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ABSTRACT

The Rapid Refresh (RAP), an hourly updated assimilation and model forecast system, replaced the Rapid

Update Cycle (RUC) as an operational regional analysis and forecast system among the suite of models at the

NOAA/National Centers for Environmental Prediction (NCEP) in 2012. The need for an effective hourly

updated assimilation and modeling system for the United States for situational awareness and related decision-

making has continued to increase for various applications including aviation (and transportation in general),

severe weather, and energy. The RAP is distinct from the previous RUC in three primary aspects: a larger

geographical domain (covering North America), use of the community-based Advanced Research version of

the Weather Research and Forecasting (WRF) Model (ARW) replacing the RUC forecast model, and use of

the Gridpoint Statistical Interpolation analysis system (GSI) instead of the RUC three-dimensional variational

data assimilation (3DVar). As part of the RAP development, modifications have been made to the community

ARW model (especially in model physics) and GSI assimilation systems, some based on previous model and

assimilation design innovations developed initially with theRUC.Upper-air comparison is included for forecast

verification against both rawinsondes and aircraft reports, the latter allowing hourly verification. In general, the

RAP produces superior forecasts to those from the RUC, and its skill has continued to increase from 2012 up to

RAPversion 3 as of 2015. In addition, theRAP can improve onpersistence forecasts for the 1–3-h forecast range

for surface, upper-air, and ceiling forecasts.

1. Introduction

In this paper, we describe the latest version of

the Rapid Refresh assimilation/model system, which

provides a critical component of NOAA weather

guidance focusing on situational awareness and short-

range forecasting.

Environmental situational awareness can be defined

[e.g., Jeannot (2000) for air-traffic management] as

having a synthesis of all available observations describing

current environmental conditions to allow improved

decision-making. Weather information is a key compo-

nent of environmental situational awareness, and an

analysis of current weather conditions and a short-range

weather forecast are both critical components. The time

scales for decision-making lead time and changes to

environmental conditions both define the time period

over which the term ‘‘situational awareness’’ may be

applied. Broadly, improved situational awareness based

on the latest observations improves the outcome and

reduces risks for subsequent decisions.

Weather situational awareness for aviation and se-

vere weather watches and warnings are obvious short-

range forecast needs (defined here as from a few minutes
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up to approximately 12-h duration), but other sectors

such as hydrology and energy also have weather

situational-awareness requirements. Each of these sec-

tors requires further improvements in frequently upda-

ted, short-range NWP forecasts especially for rapidly

changing weather conditions. Increasing use of auto-

mated decision-making algorithms in each of these sec-

tors allows specific application of such frequently

refreshed forecast data (Mass 2012).

In response to these requirements, in 1998, the U.S.

National Oceanic and Atmospheric Administration

(NOAA) introduced an operational hourly updated

numerical weather prediction system [Rapid Update

Cycle (RUC); Benjamin et al. (2004a,c)], the first

hourly updated NWP system implemented at any op-

erational center in the world. The hourly assimilation

frequency, with the latest hourly observations used in

the RUC, allowed it to serve as an initial U.S. weather

situational-awareness model (Table 1).

With the growing need for increased accuracy in

frequently updated, short-range weather guidance, a

next-generation hourly updated assimilation and

model forecast cycle, the Rapid Refresh (RAP), was

developed and introduced into the operational model

suite at the NOAA/National Centers for Environ-

mental Prediction (NCEP) in May 2012, replacing

TABLE 1. History of rapidly updated model and assimilation systems at NCEP as of late 2015.

Implementation (month/year)
Model and

assimilation system

Horizontal grid

spacing (km)

No. of

vertical levels

Assimilation

frequency (h) NCEP ESRL

Geographical

domain

RUC1 60 25 3 1994 CONUS

RUC2 40 40 1 4/1998 CONUS

RUC20 20 50 1 2/2002 CONUS

RUC13 13 50 1 5/2005 CONUS

Rapid Refresh 13 51 1 5/2012 2010 North America

Rapid Refresh v2 13 51 1 2/2014 1/2013 North America

Rapid Refresh v3 13 51 1 Estimated spring 2016 1/2015 North America

HRRR 3 51 1 9/2014 2010 CONUS

HRRR v2 3 51 1 Estimated spring 2016 4/2015 CONUS

FIG. 1. Horizontal domains for the HRRR (green), RUC (red), RAPv1 andRAPv2 (blue), and

expanded domain of the RAPv3 (white).
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the previous RUC (Table 1). A second version of

the RAP with further advances in data assimilation

and model design was implemented at NOAA/NCEP

in February 2014, and a third version is planned for

early 2016. The RAP differs from the RUC primarily

in three aspects: model component, assimilation com-

ponent, and horizontal domain. Moreover, the RAP

was designed to use community-based modeling and

assimilation components as its foundation while in-

corporating unique assimilation and modeling tech-

niques found to be beneficial specifically for short-range

forecasts.

For data assimilation, the RAP uses the NOAA

Gridpoint Statistical Interpolation analysis system

(GSI) (Wu et al. 2002; Whitaker et al. 2008; Kleist et al.

2009) including RAP-specific enhancements designed

for hourly assimilation of radar reflectivity and obser-

vations related to the boundary layer, consistent with

surface, cloud, and precipitation processes (section 2).

The RAP also uses a version of the Weather Research

and Forecasting (WRF) community regional model

(Skamarock et al. 2008; Klemp et al. 2008) capable of

nonhydrostatic applications (section 3). Finally, the

Rapid Refresh uses the NCEPUnified Post Processor

(UPP), also used for other NCEP NWP models, with

some new diagnostics added for precipitation type

based on fallout of liquid and ice hydrometeor

species explicitly predicted in RAP and High-

Resolution Rapid Refresh (HRRR) (e.g., Benjamin

et al. 2016). The horizontal domain for the RAP

(versions 1 and 2) is about 3.5 times larger than that

used for the RUC, covering Alaska, the Caribbean

Sea, and virtually all of North America (Fig. 1). The

horizontal domain has been expanded even further in

version 3 of the RAP (RAPv3; Fig. 1) so that it

matches the domain of the North American Meso-

scale Forecast System (NAM; Janjić and Gall 2012).

With this domain change from that of the RUC, the

Rapid Refresh is able to provide hourly updated

NWP guidance out to 18 h and situational-awareness

analyses over all of North America.

A convection-allowing, 3-km hourly updated model

over the lower 48 United States also including assimila-

tion of radar reflectivity, HRRR (Smith et al. 2008) is

nested within the RAP domain and strongly dependent

upon RAP data assimilation. The 3-km HRRR uses the

same physical parameterization configuration described

here for the RAP except for no parameterization of deep

convection. A history of the NOAA hourly updated

models—the RUC, RAP, and HRRR and their im-

plementations at NCEP since 1994—is shown in Table 1.

A summary of model and assimilation differences be-

tween the RUC and RAP is provided in Table 2, and
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these differences are described in more detail in the fol-

lowing sections.

Each modification to the model or assimilation during

NWP system development begins as a scientific hypoth-

esis about how the model represents the actual atmo-

sphere or how observations can be used to correct the

three-dimensional multivariate model forecast error.

Accordingly, the overall improvements to NWP models

(like the RAP) represent the accumulated effect of many

modifications. The individual RAP modifications de-

scribed herewere anoutcome from individual hypotheses

that were accepted or rejected based on case study testing

and longer-period retrospective or parallel real-time

testing, and the overall RAP improvements presented

in this paper reflect integrated effects from these ad-

vances in the RAP since its inception in 2012.

2. GSI and DFI components for RAP data
assimilation

TheRAP uses theGSI, a data assimilation system (Wu

et al. 2002; Whitaker et al. 2008; Kleist et al. 2009) with

variational, ensemble, and hybrid ensemble-variational

(used for RAP) options. The GSI is applied at NOAA/

NCEP for both global (Global Forecast System; NCEP

2003) and regional (RAP, NAM, HRRR) applica-

tions. Use of the GSI for the RAP takes advantage of

community GSI development andmakesRAP-developed

enhancements available for other NOAA models and the

general research community.

The RAP application of GSI is unique in that it is

within a 1-h assimilation cycle. The effectiveness of

the RAP 1-h data assimilation cycle to produce suffi-

ciently noise-free 1-h forecasts depends on the com-

bination of sufficient multivariate balance from GSI

and application of a digital-filter initialization [(DFI);

application to RAP described by Peckham et al.

(2016)]. The prognostic and analyzed variables in the

RAP are listed in Table 3.

The background field of RAP data assimilation is the

previous 1-hRAP forecast, as shown in Fig. 2, along with

other components of the RAP assimilation cycle. In-

formation from the larger-scale global GFS model is

introduced every 12 h by a partial cycling technique to

provide better longwave representation not available

via regional data assimilation unable to use the full

global set of observations. (Full regional cycling over the

large RAP domain gave decidedly poorer results in an

early experiment—results not shown.) In this partial

cycling, a parallel RAP 1-h cycle is started at 0300 and

TABLE 3. Analysis variables in RAPv3 and analysis method used for each variable.

Updated variables in GSI/RAP assimilation Analysis method

Atmospheric variables (3D)

P—pressure GSI hybrid ensemble–variational analysis

Ty—virtual temperature GSI hybrid ensemble–variational analysis

u, y—horizontal wind components GSI hybrid ensemble–variational analysis

qy—water-vapor mixing ratio GSI hybrid ensemble–variational analysis

q*—hydrometeor mixing ratios

(cloud water, ice, rainwater, snow, graupel)

Nonvariational hydrometeor analysis with

GOES cloud-top data, METAR cloud data, radar reflectivity

N*—number concentrations for

cloud droplets, rain drops, and ice particles

Adjustment based on q* modifications

Land surface variables

Tsoil—soil temperature (3D) Adjustment using near-surface temperature and moisture analysis increment

h—volumetric soil moisture (3D) Same as above

SWE—snow water equivalent Same as above

Snow temperature (over two levels) Same as above

Canopy water Cycled but not modified in analysis

FIG. 2. Flow diagram for the Rapid Refresh. The maroon com-

ponents are for the RAP model using WRF and DFI. Brown-like

tilted boxes indicate observation types [reflectivity (refl), cloud

(cld—nonprecipitating) and precipitating (from radar) hydrometeor

observations, and all other observations, described in Table 4] for

the three assimilation components. GSI data assimilation includes

both hybrid EnKF-var assimilation (light blue) using the GFS 80-

member ensemble (GFS Ens—red) to define the ensemble-based

background error covariance and the cloud and hydrometeor (for

both cloud and precipitation) component (green).
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1500UTC each day with 3-hGFS forecasts valid at those

times introduced as the atmospheric background instead

of the corresponding RAP cycle. After parallel hourly

spinup assimilation cycles are run for 6h ending,

respectively, at 0900 and 2100 UTC, the 1-h forecasts

from the parallel spinup RAP cycle are substituted for

those from the primary cycle as the background field

for RAP assimilation. Lateral boundary conditions are

TABLE 4. Observational data used in the RAP version 3 as of September 2015. Symbols are as defined in Table 3, except RH is relative

humidity with respect to water, V refers to horizontal wind components, T is temperature, ps is surface pressure, and Td is dewpoint.

Data type Variables ;No. Frequency

Rawinsonde (including special observations) T, RH, V, z 125 12 h

NOAA 405-MHz profiler wind (decommissioned 2014) V ;21 (2013) 1 h

Boundary layer (915MHz) profiler wind V, Ty ;30 1 h

Radar-VAD winds (WSR-88D radars) V 125 1 h

Radar Reflectivity, radial wind 1 h

Lightning Flash rate converted to reflectivity 1 h

Aircraft V, T 3000–25 000 1 h

Aircraft qy 0–1000 1 h

Surface/METAR—land V, ps, T, Td 2200–2500 1 h

Surface/METAR—land Ceiling/vis 2200–2500 1 h

Surface/mesonet—land V, ps, T, Td 10 000–16 000 1 h

Buoy/ship V, ps 200–400 1 h

GOES atmospheric motion vectors V, p 2000–4000 1 h

GOES cloud top p, T ;10-km resolution 1 h

AMSU-A/HIRS-4/MHS/GOES Radiances

GPS precipitable water PW 300 1 h

FIG. 3. Flowchart for 3D cloud and hydrometeor assimilation in the RAP as a GSI option. The blue–yellow–red plots are for a nominal

vertical cross section with blue indicating cloud-free volumes, red indicating cloudy volumes, and yellow showing volumes with unknown

cloud information. The respective yes–no–unknown volumes are shown for observations for (bottom) METAR cloud-ceiling and visibility

observations, (middle) radar reflectivity, and (top)GOES cloud-top retrievals and brightness temperatures combined into amerged yes–no–

unknown cloud and precipitation information field shown on the right. (bottom right) The colored areas show combined cloud water (Qc)

and ice (Qi) mixing ratio before and after hydrometeor assimilation, nominal magnitude increasing from purple to blue to yellow.
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specified from newGFSmodel runs initialized every 6 h.

Data assimilation enhancements, most developed orig-

inally for the RUC (Benjamin et al. 2010) and related to

DFI, radar, boundary layer, land surface, and cloud and

hydrometeor fields, have been refined and included

within GSI and used in the RAP, as described below.

a. Use of observational data and observation errors

The use of GSI for the RAP data assimilation system

permits assimilation of additional observational data not

previously incorporated into the RUC. In particular, full

satellite radiance assimilation is now performed on an

hourly basis in the RAP (over water and land and with

bias correction to be described in a future paper). Ob-

servational data that are assimilated at hourly or longer

intervals are summarized in Table 4. Observation errors

are specified as in the NOAA NAM model. RAP ob-

servation time windows are narrow, appropriate for a

1-h cycle, generally from 45min before analysis time to

15min after analysis following the ;15-min offset.

[Surface, rawinsonde, and aircraft data valid time are

generally centered before the analysis time as described

by Benjamin et al. (2004a), their section 3c.] A GSI

forward-model option was developed and exercised for

the RAP in which surface-temperature observations

are adjusted based on the background lapse rate from

the observation-station height to the model-terrain

height. No adjustment is applied for 2-m dewpoint or

10-m wind observations; currently they are assimilated

if surface pressure is no more than 15 hPa beneath the

model surface pressure. A similar terrain-adjustment

forward-model GSI option is applied to the GPS-

retrieved total column water vapor to adjust its value

to the model elevation at the GPS observation-station

location, as used by Smith et al. (2007).

b. Background error covariance and hybrid options

The RAP version 1 (Table 2) used only a static

background error covariance, combining balance from

GFS-based background error covariance and variance

together with horizontal and vertical impact scales from

NAM background error covariance (Wu 2005) refined

through RAP retrospective experiments. The RAP

version 2 (Table 2) applies hybrid ensemble–variational

assimilation (Wang 2010; Whitaker et al. 2008; Hamill

and Snyder 2000) with half static background error co-

variance and half GFS data assimilation 80-member

ensemble-based background error covariance. The en-

semble component of the hybrid assimilation increases

to 75% in RAP version 3. Even though the hourly RAP

hybrid assimilation uses GFS EnKF ensemble forecasts

available only four times per day, the use of hybrid as-

similation significantly improves upper-air wind, mois-

ture, and temperature forecasts (see section 6).

c. Application of digital-filter initialization in RAP

To reduce initial noise in 1-h forecasts and produce a

more effective hourly assimilation, a backward–forward

two-pass digital-filter initialization is applied within the

ARW model (Peckham et al. 2016), similar to that ap-

plied to the RUC model (Benjamin et al. 2004a). A

backward 20-min integration period is run first (inviscid,

adiabatic), applying a digital-filter weighting over that

period. Then, starting with that filtered field valid 10min

prior to analysis time, a forward 20-min integration with

full physics is made, ending with another application of

the digital filter to all prognostic fields. This filtering

results in new fields valid at analysis time. The initial 3D

hydrometeor fields and 3D water-vapor mixing ratio

(using initial RH and DFI-output temperature) are then

restored to maintain initial cloud fields where known

(section 2e, below). This DFI application is shown to

strongly reduce surface pressure oscillations frommodel

mass-wind imbalance and improve accuracy of 1-h

forecasts (Peckham et al. 2016), especially important

for hourly cycling.

d. Radar reflectivity assimilation via latent heating

The RAP assimilates radar reflectivity on an hourly

basis by a radar-DFI-latent-heating technique (Weygandt

TABLE 5. Variables updated in cloud and hydrometeor analysis for RAPv3.

Variables updated

Build cloud/hydrometeors

in model 3D state?

Remove cloud/hydrometeors

from model 3D state? Which observations are used?

Cloud water, cloud ice,

temperature, water vapor

Yes, below 1.2 km AGL Yes Satellite cloud-top

pressure, ceilometers

Precipitating hydrometeors:

rain water, snow, graupel

Yes: if 2-m T , 58C, add to

full column. Else, add at

observed maximum

reflectivity level and

where observed reflectivity

is between 15 and 28 dBZ

Yes Radar reflectivity
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and Benjamin 2007; Weygandt et al. 2008) applied pre-

viously to the hourly updated RUC model. This tech-

nique is central to the effectiveness of the RAP and the

related 3-km HRRR model, especially for convective

storms. Key is the 3D specification of latent heating,

primarily from 3D radar reflectivity observations where

available, applied within the 20-min forward DFI step

with full physics (previous paragraph). Where latent

heating can be estimated in 3D space with radar re-

flectivity data or proxy reflectivity data using a statistical

relationship from lightning flash density (Benjamin et al.

2006), this estimate from observations is substituted for

the prognostic temperature tendency of the precipitation-

microphysics scheme used otherwise (including volumes

of no radar echo) within this DFI forward step. Sup-

pression of precipitation occurs by 1) forcing zero latent

heating in no-echo volumes in the forward DFI step and

by 2) deactivating parameterized convection in echo-free

columns in the first 30min of the free forecast. Otherwise,

in volumes with no radar coverage, model latent heating is

left unchanged. Latent heating is estimated by assuming a

time period over which the radar-inferred condensate

formed; values of 10–30min have been tested in the RAP

and RUC, and 10min is currently used for this parameter

(5min was found to be too strong with excessive convec-

tion during the first 1–2h). This radar-DFI assimilation is

applied internally within the forecast model, after the rest

of the RAP data assimilation. Radar- (and lightning) re-

lated latent heating is calculated within the GSI data-

assimilation step and is constrained within the GSI by

satellite cloud data for horizontal consistency.

e. Cloud and precipitation hydrometeor assimilation

METAR (cloud, ceiling, and visibility) observations

and satellite-based retrievals of cloud-top pressure and

temperature (currently GOES only) are used within the

TABLE 6. Model and physics configuration for RAPv3. Where applicable, ARW official release versions of physics routines are indicated.

Model and domain

Model version ARWv3.61, nonhydrostatic 5 true

Domain North America and surrounding area (Fig. 1)

Map projection Rotated lat–lon

Grid points 954 3 835

Grid spacing Nominal 13 km

Vertical computational layers 51

Pressure top 10 hPa

Lateral boundary conditions Global Forecast System

Horizontal/vertical advection Fifth-order upwind

Scalar advection Positive definite

Large time step 60 s

Upper-level damping (for vertically

propagating gravity waves)

Rayleigh (Klemp et al. 2008), dampcoef 5 0.2 s21, zdamp 5 5 000m

Computational horizontal diffusion Sixth order (0.12)

Run frequency Hourly

Forecast duration $18h

Physics

Radiation (longwave and shortwave) RRTMG (v3.6) (Iacono et al. 2008)

Land surface RUC LSM (v3.61) (Smirnova et al. 2016)

Land use MODIS 24 category

Planetary-boundary and surface layer Mellor–Yamada–Nakanishi–Niino (v3.61)

Boundary layer driven clouds (shallow Cu) Grell–Freitas–Olson

Deep convection Grell–Freitas (v3.61) (Grell and Freitas 2014)

Microphysics Thompson–Eidhammer ‘‘aerosol aware’’ (v3.6)

(Thompson and Eidhammer 2014)

Microphysics tendency limit 0.01K s21

TABLE 7. Sigma levels used with the ARW model in the Rapid Refresh (51 sigma levels, 50 computational levels).

1.0 0.9980 0.9940 0.9870 0.9750 0.9590 0.9390 0.9160 0.8920 0.8650

0.8350 0.8020 0.7660 0.7270 0.6850 0.6400 0.5920 0.5420 0.4970 0.4565

0.4205 0.3877 0.3582 0.3317 0.3078 0.2863 0.2670 0.2496 0.2329 0.2188

0.2047 0.1906 0.1765 0.1624 0.1483 0.1342 0.1201 0.1060 0.0919 0.0778

0.0657 0.0568 0.0486 0.0409 0.0337 0.0271 0.0209 0.0151 0.0097 0.0047

0.0000
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FIG. 4. Forecast error for RUC (blue, run at ESRL) and RAP-ESRL (red) model forecasts for 2010–15. RAP-ESRL change dates are

identified in Table 1. (a) 250-hPa 6-h RMS vector magnitude wind forecast error. RAP-ESRL change dates are identified in Table 1.

Verification is against rawinsonde observations over the RUC domain (CONUS) and is averaged over 6-month periods (October–March

cold season and April–September warm season) and with all events matched. Periods with insufficient events for either model are left

missing. (b) The 1000-ft ceiling Heidke skill score for 6-h forecasts. Verification is against METAR observations over the RUC domain

(CONUS) and is averaged over 60-day periods and with all events matched. Periods with insufficient events for either model are left

missing. Higher is more skillful. The difference (RUC 2 RAP) is also plotted in black. (c) As in (b), but for 1-mi visibility. (d) The 2-m

temperature RMS 12-h forecast error (lower is better). Verification is against METARs over CONUS east of 1008W.Difference (RUC2
RAP) is plotted in black. (e) As in (d), but for 2-m dewpoint.
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RAP (via GSI) to modify background hydrometeor

fields (Table 3) along with temperature and water-vapor

mixing ratio to retain saturation or subsaturation as

needed in volumes of cloud building or cloud clearing,

respectively. This technique was initially applied to the

RUC model/assimilation (Benjamin et al. 2004a) and is

now applied to GSI assimilation for RAP. The sche-

matic flow of the cloud–hydrometeor analysis is illus-

trated in Fig. 3. A three-dimensional cloud coverage

observation information field (cloudy, clear, unknown)

is generated each hour by using theMETAR cloud base/

coverage observations and satellite cloud top. Then, this

cloud coverage is used to generate cloud ice and water

based on environment conditions for areas of cloud

building. This cloud water and ice information is then

combined (Table 5) with 1-h forecast background 3D

hydrometeor information to generate the final cloud

water and ice 3D analysis fields. To ensure the cloud or

clear information is retained in the forecast, the water

vapor and temperature fields are adjusted (conserving

virtual potential temperature) to match the cloud or

clear condition at each 3D grid point where building or

clearing is applied, respectively. Finally, 3D radar data

are used to clear and build hydrometeors (up to 28dBZ

under conditions described in Table 5) starting with 3D

rain, snow, and graupel precipitation hydrometeors

from the 1-h background.

f. Near-surface assimilation including estimate of
pseudo-innovations within the PBL

To enhance retention of surface dewpoint and tem-

perature observations accounting for their likely ver-

tical representativeness, an optional (via namelist)

enhancement to GSI was developed in which surface

innovations (observation–background differences) are

extended upward toward the PBL (planetary boundary

layer) top, creating pseudo-innovations. Initial in-

novations are created for surface 2-m temperature and

dewpoint observations. In RAPv3, background values

are estimated using flux-based diagnostic values of 2-m

temperature and 2-m water-vapor mixing ratio from

the WRF Model (instead of prior values at lowest model

FIG. 5. Vertical profiles of RMS errors [(top left) vector

wind magnitude (m s21), (bottom left) temperature (K),

(top right) relative humidity (percent)] for RAP-ESRL

(red) and RUC (blue) 6-h forecasts against rawinsonde

observations over CONUS (red area in Fig. 1) at every

50 hPa for a 18-month period from 1 Jan 2014 to 30 Jun

2015. The difference (RUC 2 RAP) is plotted in black.

Boxes containing values significant at the 95% level are

also shown at each level.
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level at about 8m above ground level). Pseudo-

innovations are created every 20hPa upward until

reaching 75% of the PBL top (diagnosed from the pre-

vious 1-h RAP forecast) at the nearest grid point in the

background forecast, as described by Benjamin et al.

(2004d, 2010). Pseudo-innovations are created and as-

similated for 2-m dewpoint starting with RAPv2 and

those for 2-m temperature were added starting with

RAPv3 (Table 8). This PBL-based pseudo-innovation

technique is a simple and effective method for spreading

information from surface observations vertically in well-

mixed situations, to be replaced in future RAP versions

by ensemble data assimilation with adaptive covariance

in the PBL.

g. Soil–snow temperature and soil moisture
adjustment

Similar to the use of pseudo-innovations within

the planetary boundary layer to reflect vertical repre-

sentativeness of surface observations, a simple coupled

soil–air forecast-error relationship was created to es-

timate increments for soil and snow variables based on

near-surface analysis atmospheric increments for tem-

perature and moisture (Benjamin et al. 2004d; appen-

dix A in this paper). Application of this covariance

tends to retain the soil–air temperature difference from

the forecast background field to the analyzed state. For

soil–snow temperatures, near-surface analysis in-

crements (driven largely by near-surface observations)

are applied to the top five levels within the nine-level

configuration in the RUC land surface model [LSM;

Smirnova et al. (2016); section 3 below] soil domain and

to the levels inside snow using the relationships de-

scribed in appendix A. Soil temperature adjustment at

the top level is limited to 1-K warming and to 3-K

cooling. Parameters shown in appendix A were esti-

mated through repeated parallel experiments with the

RAP during both summer and winter periods.

Under the assumption that near-surface analysis in-

crements for temperature and moisture of opposite sign

FIG. 6. Time series for RAP-ESRL forecast RMS errors [(top left) vector wind magnitude (m s21), (bottom left) temperature (K), and (top

right) relative humidity (%)] as verified against hourly aircraft observations for durations of 0 h (analysis—green), 1 h (red), 3 h (blue), 6 h

(orange), and 12 h (black). Error is averaged over 30-day periods over the 2-yr period fromMay 2013 throughNovember 2014 and for all aircraft

observations over CONUS from 1000 to 100 hPa. Only RH observations taken during descent are used for verification because they are more

accurate than observations during ascent (W. Moninger 2015, personal communication). Isobaric output of RAP forecast fields are used here.
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(warm and dry, or alternatively, cold and moist) may be

related to soil moisture errors under some conditions

(daytime, no precipitation), a technique analogous to

that for soil temperature was also developed to modify

soil moisture (Benjamin et al. 2004d). This namelist-

controlled option also added to GSI is applied only in

daytime with no precipitation in the background fore-

cast and with no snow on the ground. When the near-

surface analysis increments both cool and moisten

atmospheric conditions near the surface (meaning that

the background forecast was too warm and dry), a small

moistening is also applied to soil conditions in the top

four levels of the land surface model. The opposite is

also applied when near-surface analysis increments are

to warm and decrease water-vapor mixing ratio. Equa-

tions for soil moisture analysis adjustment are also de-

scribed in appendix A.

3. WRF Model component for RAP numerical
weather prediction

The Rapid Refresh uses the Advanced Research ver-

sion of WRF (ARW) dynamical core (Skamarock et al.

2008) as its model component on a 13-km grid overNorth

America (Fig. 1). The ARW core offers rigorously tested

numerical methods with capability for nonhydrostatic

applications (a flexible, modularized code design, and

refinement from the WRF user community, including a

variety of physics options). Table 6 lists major attributes

of the current configuration of the RAP model. This

section describes the configuration choices and the ra-

tionale for their use in the RAP.

ARW for RAP was configured similarly to the RUC

to provide accurate forecasts of clouds and boundary

layer structure (important for aviation, severe-weather,

and energy applications). Vertical layers were specified

(Table 7) to give two benefits: 1) high vertical resolution

very close to the surface to capture near-surface in-

versions and to avoid incorrect mixing out of surface-

based shallow cold air during the forecast and 2) high

vertical resolution near typical jet aircraft en route

altitudes (approximately between 300 and 200 hPa).

The hybrid sigma–isentropic coordinate in the RUC

(Benjamin et al. 2004c) with adaptive vertical resolution

provided this second beneficial feature, owing to the

common presence of the tropopause in the 300–200-hPa

FIG. 7. Vertical profiles ofRMSerrors [(top left) vector

wind magnitude (m s21), (top right) relative humidity

(%), (bottom left) temperature (K)] for RAPv3 forecasts

of different durations against rawinsonde observations

over CONUS (red area in Fig. 1) at isobaric levels every

50 hPa for a 9-month period from 1 Jan to 1 Oct 2015.

Errors are shown for forecast durations of 1 h (red), 3 h

(blue), 6 h (black), and 12 h (orange) including rectangu-

lar boxes for 95%significant values.On the far left of each

diagram, lines depict the increase of forecast error over

1-h forecasts for 3-, 6-, and 12-h forecasts.
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range. In contrast, the ARW uses a traditional sigma-p

vertical coordinate (Phillips 1957), terrain following

near the surface that smoothly becomes a constant

pressure surface at the top of the model. In the case of

the ARW, the sigma coordinate is expressed in terms of

the hydrostatic pressure of the dry air mass.

Continuity in overall behavior of physical parame-

terizations was maintained in going from RUC to RAP

with evolution as shown in Table 2. Because of the im-

portance of in-flight icing as an aviation hazard, theRAP

follows the RUC for cloud-precipitation parameteriza-

tion in using the mixed-phase bulk cloud microphysics

of Thompson et al. (2008) for RAPv1 and RAPv2 and

the aerosol-aware microphysics of Thompson and

Eidhammer (2014) for RAPv3. These schemes include

explicit prediction of mixing ratios of cloud water and

ice, rain, snow, and graupel and number concentration

of ice and rain and (starting with 2014 version) cloud

water. The RAP uses an improved version of the RUC

LSM (named for the model in which it was originally

used but now used widely in various WRF applications;

Smirnova et al. 1997, 2000, 2016). The revised RUC

LSM scheme (Smirnova et al. 2016) used in RAP in-

cludes nine levels, increased from six as used in RUC. It

improves treatment of snow providing better diurnal

variation of 2-m temperature in all seasons and more

accurate 2-m temperatures over snow (Smirnova et al.

2016). RAPv1 and RAPv2 used a parameterization of

deep convection based on Grell and Devenyi (2002) but

with a 3D (‘‘G3’’ scheme) extension to allow some

awareness of resolution scale [see also tests of G3 in

Grell and Freitas (2014)]. Like the RUC, the RAP

continued to use Mellor–Yamada local mixing schemes

for the PBL, adopting the Mellor–Yamada–Janjic

(MYJ; Janjić 1994, 2002) for RAPv1.

For radiation, Dudhia shortwave andRapidRadiative

Transfer Model (RRTM; Iacono et al. 2008) longwave

parameterizations were used in RAPv1 and RAPv2,

changing (Table 2) in RAPv3 to the more sophisticated

RRTM Global (RRTMG) radiation scheme for both

long- and shortwave radiation, which includes radiative

effects of (climatological) aerosols. In addition, the

RAP has adapted the Mellor–Yamada–Nakanishi–

Niino (MYNN) (Nakanishi and Niino 2004, 2009)

FIG. 8. As in Fig. 7, but for the Alaska region.
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boundary and surface-layer schemes in RAPv2. Modi-

fications to MYNN described in appendix B to remove

numerical deficiencies and to improve themixing-length

formulation better account for relative importance of

physical sources of turbulence under various conditions.

These MYNN modifications address conditions rang-

ing from very high stability typical of high latitudes

in winter to deep warm-season dry-adiabatic mixed

layers. A capability within the MYNN is enabled in

RAP to represent subgrid-scale cloudiness that is often

present at the top of boundary layers. This information

is used for improved coupling to the RRTMG for at-

tenuation of radiation.

With the aerosol-aware Thompson and Eidhammer

(2014) precipitation microphysics used in RAPv3,

the Cooper curve assumption (Cooper 1986; e.g.,

Thompson et al. 2008), relating the number of available

ice nuclei to temperature given certain conditions on

ice supersaturation, is replaced by an explicitly pre-

dicted supply of ice-friendly aerosol activated pro-

portional to the amount of supersaturation and then

removed by precipitation. An analogous prediction of

water-friendly aerosol is used to predict the number

concentration of cloud drops, which are then available

to form rain through the collision–coalescence process.

At present, the RAP is initialized with only a height

and geographically dependent and seasonally varying

climatological distribution of water- and ice-friendly

aerosol available with this microphysics. This scheme

opens the door for future RAP (and HRRR) de-

velopments to include weather-dependent sources and

sinks of aerosols to produce a fully coupled aerosol–

microphysics predictive system [e.g., WRF coupled with

Chemistry (WRF-Chem); Grell et al. (2005)].

FIG. 9. As in Fig. 5, but from RAP with GSI 3DVar

assimilation (red) and RAP with GSI ensemble–

variational hybrid assimilation (blue) over an 8-day

period from 25 May to 2 Jun 2012.
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In place of the G3 deep convection scheme used in

RAPv1 and RAPv2, RAPv3 uses an updated version of

the Grell and Freitas (2014) scale-aware deep convec-

tion scheme. This scheme is scale aware in the sense of

relaxing the assumption traditionally used in mass-flux

parameterizations of convection that updrafts and

downdrafts occupy a negligible fraction of the cross-

sectional area of a model grid column. For the 13-km

RAP grid spacing, the scale-aware aspect has only a

small impact, as scales resolvable by the numerical

mesh are still far larger than the horizontal dimensions

of a cumulonimbus updraft. The scheme is also capable

of accounting for the role of aerosols on both the forma-

tion and evaporation of precipitation in updraft and

downdraft through the impact of cloud-condensation nu-

clei on drop size distribution. This aerosol effect, in turn,

impacts the partitioning of updraft condensate between

conversion to precipitation and detrainment and sub-

sequent evaporation to moisten the cloud environment.

Table 6 summarizes the RAP model configuration of

ARW. Early testing of ARW for RAP used third-order

vertical advection, but subsequent tests using fifth-order

vertical advection demonstrated better maintenance of

thin cloud layers (e.g., marine stratus) and slightly less

smooth (i.e., more realistic) model-predicted sounding

structures at very little added computational cost. In

addition to activating the vertical-velocity damping op-

tion in the ARW, the magnitude of the potential tem-

perature tendency coming out of the microphysics was

constrained to be no larger than 0.01Ks21. In the oper-

ational setting, this provides additional security against

model crashes due to vertical Courant–Friedrich–Levy

(CFL) violations resulting from moist convection. In

addition, the sixth-order computational diffusion was

activated, againwithminimal impact on thewell-resolved

horizontal scales. The complete forecast configuration for

the primary RAP cycle at ESRL can be found at http://

rapidrefresh.noaa.gov/wrf.nl.txt.

4. Soil, snow, and water lower-boundary conditions

Specification of the RAP lower-boundary uses unique

treatment and is strongly dependent upon ongoing cycling

constrained by observations. The land surface nine-level

model soil temperature and moisture fields have been

cycled continuously in the RAP since 2010 (as was done in

the RUC; Benjamin et al. 2004a). The atmospheric as-

similation of radar reflectivity data to provide fairly accu-

rate 1-h precipitation provides a strong constraint on

evolution of the land surface fields in the RAP. Another

strong constraint is the assimilation of cloud and hydro-

meteor fields (especially satellite-based cloud information)

to define cloud cover. Hourly assimilation of other fields,

TABLE 8. Modifications made in RAPv3 to address warm–dry bias in RAPv2.

Model components

MYNN boundary layer

(section 3, appendix B)

Mixing-length parameter changed

Numerical deficiencies removed

Coupling boundary layer clouds to RRTMG radiation

Thompson cloud microphysics (section 3) Changed to aerosol awareness for resolved cloud production

(Thompson and Eidhammer 2014)

Grell–Freitas–Olson convective

parameterization (section 3)

Shallow-cumulus radiation attenuation

Improved retention of stratification atop mixed layer

RUC/Smirnova land surface model (section 3) Reduced wilting point to allow more transpiration

Keep soil moisture in cropland land-use areas above wilting point

(effectively assuming background irrigation)

Data assimilation

GSI modifications Introduce use of temperature pseudo-innovations in boundary layer (section 2f)

More consistent matching of surface observations and model background

(2m instead of 8m; section 2f)

Introduce cycling of canopy water from background to analysis field (Table 3)

FIG. 10. Conceptualmodel of positive feedbackmodel bias associated

with RAPv2 warm and dry bias.
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especially near-surface observations (METARs and, to a

lesser extent, mesonet; Table 4), also provides some

constraint on the evolving land surface fields. In addi-

tion, the soil–atmosphere coupled data assimilation

described in section 2g provides a significant con-

straint, correcting errors especially when applied

repeatedly in the hourly update cycle.

Snow fields (snow water equivalent and snow

temperature in the two-snow-layer component of the

RUC LSM) in the RAP are also provided through

ongoing cycling. Observation-based snow-cover

modification is applied daily (usually 2300 UTC)

through horizontal snow-cover trimming and build-

ing using the satellite-based daily updated NESDIS

FIG. 11. Surface verification over the 4-month period from 1May to 31 Aug 2015 for 12-h forecasts from RAPv2

and RAPv3 in eastern CONUS region for (left) RMS error and (right) bias over period. Both RMS errors and bias

are calculated for forecasts vs METAR observations. Statistics in each column are for (top) 2-m temperature,

(middle) 2-m dewpoint, and (bottom) 10-m wind magnitude.
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snow–sea ice data. These data are used to trim ex-

cessive snow cover on the ground via direct insertion

(only if the forecast from the previous hour does not

indicate snowfall at that grid point) and to build

snow cover where needed to compensate for missed

snowfall (Smirnova et al. 2016). This NESDIS

product is also used to update RAP sea/lake ice

coverage daily. No ice fraction data within grid cells

were available at NCEP as of 2015.

Sea surface temperatures (SSTs) are specified from

the NCEP global high-resolution SST analysis (http://

polar.ncep.noaa.gov/sst/rtg_high_res). As of 2015, water

surface temperatures for inland lakes other than the

Great Lakes were found to be estimated more accu-

rately from the NCEP North American SST (NAM_

SST). A summary of sea–lake temperature specification

in the RAP is provided at http://ruc.noaa.gov/rr/RAP_

SST-snow.html.

5. Verification: RAP versus RUC

Ongoingmultiyear comparisons between theRUCand

RAP were conducted, even after the discontinuation of

the NCEP RUC in May 2012. Examination of forecasts

from the two models provides historical perspective on

the evolution of RAP and RUC skill over time (Fig. 4).

Changes to the RUC model ceased in 2011, except for

changes in available observational data (substantial in-

crease in aircraft data). A multiyear comparison of 6-h

forecasts of 250-hPa wind over the CONUS between

RAP and RUC is shown in Fig. 4a. Skill of RAP and

RUCwind forecasts were similar from 2009–12 but better

for RAP (smaller error) by 2013/14, indicating RAP im-

provement over the RUC baseline.

Jet-level wind accuracy is critical for RAP–RUC ap-

plications involving air-traffic management and flight

planning (3–8-h duration forecasts used especially for

FIG. 12. As in Fig. 5, but for 12-h forecasts fromRAPv3

(red) and RAPv2 (blue) over the 4-month period from

1May to 31Aug 2015. RMS errors [(top left) vector wind

magnitude (m s21), (bottom left) temperature (K), and

(top right) relative humidity (percent)] for RAPv3 (red)

and RAPv2 (blue) 12-h forecasts against rawinsonde

observations over CONUS (red area in Fig. 1) at isobaric

levels every 50 hPa. The difference (RAPv22RAPv3) is

plotted in black.
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domestic routes). RMS wind vector forecast errors

shown are larger in the cold (6-month October–March

averaging in Fig. 4a) than the warm season (6-month

April–September averaging). This seasonal variation is

typical and related to stronger jet-level winds over the

CONUS during the colder season. The downward trend

in 6-h wind forecast error in the last few years for both

models may be attributable to a large increase in aircraft

data over the United States (WMO 2015); aircraft

data have been the most significant observation type

responsible for short-range hourly updated forecast skill

(Benjamin et al. 2010).

Forecasts of another key aviation parameter—ceiling

height for instrument flight rules (IFR) or 1000 ft (1 ft =

0.3048m), evaluated by Heidke skill score—also show

improved RAP skill over RUC for 2013/14 (Fig. 4b;

negative RUC–RAP skill in black line at bottom in-

dicates higher skill for RAP in that period). The most

important modification for the RAP in 2013 was in-

troducing the hybrid ensemble–variational data assimi-

lation (in ESRL primary RAP configuration). The

hybrid assimilation, included in RAPv2 at NCEP in Feb

2014 (Table 1; also see section 2b), was significant for

improved upper-level winds (Fig. 4a, section 6, and

Fig. 9) and possibly contributed to improved ceiling

forecasts. Improved visibility forecasts are also evident

in RAP versus RUC starting in 2013 (Fig. 4c), similar to

that shown for ceiling. For surface forecasts, 2-m tem-

perature 12-h forecasts started showing a clear im-

provement over RUC in late 2014 (Fig. 4d). For 2-m

dewpoint forecasts, RAP has shown superior fore-

cast skill (Fig. 4e) since 2011 with the exception of

summer 2014.

A comparison between RAP and RUC 6-h forecast

skill (errors versus rawinsondes) on isobaric levels was

also made for upper-air forecasts of wind, relative hu-

midity (RH), and temperature, covering an 18-month

period from January 2014 to June 2015 (Fig. 5). For 6-h

wind forecasts, RAP had lower RMS vector errors than

RUC at all levels, with the difference ranging from 0.3

up to 0.5m s21. For temperature, the RAP had smaller

forecast error by about 0.1K from 800 to 400 hPa and at

1000 hPa and similar skill to the RUC otherwise near

the tropopause and in the 950–850-hPa layer. For

RH, the RAP had smaller forecast error by 2%–3%

from the surface up to 400 hPa. The RAP had larger

RH error than RUC for 200–100-hPa levels, where

FIG. 13. Ceiling (top) 1000- and (bottom) 3000-ft Heidke skill

score for RAP-ESRL model (red) and persistence (blue) forecasts

for April 2012 through November 2015, verified against METAR

observations over the CONUS. Verification is shown for forecast

durations of 1, 3, and 6 h with dashed lines, thin lines with markers,

and thick lines, respectively.

FIG. 14. The 2-m temperature forecast RMS errors for RAPv3

(red) and persistence (blue) 1-h (solid lines) and 3-h (dashed lines)

forecasts for a 4-month period from June to September 2015.

Verification is against METAR observations in the eastern United

States (east of 1008W).
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rawinsonde observational accuracy is lower and where

clouds are infrequent. The RUC may have had an ad-

vantage in this near-tropopause layer due to its isen-

tropic vertical coordinate.

6. Verification: Effects of recent assimilation and
model changes and degradation of skill for
longer forecasts

Hourly aircraft observations are available over the

United States, providing an opportunity for verifica-

tion to measure hourly updated RAP forecast skill.

The same forecast duration comparisons can be cal-

culated against rawinsonde observations (Benjamin

et al. 2004a), but those include valid times only at 0000

and 1200 UTC. Aircraft observations, despite hav-

ing diurnal variations in volume and irregularity in

spatial distribution, can provide a broader round-the-

clock look at RAP forecast skill than rawinsondes,

verifying forecasts 24 times daily compared to twice

daily (0000–1200 UTC) for rawinsondes. The results

provided in Fig. 6 show a 2013/14 RAP forecast skill

comparison differentiated by forecast duration, using

aircraft observations and 30-day averaging. The figure

shows that a monotonic decrease of forecast error

occurs as forecast length decreases from 12- through 1-h

forecasts. This result is central to justifying a 1-h NWP

cycle to improve situational-awareness forecasting. Lack

of balance without initialization (like DFI used for RAP;

section 2), aliasing from irregular observation distribu-

tion (especially for aircraft data), and inadequate data

assimilation design can all cause noisier 1-h forecasts with

poorer forecast skill (Peckham et al. 2016).

This error decrease with decreasing forecast length

all the way down to 1-h forecasts occurs similarly for

wind, temperature, and relative-humidity forecasts

and for all seasons. The effect of hourly assimilation

(per 12–1-h forecast-error difference) is stronger in

cold seasons. In addition, there is a seasonal variation

FIG. 15. Surface RMS errors for forecasts from

RAPv3 and persistence in eastern CONUS region as

a function of forecast length for 4-month period from

1 Jun to 30 Sep 2015. RMS errors are calculated for

forecasts vs METAR observations. For (top left) 2-m

temperature (°C), (bottom left) 2-m dewpoint (°C),
and (top right) 10-m vector wind magnitude (m s21).

TABLE A1. Coefficients for soil temperature adjustment from

atmospheric increment (A1) as a function of level in the land

surface model.

k

a(k) for nine-level

configuration

a(k) for six-level

configuration

1 0.60 0.60

2 0.55 0.40

3 0.40 0.20

4 0.30

5 0.20
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of forecast error, with higher error in the cold season for

wind and temperature, and in general, higher error for the

warm season for RH. An explanation is that for CONUS,

stronger gradients and short-range changes of wind and

temperature in the cold season are related to more fre-

quent passages of stronger frontal dynamic systems. For

RH, larger forecast error in the summer is expected from

greater contribution from small-scale convective activity

in the warm season compared to the contribution from

frontal dynamics. The analysis fit to observations, also

shown, exhibits a similar annual cycle.

Examination of the variation in forecast skill (as ver-

ified against rawinsonde observations) by vertical levels

(Fig. 7) reveals that the monotonic improvement in

forecast skill with decreasing forecast duration (due to

the assimilation of more recent observations and use of

more recent boundary conditions) is manifest at all

vertical levels. Forecast-error reduction with decreased

lead time is greatest at upper levels for wind (i.e., jet

stream altitudes, where errors are largest) and in the

lower troposphere for temperature and relative humid-

ity. Likewise, even over Alaska, with its observational

sparseness compared to the CONUS, the RAP produces

more accurate forecasts at a progressively shorter fore-

cast duration for temperature, RH, and winds (Fig. 8).

Overall, the results in this section demonstrate that,

despite irregular hourly observation distribution, more

accurate forecasts are produced by RAP at shorter du-

ration from a variety of perspectives: across regions

(CONUS vs Alaska), in different times of year, across

different vertical levels, and for different variables (i.e.,

wind, temperature, and RH).

TABLE A2. As in Table A1, but for soil moisture adjustment [in

(A3)].

k

a(k) for nine-level

configuration

a(k) for six-level

configuration

1 0.2 0.2

2 0.2 0.2

3 0.2

4 0.1

FIG. B1. Surface verification as in Fig. 11, but for a 16–22 Jul 2014 test period and for RAPv3 control (blue) and

a RAPv3 experiment (red) with MYNN scheme enhancements withheld (described in appendix B). RMS error is

shown in left column for (a) 2-m temperature and (c) 10-m wind (RMS vector magnitude). (right) Bias error is

shown for (b) 2-m temperature and (d) 10-m wind speed.
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Introduction of the hybrid ensemble–variational as-

similation (see section 2b) into the RAP replacing the

previous 3DVar provided a significant improvement in

6-h forecast skill at all levels and for wind, RH, and tem-

perature according to results from a 9-day controlled ex-

periment (Fig. 9). The differences in skill (black lines in

Fig. 9) are significant to the 95% level. Further experi-

ments on RAP data assimilation with the hybrid tech-

nique will be described in a future paper.

Modifications in RAPv3 (Table 2) in model physics and

data assimilation (summarized in Table 8) were largely

designed to reduce certain systematic forecast biases,

including a daytime, low-level warm and dry bias over the

central and eastern CONUS during the warm season. The

processes contributing to this bias are summarized in

Fig. 10, where insufficient model-state cloud coverage re-

sults in excessive downward solar radiation and warm–dry

conditions near the surface (and accumulated in the land

surface). The subsequent excessive growth of the PBL, and

the entrainment of dry free-atmosphere air into the

PBL, can further decrease PBL-top cloudiness. The

key objective of these modifications was to increase

overall shortwave attenuation from 1) improved rep-

resentation of subgrid-scale clouds (MYNN scheme—

appendix B, and shallow cumulus in the Grell–Freitas

scheme), 2) more accurate grid-scale clouds [via in-

troduction of the Thompson and Eidhammer (2014)

aerosol-aware microphysics scheme], and 3) the rep-

resentation of clear-sky aerosols. Use of the improved

surface assimilation in RAPv3 as described in section 2f

also contributes to this improvement.

A significant reduction in 12-h forecast error for 2-m

temperature and dewpoint (Fig. 11) resulted from

these RAPv3 changes, especially during daytime. Both

RMS and bias errors are reduced (1–2K during day-

time, 0.5–1.0K during night) in RAPv3. Ten-meter

wind speed bias errors are also reduced significantly,

especially during daytime. These error reductions in

RAPv3 are vertically robust (Fig. 12), with lower-

tropospheric reductions in RH RMS error of 1%–2%

and in temperature RMS error of 0.4–0.5K. Almost all

of these improvements are statistically significant at the

95% level. Overall, the model and assimilation changes

in RAPv3 as shown in Table 8 have proven effective at

producing more accurate forecasts, especially near the

surface and within the lower troposphere.

7. Verification against persistence forecasts

Persistence forecasts are difficult to improve upon for

very short forecast durations and provide formidable

competition for forecasts of only a few hours (e.g.,

Jacobs and Maat 2005). Persistence and extrapolation

forecasts have better skill over an NWP forecast at the

shortest time durations (Anthes and Baumhefner 1984;

Mittermaier 2008). However, the crossover time, the

time at which NWP skill exceeds persistence and ex-

trapolation, has decreased with vastly improved data

assimilation and model accuracy. In this section, the

RAP forecasts of varying durations are compared

against persistence forecasts at METAR stations in or-

der to determine the skill crossover time.

RAP ceiling forecasts are compared against persis-

tence for 1000-ft (IFR) and 3000-ft [marginal visual

flight rules (MVFR)] events (Fig. 13) using METAR

observations for verification as well as station-specific

persistence forecasts. For 1000-ft ceiling forecasts

(Fig. 13a), persistence forecasts clearly have greater skill

than RAP forecasts at 1-h duration and slightly more

skill at 3-h duration in cold season during this compar-

ison time window. Skill is about equal at 3 h in the warm

season for 2014 and 2015. This result suggests that the

crossover time at which RAP exceeds persistence skill is

approximately 3 h for the 1000-ft ceiling forecast in the

warm season and about 3.5–4 h for the cold season. At

6-h forecast duration, the RAP model demonstrates

decidedly more skill than persistence in forecasting

1000- and 3000-ft ceilings. Results are similar for 3000-ft

ceiling forecasts with nearly equal skill between 3-h

RAP and persistence forecasts in 2015 and with slightly

better persistence skill in winter. Overall, for both 1000-

and 3000-ft ceiling forecasts, the crossover time is about

3 h in summer and 4h in winter. Preliminary testing of

station-based postprocessing to HRRR ceiling and vis-

ibility forecasts using LAMP (Ghirardelli and Glahn

2010) show effective results in winter (Ghirardelli et al.

2015) and summer (Glahn et al. 2015).

A comparison of RMS error for RAP 2-m tempera-

ture forecasts and persistence forecasts by time of day is

presented in Fig. 14. Persistence forecasts are again

specified by station (METAR) observed values and

not analysis values. For this variable, 1-h persistence

forecasts have slightly lower RMS error than 1-h RAP

forecasts midday and at night but worse at diurnal

temperature transition times. For 3-h forecasts, RAP

NWP forecasts are more accurate than persistence

forecasts. Overall, the skill crossover time for 2-m

temperature ranges from 0.5 h at diurnal change times

(morning and early evening) to about 2 h midday and

midnighttime.

Finally, the forecast RMS errors as a function of lead

time are examined for persistence versus RAP forecasts

for 2-m temperature, 2-m dewpoint, and 10-m wind

(Fig. 15). The skill crossover time averaged over 24-h

periods is about 1 h for 2-m temperature, about 4h for

dewpoint temperature, and about 2 h for 10-m wind.
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8. Future of RAP

The Rapid Refresh hourly updated assimilation and

modeling system provides substantial improvement

over the previous hourly updated model at NOAA,

the Rapid Update Cycle model. The RAP is an anchor

for tactical forecasting in the United States, including

decision-making related to severe weather, aviation,

and renewable energy (Wilczak et al. 2015). The

hourly RAP is used as situational-awareness in-

formation for many NOAA aviation hazard products

(http://aviationweather.gov/adds) and the NOAA

Storm Prediction Center Mesoscale Analysis (http://

www.spc.noaa.gov/exper/mesoanalysis/). The RAP is

the parent model for its 3-km counterpart model: the

High-Resolution Rapid Refresh (HRRR) model. For

now, the RAP provides most of the initial condition

information used by the HRRR model, but future

versions of the HRRR will include more cycling at its

3-km grid resolution. The time scale or lifetime of

many weather phenomena can be under 3 h down to

several minutes or less (e.g., individual clouds, eddies,

etc.)—a motivation for rapid updating NWP using

recent observations to represent the current situation

in the model state for these phenomena.

Experiments are currently underway with regional en-

semble data assimilation to examine the efficacy of im-

proved covariances with cloud and hydrometeor-related

variables compared to the current global-model-provided

ensemble data for background error covariance. It is likely

that hydrostatic-scale regional models, including the RAP,

will be phased out in upcoming years owing to the in-

creased skill of nonhydrostatic models and computational

advances. Nevertheless, the RAP has clearly established a

benchmark for the best possible hourly updated NWP

forecast skill within its domain. The crossover time for skill

between amodel forecast system versus persistence is now

generally between 1 and 4h. Data assimilation and mod-

eling techniques described here have enabled that level of

performance. The RAP has set a new standard for short-

range forecast performance to guide decision-making for

many safety and economic activities. The HRRR model

(Smith et al. 2008), now a convection-permitting, hourly

updated model at NCEP in its own right, will be described

in a closely related article in the near future.
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APPENDIX A

Soil Adjustment within Atmospheric Data
Assimilation

These relationships are applied in GSI to modify

multilevel soil temperature and moisture after the

atmospheric analysis increment is calculated, also

described above in section 2g.

1) The soil–snow temperature adjustment is calculated

as

DT
s
(k)5a(k)DT

a
, (A1)

where DTa is the atmosphere temperature analysis

increment in K at the lowest model level. The DTs(k)

is the soil–snow temperature-adjustment value

in K at the kth soil–snow level. The a(k) is the

adjustment ratio for kth soil–snow level, and its

values for current RAP–HRRR applications are

listed in Table A1.

Soil temperatures are adjusted down to the level

closest to 50 cm. For the nine-level soil model

configuration (Smirnova et al. 2016), the top five

levels are adjusted (down to 60 cm) while for six-

level soil model configuration, the top three levels

are adjusted (down to 40 cm). The snow tempera-

tures at up to two levels (Smirnova et al. 2016) are

adjusted with the same weighting as for the top

soil level.

A maximum value for the soil temperature adjust-

ment is set as 1K, and the minimum value for the soil

temperature adjustment without snow is set by

MinDT
s
(k)522:03

�
1:01

T2 283:0

15:0

�
3 0:6,

(A2)

where T is the first model-level air temperature but

bounded to 283–305K. If over snow, then for snow-layer

temperature adjustments, min DTs(1 or 2)522:0 and

max DTs(1 or 2)5 1:0.

2) The soil moisture adjustment is calculated generally

[conditions defined below in (A4) and (A5)] as

Dh
s
(k)5a(k)DRH

a
, (A3)

where DRHa is the analysis increment of atmosphere

relative humidity (calculated from temperature and

water-vapor mixing ratio background and analyzed

fields) at the lowest model level. The Dhs(k) is the

soil volumetric water content (range 0–1; Smirnova

et al. 1997) adjustment value in m3m23 at kth soil
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level. The a(k) is the adjustment factor for kth soil

level. The factors for current applications in RAP–

HRRR are listed in Table A2.

For nine-level soil model configuration, we allow ad-

justment to the top four levels. For the six-level soil

model configuration, we only adjust the top two levels.

The soil moistening (only) applied for the condition with

DTa , 20.15K is set as

Dh
s
(k)5

8<
:
0:0, if Dh

s
(k), 0:0

a(k)DRH
a

0:03, if Dh
s
(k). 0:03

, (A4)

where DTa is the atmosphere temperature analysis

increment in K at the lowest model level. Soil drying

(applied for DTa . 0.15K) is set as

Dh
s
(k)5

8<
:
0:0, if Dh

s
(k). 0:0

a(k)DRH
a

20:03, if Dh
s
(k),20:03

, (A5)

where DRHa in its application to soil moisture adjust-

ment is limited to20.15 to 0.15. To avoid drying the soil

too much, DRHa is limited further by

DRH
a
5DRH

a

RH
a

0:4
when

DRH
a
, 0:0 and RH

a
, 40%, (A6)

where RHa is the analyzed atmosphere relative humid-

ity at the lowest model level.

APPENDIX B

Description of Modifications to MYNN Boundary
Layer Scheme

The version of the Mellor–Yamada–Nakanishi–Niino

planetary boundary layer (PBL) scheme (MYNN) used in

the Rapid Refresh deviates from the original form

documented in Nakanishi and Niino (2004, 2009). The

original version exhibited problems associated with the

production of negative turbulent kinetic energy (TKE)

and an inappropriate formulation of the turbulent

mixing length within the PBL and free atmosphere.

Also, the original scheme did not have a PBL height

(zi) diagnostic—a variable often required by other

parameterization schemes available in ARW (e.g.,

shallow cumulus, chemical–/aerosol diffusion). Fur-

thermore, ARW (prev3.7) lacked an option to couple

parameterized shallow-cumulus clouds with the radia-

tion scheme. Recent MYNN modifications to improve

these deficiencies are described below, all of which

are implemented in RAPv3.

a. Modifications to prevent negative TKE

Kitamura (2010) introduced a simple modification

to the MYNN based on the method proposed by

Canuto et al. (2008). Hereafter, this modification

will be known as the Canuto–Kitamura (CK) modi-

fication. The CK modification applies a stability-

dependent relaxation to the closure constantA2, such that

is no longer a constant in statically stable conditions

(Ri . 0):

A
2
5

A
2

11MAX(Ri,0:0)
. (B1)

In the MYNN, the mixing length for vertical heat

transport is given as A2lm (where lm is the mixing

length). Hence, this reformulation of A2 causes the

mixing length used for the turbulent heat flux to de-

crease with stronger static stability but does not affect

the turbulent mixing of momentum. This modification

was shown by Kitamura (2010) to remove the critical

Richardson number (Ric), allowing small finite mixing

to exist at Ri / ‘, as argued for by various turbulence

researchers (i.e., Galperin et al. 2007; Zilitinkevich et al.

2007; Canuto et al. 2008).

Kitamura (2010) cautioned that CK modification

may require subsequent adjustments to reduce the

closure constants C2 and C3. We revised C2 and C3 to

0.729 and 0.34, respectively, within the range sug-

gested by Gambo (1978); however, test simulations

revealed that the removal of Ric encouraged exces-

sive diffusivity in stable conditions, spurring efforts

to further reduce the mixing-length scales as described

below.

b. Modifications to improve the mixing-length
formulation

The mixing-length reformulation is intended to 1) to

reduce the scheme’s diffusivity to earlier-version mag-

nitudes and 2) improve turbulence representation in the

free atmosphere. The MYNN mixing length lm was de-

signed such that the shortest length scale among the

surface-layer length (ls), turbulent length (lt), and

buoyancy length (lb) will dominate:

1

l
m

5
1

l
s

1
1

l
t

1
1

l
b

. (B2)

The surface-layer length scale ls, taken from Nakanishi

(2001), is a function of the stability parameter (z5 z/L),

where L is the Obukhov length (52u3uv0/kghw0u0yi; an-
gle brackets indicate ensemble averages):
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l
s
5

8><
>:
kz/3:7 §$ 1

kz(11 c§)21 0# §, 1

kz(12a
4
§)0:2 §, 0

, (B3)

where z is the height AGL, k is the vonKármán constant
(50.4), and c and a4 are chosen as 2.7 and 100, re-

spectively. We reduce a4 to 20 in order to reduce the

near-surface turbulent mixing.

The form of the turbulent length scale lt is taken from

Mellor and Yamada (1974, 1982):

l
t
5a

1

ð‘
0

qz dzð‘
0

z dz

, (B4)

where q5 (TKE)1/2 and a1 is taken as 0.23 in Nakanishi

and Niino (2004) as opposed to 0.10 in Mellor and

Yamada (1974, 1982). Note that in (A4), the upper limit

of integration makes lt responsive to TKE anywhere in

the grid column, perhaps far above the PBL. This limit

was changed to zi 1 Dz, where Dz 5 0.3zi is the

transition-layer depth (Garratt 1992). With this modifi-

cation, an accurate calculation of zi becomes necessary

(described below).

The buoyancy length scale lb is given by

l
b
5

8>>>>>>>><
>>>>>>>>:

a
2

q

N
N. 0 and §$ 0

q

N

"
a
2
1

5

a
2

�
q
c

�
l
t
N

�1 =

2
#

N. 0 and §, 0

‘ N# 0,

,(B5)

where theBrunt–Väisälä frequency,N5 [(g/u0)›uy /›z]
1/2

and qc 5 [(g/u0)hwuyiglt]1/3, is a turbulent-velocity scale.

The coefficient a2 is important for modulating the size

of lb. Reducing a2 from 1.0 to 0.60 is sufficient to help

reduce the diffusivity to typical values seen prior to the

CK modification.

To improve the specification of free-atmosphere mix-

ing lengths, a nonlocal formulation from Bougeault and

Lacarrere (1989)was implemented. To largely restrict the

use of the Bougeault–Lacarrere mixing length lBL to the

free atmosphere, a blending approach is adopted across

the transition layer, where the averaged length scale lm is

used below zi, and lBL is used above.

c. Addition of the hybrid zi diagnostic

The modifications presented above require the MYNN

to use zi as an internal variable. Results fromLemone et al.

(2013, 2014) show that a potential-temperature-based

definition of zi is generally accurate for convective

boundary layers, while TKE-based definitions are

superior for stable boundary layers; therefore, a hy-

brid definition has been implemented. The potential-

temperature-based definition of zi (zi,u) is taken from

Nielsen-Gammon et al. (2008). The TKE-based defi-

nition of zi (zi,TKE) is taken to be the height at which the

TKE decreases to below a threshold value, TKEmin.

The quantity TKEmin was chosen to be 5% of the

maximum near-surface TKE—a criterion also used

by Kosović and Curry (2000). These two zi definitions

are blended such that zi,u will dominate for neutral

and unstable conditions (zi,u . 200m), while zi,TKE

will dominate for stable conditions (zi,u , 200m)

using a transition-layer depth of 300m. This hybrid

algorithm has been shown to accurately diagnose the

boundary layer height throughout a diurnal cycle

(Fitch et al. 2013).

d. Coupling the subgrid-scale clouds from theMYNN
to the radiation scheme

The MYNN employs a partial-condensation scheme

to represent unresolved clouds. The presence of clouds

contributes to a buoyancy flux that affects the pro-

duction of TKE and theMYNN stability functions. The

original MYNN uses the partial-condensation scheme

of Sommeria and Deardorff (1977) to estimate the

subgrid-scale cloud fraction and mixing ratio, but this

scheme has been found to poorly represent shallow-

cumulus coverage. The partial-condensation scheme

was modified to use a relative-humidity (RH)-based

cloud fraction, similar to Slingo (1980), but made de-

pendent on the surface sensible heat flux. The cloud

fraction (s) is given by

s5

�
RH2RH

c

12RH
c

�m

, (B6)

where m 5 2.0 and the critical relative humidity RHc is

RH
c
5 12 0:35

�
12

HFX
conv

–HFX

HFX
conv

�2

, (B7)

where HFXconv 5 250Wm22 and the surface sensible

heat flux HFX is bounded between zero and HFXconv.

This form produces nonzero cloud fractions when RH.
65% and HFX . 250Wm22. Since this is only reason-

able in shallow-cumulus environments, cloud fractions

are only permitted in a layer between zi and zi 1 Dzshcu.
The depth of the layer, Dzshcu, is a function of the mean

RH in the boundary layer (RHPBL) and HFX, suggested

by Zhang and Klein (2013; but not given in functional

form):
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Dz
shcu

(m)5 2001a
HFX

(RH
PBL

1 0:5)1:5, (B8)

where aHFX 5 3 3 MAX(HFX, 0.0). Thus, for strongly

convective boundary layers (HFX . 500Wm22) and

RHPBL . 0.5, the cloud layer Dzshcu can exceed 1500m,

but in more moderate convective boundary layers,

Dzshcu ranges from 500 to 1500m. The subgrid cloud

fraction and subgrid-scale cloud water mixing ratio in

the MYNN scheme are coupled to the radiation scheme

in RAPv3.

e. Evaluation of MYNN modifications with RAP

Figure B1 shows diurnal composites of 12-h forecast

biases and RMS errors for 2-m temperature and 10-m

wind. Forecasts from RAPv3 (which uses the enhanced

MYNN scheme) are compared with those from an ex-

perimental RAP without the MYNN enhancements

described in this appendix. Improvements from the

MYNN enhancements are evident in the wind speed

biases and RMSEs throughout the diurnal cycle. The

temperature bias and RMSE in RAPv3 are improved

or comparable with those in the retracted-MYNN

RAP except for a small degradation in the tempera-

ture RMSE from 1300 to 2000 UTC. A more detailed

analysis will be presented in a forthcoming manuscript

on MYNN development.
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