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ABSTRACT

The goal of this study is to improve an ensemble-based estimation for forecast sensitivity to observations
that is straightforward to apply using existing products of any ensemble data assimilation system. Because of
limited ensemble sizes compared to the large degrees of freedom in typical models, it is necessary to apply
localization techniques to obtain accurate estimates. Fixed localization techniques do not guarantee accurate
impact estimates, because as forecast time increases the error correlation structures evolve with the ßow.
Here a dynamical localization method is applied to improve the observation impact estimate. The authors
employ a Monte Carlo ÔÔgroup ÞlterÕÕ technique to limit the effects of sampling error viaregression conÞdence
factor (RCF). Experiments make use of the local ensemble transform Kalman Þlter (LETKF) with a simple
two-layer primitive equation model and simulated observations. Results show that the shape, location, time
dependency, and variable dependency of RCF localization functions are consistent with underlying dy-
namical processes of the model. Application of RCF localization to ensemble-estimated impact showed
marked improvement especially for longer forecasts and at midlatitudes, when systematically veriÞed against
actual impact in RMSE and skill scores. The impact estimates near the equator were not as effective because
of large discrepancies between the RCF function and the localization used at assimilation time. These latter
results indicate that there exists an inherent relationship between the localization applied during the as-
similation time and the proper localization choice for observation impact estimates. Application of RCF for
automatically tuned localization is introduced and tested for a single observation experiment.

1. Introduction

Data assimilation of observations in both time and
space improves a numerical weather prediction (NWP)
forecast, in an average sense. However, it is important
to determine the value added to a forecast from a spe-
ciÞc subset of observations. In this way, we can in-
vestigate by instrument type, observation type, and
location, which observations are the most impactful
on a forecast. Additionally, we can avoid using obser-
vations that have negative impacts on a forecast. Eval-
uating the usefulness of observations is particularly
important for operational NWP centers that operate
under limited budgets and need to weigh the costs and
beneÞts of adding more observations to an already large
observational dataset.

There are a few basic approaches to quantifying the
impact that assimilated observations have on a fore-
cast. The Þrst is the straightforward data-denial
method, where parallel sets of analysis and forecast
experiments are conductedwith a ÔÔcontrolÕÕ experi-
ment assimilating all observations and experiments
withholding subsets of observations (e.g.,Zapotocny
et al. 2002, 2007; Benjamin et al. 2010; Kutty and Wang
2015, manuscript submitted toAdv. Meteor.). This ap-
proach is popular; however, it is computationally expen-
sive because of the number of experiments required. A
second approach is an adjoint-based approach, Þrst
explored by Langland and Baker (2004). Different
from data denial, this method can provide observation
impact estimates for all observations simultaneously,
without the need for separate denial experiments. The
adjoint method has been applied successfully as an
important diagnostic tool (e.g., Cardinali 2009;
Langland et al. 2009; Gelaro et al. 2010; Weissmann
et al. 2012; Hamill et al. 2013). However, adjoints are
generally difÞcult to create, and because of the tangent
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linear assumption their application is limited to shorter
forecast lengths.

A third approach to evaluating observation impact on a
forecast is the ensemble-based method. An approach
analogous to the adjoint method of Langland and Baker
(2004) was proposed byLiu and Kalnay (2008) with a
minor correction in Li et al. (2010). Kunii et al. (2012)
successfully applied their method by evaluating the im-
pact of real observations in a forecast of Typhoon
Sinlaku, using the Weather Research and Forecasting
(WRF) Model together with the local ensemble trans-
form Kalman Þlter (LETKF; Hunt et al. 2007). Kalnay
et al. (2012) derived a simpler formulation that makes
fewer approximations; it is more general and computa-
tionally efÞcient because it relies on readily available
ensemble Kalman Þlter (EnKF) products and can be used
with any deterministic EnKF method. Ota et al. (2013)
successfully applied theKalnay et al. (2012) formulation
to the National Centers for Environmental Prediction
(NCEP) Global Forecast System EnKF (GFS/EnKF;
Whitaker et al. 2008), which is now part of the GFS hy-
brid data assimilation system (Wang et al. 2013).

The Kalnay et al. (2012) observation impact metric is
appealing because ensemble perturbations take the place
of the adjoint model in estimating sensitivities. However as
with any ensemble method, it suffers from sampling error,
which occurs when the number of ensemble members is
small compared to the degrees of freedom in a model and
observing systemÑpredominantly the case in ensemble
NWP. Sampling error results in spurious correlations and
can lead to Þlter divergence in deterministic EnKF as-
similation. Houtekamer and Mitchell (1998) showed that
the effects of sampling error can be suppressed by ex-
cluding distant observations from inßuencing the analysis
at a given grid point. They experimented Þltering
covariance estimates using a distance-dependent correla-
tion function, referred to as covariance localization
(Houtekamer and Mitchell 2001). Since then, much re-
search has been done in developing localization methods
to improve EnKF analyses using limited ensembles (e.g.,
Hamill et al. 2001; Houtekamer and Mitchell 2005;
Anderson 2007; Kepert 2011; Anderson 2012; Anderson
and Lei 2013; Holland and Wang 2013).

In many cases, localizationmay be nontrivial, such as the
case for applying localization to observations with complex
forward operators (e.g., radar, satellite observations), or
when localizing the impact of observations on variables
not directly linked to the observations (e.g., localizing the
impact of a temperature observation on the analysis of
wind). Several adaptive localization methods have been
developed to account for these issues.Anderson (2007)
employed a Monte Carlo statistical method known as the
group Þlter (GF) for evaluating sampling error using

groups of ensemble members and calculating a weighting
coefÞcient that minimizes root-mean-square (RMS) dif-
ferences between group regression coefÞcients. Studies
such as Chen and Oliver (2010), Bishop and Hodyss
(2009a,b), and Anderson (2012) compute localization
based on correlations between an observation and a state
variable. More recently, Anderson and Lei (2013) de-
veloped an empirical localization function (ELF), which
computes localizations from the output of an observing
system simulation experiment in sets of pairs of observa-
tion and state variables binned by distance. Lei and
Anderson (2014)compared the ELF to the GF method of
Anderson (2007). In an ideal simulation where the true
covariances are known, the ELF and GF show similar
results, especially for larger ensembles. The ELF shows
beneÞts over the GF in cases where there are biases in the
spurious covariances and in the ability to automatically
inßate covariances. However, extension of the ELF to real
cases poses challenges, particularly because the ELF relies
on the knowledge of a true state (Anderson and Lei 2013).

The problem of sampling error caused by small en-
sembles is a more serious issue for the ensemble-based
observation impact metric. Localization can be applied to
alleviate sampling error; however, a time-forecast com-
ponent is added to the localization problem, such that a
straightforward application of Þxed localization tech-
niques would not guarantee accurate impact estimates.
To partially address the issue,Kalnay et al. (2012) pro-
posed two methods of moving localization: 1) using a
model-forecast nonlinear incremental evolution of the
localization function, and 2) advecting the localization
center using the climatological group velocity of domi-
nant wavenumbers.Ota et al. (2013) applied a similar
advected localization method, using the average forecast
horizontal wind at each model vertical level. Both studies
showed improvement relative to Þxed GC localization;
however, possible limitations exist with each method. The
nonlinear evolution of the localization is computationally
prohibitive for real NWP systems because a forecast is
required for every observation. The advection methods
are simpler to implement; however, they assume that the
optimal localization is tied to the mean ßow of the model
and does not change in magnitude, size, or shape.

This study explores a dynamic localization method for
ensemble-based observation impact estimate. There are
two main purposes of this study. The Þrst is to simply
learn what a ÔÔproperÕÕ localization function looks like
for the impact estimate, and how it evolves with in-
creasing forecast time.Kalnay et al. (2012)andOta et al.
(2013)only considered moving the localization function,
but it is possible that the shape and magnitude also need
to evolve with forecast component, something that
an adaptive method will be able to automatically
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determine. The second purpose is to test the potential
effectiveness of an adaptive method on the observation
impact metric. Adaptive local izations generally have been
shown to provide more accurate assimilations at increased
computational cost relative to Þxed localization; in this
study it is explored whether the application of such adap-
tive methods initially developed for assimilation can be
extended and applied successfully to the ensemble impact
metric. Brießy, the dynamic localization function used here
is obtained from conÞdence factors derived using groups of
ensembles, Þrst proposed for EnKF byAnderson (2007).
The focus of this study is to extend the GF concept in the
context of the observation impact estimate.

In section 2, the observation impact metric is described
along with the dynamic localization method, referred
throughout as regression conÞdence factor (RCF) local-
ization. Section 3describes the experiment setup. As an
initial test of the method on observation impact esti-
mates, an isentropic two-layer primitive equation model
(Zou et al. 1993) under the perfect-model assumption is
adopted. This model is coupled with the LETKF data
assimilation system followingHolland and Wang (2013).
The RCF calculation settings are also explained insection
3. The resulting RCF localization functions are shown and
applied in section 4 for both single-observation and full-
domain observation assimilation experiments. The accu-
racy of the ensemble observation impact estimate using
the dynamic localization is compared with that of using
Þxed GaspariÐCohn [GC; see Eq. (4.10) inGaspari and
Cohn (1999)] localization for different observation loca-
tions (tropical vs midlatitude), forecast length, and differ-
ing state variables. The goal of comparison to static GC is
to Þrst determine if the adaptive method is better for the
ensemble impact metric. More importantly, the GC func-
tion is used as a tool to provide a baseline for comparisons
with RCF localization experiments, to help provide con-
text for qualitative discussion. From this comparison, an
important relationship between localization used during
assimilation and for the impact estimate was discovered
and is discussed insection 4. Another potential use for
adaptive methods is in the ability to automatically tune GC
localization. This concept is introduced and tested in
section 4. A summary and discussion are given insection 5.

2. Methods

a. The observation impact metric

Following Kalnay et al. (2012), let xa
0 represent the en-

semble mean analysis andxtj0
f the deterministic forecast

launched from the mean analysis (subscript ÔÔtj0ÕÕcan be
read as ÔÔvalid at timet, initialized from analysis at time 0ÕÕ).
A cost function J is deÞned inLangland and Baker (2004)

to be the actual forecast error reduction (i.e., the difference
in squared error between two adjacent forecasts):

J 5 (eT
tj0etj0 2 eT

tj2 netj2 n) 5 (etj0 2 etj2 n)T(etj0 2 etj2 n) ,

(1)

where etj0 5 xtj0
f 2 xtr

t and etj2 n 5 xtj2 n
f 2 xtr

t are the errors
from forecasts initialized at time t 5 0 and t 5 2 n, re-
spectively. Here xtr

t is the truth valid at time t; in the
absence of the true state, a verifying analysis can be
used. The differences in forecast errorsetj0 and etj2 n are
due to the assimilation of observations at timet 5 0, so
(1) represents the impact of assimilating observations
on a forecast [see Fig. 1 inLangland and Baker (2004)].
When J is negative (positive), the magnitude of error in
etj0 is less (greater) than the magnitude of error inetj2 n,
which can be interpreted aspositive (negative) impact.

It is shown in Kalnay et al. (2012) that (1) can be re-
written in ensemble form as

J ’
1

k 2 1
dyT

0 R2 1HXa
0Xf T

tj0(etj0 1 etj2 n) , (2)

where dy0 5 y0 2 H(xb
0) is the observation innovation

vector [i.e., the difference between the observations,y0,
assimilated at time 0 and the mean background in-
terpolated to observation space by forward operatorH( �)].
The variable H is the linearized forward observation op-
erator, R is the observation error covariance matrix, k is
the ensemble size, andXa

0 and Xf
tj0 are m 3 k analysis and

forecast perturbation matrices, respectively (m 5 number
of model state variables,k 5 number of ensemble mem-
bers). Despite the use of the tangent linear model ap-
proximation to obtain (2), each column in Xf

tj0 can be
calculated using the full nonlinear model M( ), such
that the ith column is M[xa(i)

0 ] 2 M(xa
0). The expression in

(2) is appealing as it can be applied using available as-
similation products of any deterministic EnKF method.

As with any method involving the use of ensemble to
estimate covariances, covariance localization is needed
to suppress the effects of sampling error from too small
ensembles. The matrix product Ya

0Xf T

tj0 5 HXa
0Xf T

tj0 is the
ensemble estimate of model error covariance between
the analysis in observation space and forecast valid at
time t. Localization of (2) is applied to this p 3 m matrix
(p 5 number of observations). Denoting localization
matrix r I , the observation impact estimate modulated
by the localization function becomes

J ’
1

k 2 1
dyT

0 R2 1[r T
I +(Ya

0Xf T

tj0)]( etj0 1 etj2 n) , (3)

where the symbol ÔÔ+ÕÕ refers to the Schur product, an
element-by-element multiplication of two matrices of
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the same size. The localization matrixr I must be anm 3 p
matrix, meaning that every grid pointÐobservation pair
can have a unique localization weight. Since localization
in (3) is applied to Ya

0Xf T

tj0, in addition to spatial and
cross-variable components, a level of complexity is
added in the time-forecast component. In(3), there is no
requirement that r I has to be the same localization as
that used during EnKF assimilation r A . The choice of r I

should attempt to take the time-forecast component into
account, in addition to spatial and cross-variable
components.

b. The RCF method of computing localization for
observation impact estimate

The GF method of Anderson (2007) operates using
groups of ensembles to calculate regression sampling
errors in the ensembles. Assume thatg groups of k en-
sembles are available in an assimilation system. When
computing the linear regression between the state vari-
ables and observations, there areg samples of the re-
gression coefÞcientb. A weighting factor a is deÞned to
minimize the expected RMS differences between all
possible combinations of sampleb pairs. So,a is chosen
to minimize

�������������������������������������������

�
g

j5 1
�
g

i5 1,i6¼j
(ab i 2 bj)

2

vu
u
t . (4)

A simple derivation [see Anderson (2007)] leads to
the following expression for amin:

amin 5

" �

�
m

i5 1
bi

� 2�

�
m

i5 1
b2

i

#

2 1

g2 1
5

g2 Q2

(g2 1)Q2 1 g
, (5)

where Q is the ratio of the sample standard deviation to
the absolute value of the sample mean of the groupbs.
The optimal weighting factor amin is also known as the
RCF. A unique amin can be calculated for each
observationÐstate pair. The set of RCFs for a given ob-
servation and all state variables is called aregression
conÞdence envelopeand can be used directly as a lo-
calization function ( Anderson 2007).

In the hierarchical Þlter of Anderson (2007), the re-
gression coefÞcient b represents the regression be-
tween observationsy0 and state backgroundxb

0. Sob is
the covariance betweeny0 and xb

0 normalized by the
variance of y0. To apply this method to the ensemble
impact metric, a different regression is considered to be
between the analysis in observation space and the
forecast, such that for each observationl and state
variable j,

bl,j 5
(HXa

0Xf T

tj0)l,j

[HXa
0(HXa

0)T]l,l

. (6)

The use of the RCF method for the impact metric is
inherently limited by the linear regression approxima-
tion needed to compute the groupbs according to(6), so
there is an inherent limit to the forecast length at which
it can be successfully applied.

3. Experiment design

a. The assimilation and forecast system

To evaluate and explore methods to improve the
ensemble-based observation impact, experiments with a
simpliÞed primitive equation model and simulated ob-
servations were done. The dry, global, two-layer primi-
tive equation spectral model of Zou et al. (1993) was
chosen, which has been used in several studies of
perfect- and imperfect-model ensemble-based data as-
similation experiments (e.g., Wang et al. 2007, 2009;
Holland and Wang 2013). It is useful because of its low
computational demands allowing for many experiments
to be conducted. The model variables include two ver-
tical layers of vorticity, divergence, and layer thickness
coefÞcients. The layer thicknesses,Dp 1 and Dp 2, are
described in terms of p (i.e., the Exner function). The
model includes simple parameterization schemes for
radiative heating and surface drag, with zonal
wavenumber-2 terrain. A fourth-order RungeÐKutta
scheme is used for forward integration.

The model was run using the same parameters as in
Holland and Wang (2013). To isolate the impact of
sampling error, the experiments were conducted in a
perfect-model context. A model run with daily output
over thousands of days of integration at T31 resolution
served as the truth. An initial ensemble was generated
by a random draw of the truth states. The assimilation-
forecast cycles were run at the T31 resolution for 1000
cycles at 1 day (n 5 24 h) intervals because of the long
error doubling time of 3.78 days (Hamill and Whitaker
2005). The Þrst 100 cycles were discarded from the RCF
and impact calculations to allow the system to stabilize.
Observations in interface height (i.e., the height be-
tween layer 1 and layer 2) were generated from the truth
by adding errors drawn from a distribution with zero
mean and Þxed standard deviation of 250 m, as inWang
et al. (2007). There are 362 equally spaced observations
total. These observations were assimilated into the
LETKF following the settings of Holland and Wang
(2013) with multiplicative and additive inßation. The
GC localization was applied during assimilation with a
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cutoff radius of 8000 km, which was optimally tuned but,
more importantly, provided a stable forecast-assimilation
system for the full 1000 cycles.

b. Settings for impact estimate experiments using RCF

Figure 1 shows a ßowchart of RCF computations. An
initial set of ensembles is randomly split into g groups of
k ensembles each prior to assimilation. Cycled LETKF
analyses are done for each group ofk ensembles sepa-
rately. Following analysis, an ensemble forecast is run to
some valid time t. For each group, a regression co-
efÞcient b is then calculated according to (6), from
which RCF is calculated according to(5) and saved for
each assimilation cycle. Each grid pointÐobservation
pair has a unique RCF. Since the RCF from each cycle
is noisy because of a small number of groups used in the
calculation, particularly for locations far away from an
observation, the next step is to take the mean of the
RCFs across all cycles to dampen out those effects. This
results in a ÔÔlookup tableÕÕ of RCF functions for every
observation. There are up to 256 ensemble members
total, which are grouped randomly prior to assimilation.
Initial experiments tested the sensitivity of resulting
RCF functions with varying number of groups (2, 4, 8,

and 16) using 16-member groups, and varying the
number of ensembles per group (8, 16, 32, and 64) using
4 groups. For the subsequent impact experiments, RCF
functions were calculated usingg 5 4 groups of k 5 16
ensemble members each (64 ensemble members total)
and applied as localization functions for ensemble im-
pact estimates using a 16-member ensemble.

Impact experiments were conducted varying the
forecast valid time t from 0 to 4 days. At t 5 0, no
forecast is run so the method gives RCF functions for the
impact of the observations on the analysis. RCF func-
tions were calculated Þrst for model interface height,
zint, and then in terms of the state variables:Dp 1, Dp 2, u1,
u2, y1, andy2. RCF functions for the latter are considered
cross-variable impacts, which will serve to examine the
effects of using the new localization method to estimate
the impact of observations on unobserved variables.

Once the RCF functions were calculated, they were
applied directly to the impact metric in (3) using one of
the 16 ensemble group assimilations and compared with
ensemble estimates with no localization and using a
static GC localization. The results were validated
against theactual impact, which is the impact calculated
directly from (1) using the truth. Additionally, sets of

FIG . 1. Flowchart of RCF method. After an LETKF ensemble analysis, an ensemble forecast is run to some timet. Then the analysis and
forecast ensembles are randomly split into four groups, and for each groupb is calculated according to(6). The RCF is then computed
according to (4) for all observationÐstate pairs. This RCF envelope, unique for each analysis cycle, is fed into a running average over all the
analysis cycles. The mean RCF envelope then serves as the GF localization function for impact estimate experiments. For the experiments
in this study, the mean RCF function is calculated over a total of 900 cycles.
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single-observation experiments were conducted to bet-
ter understand the results qualitatively, to aid in viewing
speciÞcally the time- and cross-variable components of
the localization and the impact estimate.

4. Results

a. RCF localization

Prior to application of the dynamic RCF functions to
the ensemble impact metric, we Þrst examine the struc-
ture of the localization functions outputted from the
procedure described in Fig. 1. At the analysis time
(Fig. 2a), RCF appears to have a Gaussian-like shape to
it, though there are some differences such as narrow
peaks and heavier tails. The effect of averaging over 900
cycles has smoothed the functions, though some noisiness
still remains particularly in the tails of the distributions.
Increasing the number of ensemble members per group
increases the width of the RCF function, mostly greater
than 308 in longitude away from the observation. The
increased RCF width is because larger ensembles are less
prone to noise from spurious correlations until greater
distances from the observation. This result is consistent
with results of Anderson (2007, his Fig. 4), as well as
studies examining changes in optimal GC length scale
with changing ensemble size (e.g.,Hamill et al. 2001).

RCF functions for a 2-day forecast are shown in
Fig. 2b. The time-forecast dependency causes the main

signal to dampen and shift downstream from the ob-
servation location. The diminished magnitude suggests
less conÞdence in ensemble covariances at longer fore-
cast lead times. With increasing ensemble member size
per group, there is an increase in the strength of the RCF
function across all longitudes. Each ensemble size is able
to capture the same time-dependent shift away from the
observation and generally the same shape. The ensem-
ble size of 16 chosen for various impact experiments in
the following sections has a maximum signal of about
0.55 for the 2-day forecast, in contrast to the maximum
of 1.0 for the analysis RCF function in Fig. 2a.

Figure 3 examines the sensitivity of changing the
number of groups used in the RCF computation. The
differences in the number of groups results in small
differences in the RCF functions for both the analysis
and 2-day forecast. This insensitivity can be attributed to
the process of taking a long-term average of RCF
functions over all LETKF cycles. Interestingly, just two
groups would be sufÞcient in capturing the general
shape of the RCF function. The rest of the results con-
sider RCF functions computed from four groups of 16
ensemble members per group.

Each observation within the domain has a unique
RCF function, and because the method reveals dynam-
ical features of the model not all observations have a
Gaussian-like spatial correlation. The seven observa-
tions in Fig. 4 each show zonally stretched RCF distri-
butions, consistent with the predominantly zonal ßow of

FIG . 2. Zonal cross sections of RCF averaged over 900 cycles for model interface height of a midlatitude observation located at 608NÐ
158E. The curves represent mean RCF functions calculated usingg 5 4 groups, with differing numbers of ensemble members per group: 8,
16, 32, and 64. The vertical dashed line represents the longitudinal location of the observation. (a) RCF function for the analysis (forecast
t 5 0) and (b) RCF functions for a t 5 2-day ensemble forecast.
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the model. Midlatitude observations (observations 1, 2,
3, 6, and 7) tend to have a more Gaussian-like appear-
ance, though some have a triple-peaked structure (ob-
servations 1 and 6) associated with the strongest
westerly ßow. The distance between the peaks of about
408in longitude is likely a representation of underlying
Rossby waves. For example, for an observation placed
at a trough these additional peaks represent the adjacent
ridges associated with a trough. As observations get
closer to the tropics (e.g., observations 4 and 5), RCF
begins to take a different, sometimes complex shape,
including stretching eastward along the equator up-
stream of the main ßow.

RCF functions from Fig. 4 are valid for the analysis
time of model interface height. As illustrated in Fig. 5,
RCF functions also reveal the time-forecast and cross-
variable dynamics of the model. With increasing time
from analysis to 3-day forecast, the RCF function in
interface height (Figs. 5a,d,g) shifts downstream of the
observation, expands in area, and reduces in magnitude.
The shift in maximum amplitude is approximately 108
per day between analysis and 2-day forecast, which is
roughly 1000 km day2 1. This is consistent with results of
Torn and Hakim (2008) who found a 1000-km distance
in their composite sensitivity 24-h patterns over Wash-
ington State. In terms of layer two zonal wind u2

(Fig. 5b) and meridional wind y2 (Fig. 5c), the RCF
functions exhibit dual peak dynamical structures. These
RCF functions together mimic the shape of geostrophic
adjustment correlations (e.g., Schlatter 1975) for both
analysis and 1-day forecast. As forecast time increases to

2 days and longer, the RCF functions for cross variables
smooth out and lose deÞnition in dynamical linkage,
though they still show the time-forecast dependency. It
is possible that the small 16-member ensemble is unable
to resolve cross-variable correlations beyond 2 days
because of the weaker correlations, or other dynamical
processes beyond advection occur past the 2-day lead
time forecast.

b. Single-observation impact experiment

A single-observation experiment was Þrst conducted
to examine the qualitative results of impact estimates
with differing localizations, compared to the actual
forecast error reduction. For the experiment, a 1-day
forecast of one of the all-observation LETKF analyses
was chosen as the background for a single-observation
analysis. This single interface height observation has an
observation innovation of 1 500 m. Deterministic fore-
casts initialized from the ensemble mean analysis and
background were run to calculate actual impact ac-
cording to (1). Ensemble forecasts of the single-
observation analysis were run to calculate the
ensemble-estimated impact according to(3), with dif-
fering choices of localization. Two localizations were
tested: the same optimal GC localization (8000 km) as
was used during assimilation, and the dynamic RCF
functions shown in Fig. 5.

Results for one single-observation experiment are
shown in Fig. 6 for analysis, 2-day, and 4-day impact of
model interface height. Note again that negative values
(Þlled blue) imply positive impact. The actual impact at

FIG . 3. As in Fig. 2, but for RCF functions calculated with varying numbers of groups, with 16 ensemble members per group.
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analysis (Fig. 6a) follows ßow-dependent structures of
the background. Initially, three main centers are present
at magnitudes above 500 m2. The ensemble estimates
(Figs. 6b,c) are qualitatively similar, as both localiza-
tions capture these three main centers well.

The actual impact on 2- and 4-day forecasts (Figs. 6e,i)
shows many more impact centers due to forecast error
growth. These impact areas propagate along the main
westerly waves predominantly located within the tightly
packed interface height contours. Actual impact centers
span a much greater zonal distance and can be seen at
distances exceeding 8000 km from the observation. The
ensemble impact estimate using static GC localization
(Figs. 6f,j) cannot capture these far away impact centers
because of the limited length scale. Moreover, the
magnitude of the estimated impacts of areas closest to
the observation is much stronger than those shown in the
actual impact, indicating the GC localization weight is
too large there. Conversely, the largest area of actual
positive impact in the analysis (608N, 758W) has now
advected 308and 758eastward near the edge of the GC
localization function in the 2- and 4-day forecasts,

respectively, where the localization weight is nearly
zero. As a result, the GC localized impact value is
underestimated compared to actual impact. These
effects combined results in a global RMSE that is
about the same or greater than the RMS of the actual
impact Þelds. The ensemble impact using dynamic
RCF localization ( Figs. 6g,k) shows improved esti-
mates, and thus, is able to match the magnitudes of
each center more closely with the actual error re-
duction. The localization functions spans a much
greater distance than the GC function, with centers
shifted downstream of the observation. Overall, the
RMSE is much lower at less than half of global RMS of
the actual impact.

This one case demonstrates both the qualitative na-
ture of actual impact varying with forecast length, and
how the RCF can outperform static GC localization and
lead to improved estimates from the evolving RCF
functions. In the next section, veriÞcation of the all-
observation experiment is discussed to see if the RCF
localization shows added overall skill in the case of ho-
mogeneous observation coverage.

FIG . 4. Examples of RCF functions for seven differing interface height observations (locations marked by white dots), calculated for
analysis time (t 5 0) of model interface height. The wind vectors are a 900-cycle average of ensemble mean layer-2 wind. For plotting
purposes, each observationÕs RCF function is displayed only for values. 0.3.
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c. All-observation impact experiments

In all-observation impact experiments, each LETKF
analysis ensemble was run for forecast lengths varied
between 0 and 4 days. Actual error reduction was cal-
culated using deterministic forecasts initialized from the
analysis mean and background Þelds. Ensemble-
estimated impact was calculated by summing at each
gridpoint contribution of the impact from all observa-
tions, with varying localizations applied. Figure 7 shows
the globally averaged skill score (SS) of the time-mean
RMSE of ensemble impact estimations veriÞed against
actual forecast error reduction. The quantity SS is de-
Þned as

SS5 12
RMSE

RMSEref

5 12

"

�
N

k5 1
(De2

actual,k 2 D e2
ens est,k)2

#1/2

"

�
N

k5 1
(De2

actual,k)2

#1/2 , (7)

where N is the number of cycles in time considered (900
for this study). This SS is equivalent to that used in
Kalnay et al. (2012) where the reference RMSE is
equivalent to the time-mean RMS values of the actual
forecast error reduction.

Figure 7 shows the time-mean SS averaged over the
globe. With increasing forecast time, for observation
impact estimation of zint, differences in SS emerge be-
tween GC and RCF localizations, with RCF localization
showing increasingly higher skill. While the GC experi-
ment approaches the no-skill line (0.0) by day 4, the RCF
experiment has a skill around 0.4, still higher than the skill
of the GC experiment at day 2. At the analysis time, the
SS of the Þxed GC localization experiment is nearly the
same as the RCF localization in impact estimates of
model interface height. In terms of indirectly observed
layer-2 meridional wind (Fig. 7b), at analysis time the
RCF experiment shows slightly lower skill than the GC
experiment, but with increasing forecast time the RCF
experiment becomes increasingly skillful relative to the
GC experiment. The slight degradation in skill at the
analysis time can be attributed to the inconsistency be-
tween the localization used in data assimilation and the

FIG . 5. Contour plots of RCF localization functions for one interface height observation valid at various forecast lengths: (a)Ð(c) for
analysis time, t 5 0; (d)Ð(f) for t 5 1-day forecast; (g)Ð(i) for t 5 2-day forecast; and (j)Ð(l) for t 5 3-day forecast. (left to right) RCF
envelopes for model interface height, and the envelopes for cross-variables zonal and meridional layer-2 wind,ug2 and yg2, respectively.
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