.2, 1.8] (see Fischer et al. 2005), the most

prominent impact came from changing the digital filter

formulation from nonincremental to incremental. The

retuning of the time span and stop-band edge period did

have a second-order impact in terms of scores. Other as-

pects noticed during the comparison of nonincremental

DFI versus IDFI were the systematic signal of a drop in

the scores of the MSLP bias and the more significant

similarity between the total IDFI increments and 3DVAR

analysis increments than with simple DFI. As a conse-

quence of the accumulated experience from Fischer et al.

(2005) and the present study, we have decided to intro-

duce IDFI inside the ALADIN-France 3DVAR assimi-

lation cycle and forecast production process, accepting the

deterioration of the low-level wind speed score in the 0–

3-h model states, and the drop observed in the MSLP bias.

The previous experiments and results were obtained with-

out assimilating some of the verifying data, namely the

10-m wind observations from the surface synoptic ob-

servation (SYNOP) and French mesoscale surface net-

works. In section 3, we illustrate the impacts of adding the

10-m wind observations into the 3DVAR assimilation.

3. Additional low-level wind information in the
analysis

We now investigate the impacts of the IDFI formu-

lation on data assimilation, that is to say, how IDFI can

modify the relative signal in an observation sensitivity

experiment (OSE) framework. We test the differential

impacts of 10-m winds in OSEs using either incremental

or nonincremental DFI. As we will show in this section,

the impacts of 10-m wind assimilation affect forecast

fields that are otherwise also impacted by the choice of

the filtering option. This experimental finding has moti-

vated our discussion in this section. Conversely, please

note that the assimilation of 10-m winds will not address

some shortcomings in the model’s performance de-

scribed in section 2b. To be specific, our intention is not

to correct the negative impacts of the changes to IDFI

in the scores of 10-m wind speed, by assimilating 10-m

wind observations. This negative aspect has to be ad-

dressed by improvements in the prognostic model. In

this section, we address the complex interpretation of

OSEs with respect to other aspects of the assimilation

system design, here initialization.

The 10-m wind observations (also referred as screen-

level winds) are very common data. However, their use

inside data assimilation systems is more unusual. There

are several reasons for this; the model equivalent for

these observations is of poor quality, because 10-m

winds strongly depend on surface parameters (orogra-

phy, roughness length) that are small-scale data that

vary greatly inside a typical grid mesh of the model. In

other words, 10-m wind observations give local infor-

mation. Another problem for their assimilation is the

fact that these observations are mainly representative

of planetary boundary layer (PBL) processes. Thus, de-

pending on the vertical resolution of the model, care

needs to be taken as concerns the vertical propagation of

the information brought by these observations into the

analysis: the 10-m level might not be representative of

a higher part of the PBL, and the further vertical prop-

agation of the associated signal into the free troposphere

can be even more detrimental. This aspect is of partic-

ular importance under stable conditions. On the other

hand, screen-level data might contain valuable infor-

mation about the low-level convergence field and, thus,

have a positive impact on the forecast of frontal or con-

vective situations.

Thus, the usage of these observations might be inap-

propriate for large-scale models. On the contrary, a small-

scale assimilation system could benefit from these data, for

instance, because it would have specific background error

covariances. Shorter-scale background error correlation

length scales will induce smaller-scale analysis increments,

or equivalently a shorter propagation of information as-

sociated with a local piece of observation. This aspect of

a regional assimilation system has for example been ob-

served when comparing typical background error covari-

ances sampled either from a large-scale coupling system

(ARPEGE) or from the coupled LAM system [in the case

of ALADIN-Morocco, see in Sadiki et al. (2000), or for

ALADIN-France, see in S̨tefănescu et al. (2006)]. Addi-

tionally, a higher-resolution model presumably should

better represent local fields, simply through the systematic

adaptation of the forecast fields (and, thus, the background

fields) to the surface forcings.

Within the context of the ALADIN-France model, a

preliminary work for 10-m wind assimilation was to make

a selection of stations that are in good agreement with our

model, that is to say, locations where the difference be-

tween the model and reality (e.g., in terms of orography) is

weak. As discussed above, our goal is to retain only ob-

servations that are representative of the model equivalent.

As a result of this elimination stage, about 2000 pieces of

individual data are provided to our ALADIN-France

3DVAR assimilation system. The experiments were run

over a period of 45 consecutive days starting on 1 March

2008. They all consist of a 3DVAR assimilation cycle with

a 6-h frequency, and include a production forecast once

a day at 0000 UTC. Results of four different experiments
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are presented: filtering with DFI and no 10-m winds as-

similated, DFI plus 10-m winds assimilated, IDFI filtering

with no 10-m winds in the assimilation, and IDFI plus 10-m

winds in the assimilation.

A first apparent impact of assimilating 10-m winds with

DFI is an improvement in the RMSE for MSLP, possibly

up to 18 h ahead (see the two thick curves in Fig. 6).

Beyond 18 h, the impact becomes much less marked and

difficult to analyze. According to a simple statistical test,

the differences are nonsignificant past 12 h. If now, one

compares the DFI versus IDFI curves, one notices that,

for this test period, the RMSE is slightly bigger for IDFI

than for DFI at the initial time, and only slightly lower for

the 6-h range (cf. the two dashed curves). The effects of

the net decrease of the MSLP bias with IDFI are also

again observed, and they are very similar to those dis-

played in Fig. 3 and discussed in section 2b (thus, the bias

curves are not shown for the OSEs in this section). The

impact of the assimilation of 10-m winds in the IDFI case

however appears very unclear. On the whole, the effects

seem positive at the initial time, and slightly negative, for

instance, for the 3- and 6-h ranges. Eventually, one is un-

able, in the IDFI case, to derive any firm conclusions on

the impacts of 10-m winds considering only the RMSE

score of the MSLP. We further notice that the positive

signal induced by the 10-m winds is of fairly small am-

plitude, and of quite similar magnitude, when compared

to the impacts due to the choice for the filtering. Indeed,

the changes to the biases and RMSEs of MSLP observed

in any of our experiments are of about a few tenths of

a hectopascal (Figs. 3 and 6). Therefore, the conclusions

of the OSE study actually would differ, if MSLP were the

sole field of concern and only one precise version of the

assimilation system would be evaluated (DFI or IDFI). In

terms of spatial structure or dynamical balances, it also

appeared to us to be fairly delicate to understand the

possible interactions between our filtering strategy and

the assimilation of 10-m winds. Assimilating the 10-m

winds may help us reduce the errors in the mass field at

the mesoscale, but the analyzed state can then contain

some level of imbalance because the observations also

would be to some extent representative of very local as-

pects not represented in the model (e.g., orography unseen

on the model grid, despite the data selection discussed

above).

With regard to the screen-level wind direction, there is

an impact in terms of proximity to the 10-m wind obser-

vations, as displayed in Fig. 7 (see the two thick curves for

the DFI case): the initial state with 10-m winds indeed has

a closer fit to these data than when 10-m winds are kept

out of the assimilation process. A similar impact can be

seen on 10-m wind speed (not shown). This closer fit still

is observed for the 3-h lead time, and then disappears

for 6 h and beyond. A similar impact, though less pro-

nounced in time, is retrieved when an IDFI filtering

strategy is retained (cf. the two thin curves in Fig. 7 now).

A simple statistical test on the differences of RMSE con-

firms that the impacts of assimilating 10-m winds on 10-m

wind RMSEs is only significant for the 0- and 3-h ranges, in

both the DFI and IDFI cases. For longer forecast ranges,

model errors for 10-m winds rapidly overcome the gain in

terms of wind initialization (we refer to our discussion in

section 2b).

As a conclusion to this section, the impacts of 10-m

winds in the assimilation system are, as expected, to

bring the initial state and the very short-term forecasts

closer to the 10-m wind observations. The impacts are,

however, fairly unclear when MSLP is considered, with

any tentative conclusion depending on the assimilation

system design. The latter finding points to some general

FIG. 6. RMS of the differences between experiment and obser-

vations for MSLP, computed every 3 h (see graphics legend for

details about the experiments).

FIG. 7. RMS of differences between experiment and observa-

tions for 10-m wind directions, computed every 3 h (see graphics

legend for details about the experiments).
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criticisms raised against applying any filtering inside

a data assimilation procedure. Indeed, any filter will, to

some extent, wipe out part of the fit to the observations

or more generally the statistical properties of the un-

filtered analysis.

4. Conclusions

In section 2a, we have presented examples of inertia–

gravity waves resulting from initial state imbalances:

some are caused by the analysis increment, others are due

to lateral boundary condition mismatches. For the lat-

ter waves, an appropriate choice of spatially consistent

boundary fields, and, possibly, the specifications of bal-

anced lateral boundary conditions, can reduce the pattern

of spinup behavior. Considering the ALADIN-France re-

gional forecast model, we have derived from these findings

tuned parameters for a digital filtering initialization. Fur-

thermore, we have discussed and tested an incremental

formulation of the digital filter. We refer the reader to

section 2b for a historical overview of the uses of in-

cremental strategies for initial state filtering in NWP.

The two most noticeable impacts of moving from a

nonincremental to an incremental DFI in the ALADIN-

France system were found to be the following:

d A net decrease of the mean sea level pressure bias (with

respect to observations) was shown. This systematic

difference of MSLP bias is at least partially linked with

the intrinsic biased formulation of our DFI. Indeed, the

filtering procedure consists of a succession of adiabatic

and diabatic model integrations, a situation that is known

to introduce a bias between the filtered state and the

original state (see the appendix).
d Some significant modifications to the short-term scores

with respect to observations were discovered. In par-

ticular, short-term scores with respect to 10-m wind

observations were modified, with IDFI having a posi-

tive impact on the score for wind direction but a nega-

tive one for wind intensity. The former impact resulted

in wind vectors being subjectively more consistent with

the MSLP field, while the latter impact eventually was

accepted as a ‘‘necessary’’ drawback when switching to

IDFI.

In section 3, we discussed the impacts of DFI and IDFI

on the results and evaluations of OSE studies. We used

the additional assimilation of 10-m wind observations

from the French high-density surface network as an

example. The results mostly show a similar effect on the

scores of the extra assimilated field itself, namely a re-

duction in the 10-m wind RMSEs in both the DFI and

IDFI versions of the assimilation system. These results

are consistent with basic data assimilation expectations.

For MSLP, however, the evaluation of the OSE results

remains very open, with an apparent positive impact in

the nonincremental DFI case, and no clear signal at all

with IDFI. This finding points to the sometimes delicate

interpretation of scores in OSEs, when the impacts from

observations are of fairly small amplitude and may be

comparable to the impacts of some other modifications

in the assimilation system. One might consider that the

positive impacts of assimilating 10-m winds with the

nonincremental filtering formulation, mostly visible on

MSLP RMSE, should be an incentive to combine the

simple DFI with the assimilation of 10-m winds. How-

ever, we then would obtain again other drawbacks with

nonincremental DFI, like the MSLP bias signal and the

filtering of rapidly evolving features present in the first

guess (and presumably of valuable interest). Adopting

an opposite view, removing any type of filtering would

totally eliminate spurious interactions of the initializa-

tion step with OSE sensitivities. However, as discussed

above, such removal is not suitable since it opens the

door to various types of spinup behavior patterns that

will in turn hamper the evaluation of the OSE experi-

mentation. Eventually, while we decided to stick to the

choice of IDFI in the ALADIN-France 3DVAR, we would

not claim that the present study is a benchmark proof that

IDFI is superior to DFI in any experimental context. We do

claim that some filtering is needed in our system, and that it

can in turn alter the interpretation of OSE studies when the

sensitivities are fairly small.

For the longer-term perspectives, several issues can be

considered. Alternative lateral boundary condition for-

mulations, compared with Davies relaxation, might lead

to very different patterns of behavior along the lateral

borders of the LAM. With the forecast model design of

the ALADIN-France type in mind, some work already

has been undertaken within a simplified framework [e.g.,

Termonia and Voitus (2008); Voitus et al. (2009), which

have shown the fair difficulty of developing and ‘‘out-

performing’’ Davies relaxation]. As discussed earlier, some

spinup waves possibly could be removed or decreased by

specifying balanced LBC fields. The exact, detailed char-

acteristics of spinup waves also depend on the overall

model specifications and properties. Changes in model

dynamics (advection scheme, diffusion, bottom- or top-

boundary conditions) or physics may alter the amplitude

and propagation of inertia–gravity waves. Therefore,

within the context of either a research or an operational

model, we advise a regular check of the spinup properties

using some basic experimental settings in the spirit of our

study (e.g., computing a reference, presumably a spinup-

free forecast, from a previously forecast state with which

to compare any sensitivity experiment). Changes in the

model also may affect the interpretation of model scores,
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since model errors may have changed. For these studies,

we stress the usefulness to carefully identifying and de-

scribing existing spinup waves so as to optimally tune the

filter parameters.

In the specific case of a cycled data assimilation sys-

tem, the fact that the background state for the analysis is

a previous forecast should possibly allow for no or very

little filtering. This conjecture does not, to this point,

hold in the ALADIN-France 3DVAR. In a 4DVAR

system, the removal of DFI or IDFI, while possibly using

a DFI-formulated penalty function inside the minimi-

zation problem (Jc-DFI), may lead to a non- or only

weakly filtered system.

In dynamical adaptation mode (see section 1), our

experience with various versions of the ALADIN model

indicates that some filtering is mandatory. Filtering then

is of the nonincremental DFI type. One reason for this

need is the imbalances of the interpolated fields when

going from the coupling to the coupled model grid. As

long as the resulting spinup problems appear as fairly

well-defined waves in the temporal spectrum, with a con-

centration in the high frequencies, properly tuned DFI

will almost completely remove these waves. However, by

doing so, DFI also would remove possible high-frequency

meteorological signals and, thus, potentially deteriorate

the short-term forecast on those aspects. Termonia (2008)

has analyzed this problem by identifying fast propagating

signals with a Doppler effect and introduced a scale-

selective DFI that filters some high frequencies while

preserving large-scale rapid modes. To achieve this mod-

ified behavior, Termonia formulates DFI in space–time

frequency space, and the cutoff parameter is defined as a

phase speed (as opposed to a time frequency in the clas-

sical digital filter). This scale-selective formulation is not

specific to the dynamical adaptation context and may be

applied and tested in a data assimilation system.
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APPENDIX

Usual Formulation of the Nonrecursive Digital Filter
within an ALADIN Context

The problem with initialization is in providing the nu-

merical forecast model with a filtered state, valid at the

initial time and expressed in terms of model prognostic

fields and discretization grid. Within the context of nu-

merical filtering, we then look for nonrecursive filters that

require both past and future model states:

x
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5 �
1N

n5�N
h

n
x

n
, (A1)

where n stands for any model time step, N is the total

span of the filter (expressed in model time steps), and xn

is any model state (and one time step propagates the

model solution from xn to xn11, for instance). Note that

the digital filter formulation is expressed here as a con-

volution with time, and thus it is equivalent to a simple

multiplication of the time Fourier transform of the model

solution X by the response function of the filter H:

H(v) 3 X(v), where v stands for frequency.

Digital filters in ALADIN have been introduced fol-

lowing Lynch (1997) and Lynch et al. (1997). The usual

choice then is the Dolph-Chebyshev filter:
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where Tn(�) is the Chebyshev polynomial of order n, Dt is

the time step, vs 5 2p/ts with ts standing for the stop-

band edge period of the filter, v 5 2p/t, and t is time. In

practice, the following guidelines have been retained for

applications in ALADIN (Lynch et al. 1997):

d Within the stop-band edge period [0, ts], the response

function has a maximum deviation from zero of about

r 5 0.14 for ts 5 3 h and a filter time span of T 5 2NDt 5

2.5 h. The efficiency of the filter is increased when the

time span is increased, for instance, r 5 0.01 when T 5

5 h. The term ripple ratio is also used for r.
d The efficiency of the filter can also be increased by

applying the filter several times. For two successive

filterings, r 5 0.02, keeping T 5 2.5 h. A drawback here

is that frequencies lower than but close to vs also will be

more filtered when applying the filter twice than when

used only once.
d In order to obtain a filtered state that will remain

‘‘close’’ to the original analysis (to be filtered), the above

filter is applied twice in the following sequence: first, run

the adiabatic model ‘‘backward’’ in time from t 5 0 to

t 5 22T, and apply the filter while integrating. An

adiabatically filtered state is thus obtained for t 5 2T.

From this state, run the full (including physics) model

forward in time until t 5 1T and filter while integrating.

The final result is a doubly filtered state valid at t 5 0.
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d The cost of the digital filter is about the cost of one

adiabatic 2T forecast, plus one full model 2T forecast.

This cost might be nonnegligible for a very high-

resolution model, using sophisticated microphysics for

instance.
d The fact that the backward integration involves the

adiabatic model (with only numerical horizontal dif-

fusion turned on) implies that a bias is generated in the

final filtered state, with respect to the original analysis

state.
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