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ABSTRACT

Space-based precipitation radar data have been underused in data assimilation studies and operations
despite their valuable information on vertically resolved hydrometeor proÞles around the globe. The authors
developed direct assimilation of reßectivities (Ze) from the Dual-Frequency Precipitation Radar (DPR) on
board the Global Precipitation Measurement (GPM) Core Observatory to improve mesoscale predictions.
Based on comparisons with Ze observations, this cloud resolving model mostly reproduced Ze but produced
overestimations of Ze induced by excessive snow with large diameter particles. With an ensemble-based
variational scheme and preprocessing steps to properly treat reßectivity observations including conservative
quality control and superobbing procedures, the authors assimilated DPR Ze and/or rain-affected radiances
of GPM Microwave Imager (GMI) for the case of Typhoon Halong in July 2014. With the vertically resolving
capability of DPR, the authors effectively selected Ze observations most suited to data assimilation, for
example, by removing Ze above the melting layer to avoid contamination due to model bias. While the GMI
radiance had large impacts on various control variables, the DPR made a Þne delicate analysis of the rain
mixing ratio and updraft. This difference arose from the observation characteristics (coverage width and
spatial resolution), sensitivities represented in the observation operators, and structures of the background
error covariance. Because the DPR assimilation corrected excessive increases in rain and clouds due to the
radiance assimilation, the combined use of DPR and GMI generated more accurate analysis and forecast than
separate use of them with respect to the agreement of observations and tropical cyclone position errors.

1. Introduction

A wide spectrum of satellite data have been used in
operational and research data assimilation systems for
numerical weather predictions (NWPs) because of their
signiÞcantly favorable impacts on maintaining and im-
proving the accuracy of the predictions. However, use of
cloud- and precipitation-affected data is still limited.
Regarding radiance data of infrared and microwave
imagers and sounders, for example, many NWP centers
mainly assimilate only clear-sky radiances. This is

attributed to the great complexity, non-Gaussian char-
acteristics, and highly nonlinear response of cloud and
precipitation processes, which makes it difÞcult to han-
dle those data in models and data assimilation systems.
Recently, signiÞcant effort has been made to assimilate
radiance data affected by clouds and precipitation with
advancements of data assimilation systems and NWP
models (McNally 2009; Bauer et al. 2010; Geer et al.
2010; Martinet et al. 2013; Okamoto 2013; Stengel et al.
2013). For precipitation radars on the ground, direct
assimilation of the reßectivity factor (hereafter re-
ßectivity, or Ze) in addition to Doppler winds has
undergone extensive development, and this has been
operationally implemented in several NWP centers
(Aksoy et al. 2010; Ikuta and Honda 2011; Kawabata
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et al. 2011; Wattrelot et al. 2014). In contrast, there has
been relatively less effort to assimilate space-based
active sensors that measure signals backscattered by
clouds or precipitation. Some studies have shown
promising results on assimilating space-based precipi-
tation radars and cloud radars (Benedetti et al. 2005;
Janisková et al. 2012; Janisková 2015). However, the
progress seems to be modest compared with studies on
radiances and ground-based radars. This is probably
because space-based active sensors are assumed to have
much smaller impacts than passive infrared and micro-
wave imagers and sounders because of the narrower
observation coverage. Another reason is that there is no
solid plan to realize those radars on a future operational
observation basis.

However, space-based precipitation radars can obtain
detailed vertically resolved information that is not
readily available for passive instruments. In addition,
space-based precipitation radars can observe areas be-
yond the range of ground-based radars, such as in areas
over the ocean. These features make space-based radars
complementary to space-based passive imagers and
sounders and ground-based radars. Thus, space-based
precipitation radars are expected to have positive im-
pacts on certain cases, for instance, severe storms and
tropical cyclones (TCs) over the ocean.Benedetti et al.
(2005) showed that by assimilating the Precipitation
Radar (PR) on board the Tropical Rainfall Measuring
Mission (TRMM) satellite, they could obtain improved
track predictions of several TCs in a global data assim-
ilation system. They pointed out that, despite the limited
impact on a global scale, even a small number of PR data
had a comparable impact with microwave imagers on
TRMM when PR sampled a meaningful portion of the
storm such as its center.

Despite these successful results,Benedetti et al.
(2005) admitted the underuse of vertical information
from the active sensors because they assimilated total
column water vapor (TCWV) transformed from radar
reßectivity proÞles. This was justiÞed by their global
data assimilation system that then had a relatively crude
resolution (; 40 km) and in which more emphasis was
put on temperature and humidity analyses than cloud
variables. Our interest here is on what impacts can be
obtained from space-based precipitation radars in as-
similation systems based on cloud-resolving models
(CRMs) with higher resolution. In particular, we are
interested in the situation when microwave imager ra-
diances are already assimilated, and we would like to
evaluate what additional impacts precipitation radars
give us for severe meteorological situations such as TCs.

To this end, we have developed an assimilation tech-
nique for the reßectivity of space-based precipitation

radars by using a regional CRM and data assimilation
system that can explicitly handle cloud variables.
The observations we mainly targeted were the Dual-
Frequency Precipitation Radar (DPR) on board the
Global Precipitation Measurement (GPM) Core Ob-
servatory. The DPR observability was enhanced relative
to the PR with respect to better sensitivity, double fre-
quencies, and higher vertical resolution. We selected a
case where the GPM Core Observatory sampled the
center of a rapidly intensifying TC in the west PaciÞc
Ocean and assimilated vertical Ze proÞles from DPR.
We also compared impacts of the DPR and the GPM
Microwave Imager (GMI) on board the GPM Core
Observatoryby assimilating them both separately and in
combination. This paper is organized as follows. In
section 2, observation, CRM, assimilation system and
observation operators are brießy explained.Section 3
presents the comparison study between CRM simula-
tion and DPR observation in the reßectivity space.
Section 4 demonstrates results of assimilation of DPR
and/or GMI. We conclude with summary and future
perspectives insection 5.

2. Methods

a. Observations

The GPM Core Observatoryis a follow-on satellite for
the TRMM, which carried the worldÕs Þrst space-based
precipitation radar, and was launched on 28 February
2014. The GPM Core Observatory has GMI and DPR
mounted on board. The DPR is the Þrst spaceborne
dual-frequency precipitation radar. It is expected to
advance precipitation science by expanding the cover-
age of observations to higher latitudes than those ob-
tained by the TRMM PR and by measuring snow and
light rain via high-sensitivity observations. In addition,
the DPR can provide drop size distribution (DSD) in-
formation based on the differential scattering properties
of the two frequencies. The advanced measurement
capability of the DPR will promote improved model
microphysics and the analysis of hydrometeor and re-
lated dynamical variables with data assimilation. The
DPR consists of two radars at the Ku band (13.6 GHz)
and Ka band (35.55 GHz), which are named KuPR and
KaPR, respectively. The horizontal resolutions of KuPR
and KaPR are both about 5.2 km at the ground level
when the satellite altitude is 407 km. There are three
scanning modes with different geometries and verti-
cal resolutions; these include ÔÔKuNS,ÕÕ ÔÔKaMS,ÕÕ and
ÔÔKaHS,ÕÕ where ÔÔNS,ÕÕ ÔÔMS,ÕÕ and ÔÔHSÕÕ represent
normal scans, matched scans, and high sensitivity scans,
respectively. For the KuNS mode, the KuPR beam scans
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49 angle bins with an entire swath width of 245 km. The
range resolution is 250 m, although the data are sampled
with 125-m intervals. For the KaMS mode, KaPR scans
the same angle bins and range bins as the inner 25 KuPR
angle bins with a 125-km swath width. In contrast, the
KaHS mode scans the interlaced scan area with a range
resolution of 500 m and a sampling range interval of
250 m, and it detects weaker precipitation signals
than KaMS.

In this study, we did not use KaMS mode data because
of its narrower swath than the KuNS mode and larger
noise than the KaHS mode. Range bins with main lobe
clutter were removed because they are not able to be
simulated by the observation operator. Moreover, be-
cause sidelobe clutter contamination is often found in
KuPR data (Kubota et al. 2016), range bins where a
procedure to reduce sidelobe clutter were applied were
removed in this study. The dataset we employed was the
DPR level 2 (2ADPR) version V03b, which was re-
leased on 2 September 2014. This dataset undergoes
radiometric corrections and contains quality informa-
tion, reßectivity factors, precipitation data, and DSD
data. We used attenuation corrected reßectivity factors
in both model evaluation and assimilation in this study.
Additional details about GPM, DPR, and the associated
processing steps can be found inHou et al. (2014) and
Kubota et al. (2014).

The GMI is a conical-scanning microwave imager that
has improved capabilities compared to the predecessor
TRMM Microwave Imager (TMI). With a rotating
antenna, a cone-shaped scan is made with a swath width
of 904 km at the ground level, which is much wider than
DPR. The GMI has 10 vertically and horizontally po-
larized channels at 10.65, 18.70, 36.50, 89.00, and
166.0 GHz, and three vertically polarized channels at
23.8, 183.316 3, and 183.316 7 GHz. Hereafter, each
channel is called, for example, 19V for the vertically
polarized channel at 18.70 GHz after its frequency
and polarization. The horizontal resolution or in-
stantaneous Þeld of view (FOV) size varies by 19.4
(32.2) km in the along-scan (cross-scan) direction for
10V to 4.4 (7.2) km for 183V. In assimilation pre-
processing, we produced ÔÔsuperobbedÕÕ GMI radiances
by averaging the original footprints within 5 3 5 model
grids (25 km 3 25 km) to make consistent footprint sizes
at different channels.

b. Model

The CRM used in this study is the Japan Meteoro-
logical AgencyÕs nonhydrostatic model (JMA-NHM;
Saito et al. 2006). The JMA-NHM has been used as an
operational mesoscale weather prediction system since
September 2004. The JMA-NHM used in this study

has a horizontal resolution of 5 km and 50 vertical layers
up to 21.8 km. It employs a KainÐFritsch (KF) convec-
tion scheme (Kain and Fritsch 1993) and a three-ice bulk
microphysics scheme (Ikawa and Saito 1991) based on
the work of Lin et al. (1983). Among the several options
in the cloud microphysics scheme, we chose to predict
the mass mixing ratio of liquid clouds Qc, rain Qr, ice
clouds Qci, snow Qs, and graupel Qg, and number
density of ice clouds Nci, snow Ns, and graupel Ng. The
DSDs were assumed to follow an inverse exponential
function for rain, snow, and graupel, and a monodisperse
function for liquid and ice clouds. These settings are the
same as the operational ones except for the two-moment
bulk scheme for snow and graupel.

c. Assimilation scheme

The data assimilation scheme was an ensemble vari-
ational (EnVA) method with preprocessing of dis-
placement error correction (DEC; Aonashi and Eito
2011). The EnVA method seeks an optimum analysis
state that minimizes a cost function deÞned in the en-
semble forecast error subspace. We deÞned the control
variables as the zonal, meridional, and vertical winds (U,
V, andW), the potential temperature PT, the ratio of the
total water content (sum of Qi, Qc, and the humidity
mixing ratio) to the saturation speciÞc humidity (RHW),
and the sum of the ßux of rain, snow, and graupel (Pr).
The DEC shifts the Þrst-guess Þeld to minimize the
horizontal displacement error deÞned by a misÞt of the
spatial pattern between observations and Þrst-guess
brightness temperature TB values at 19V. Aonashi
et al. (2015, manuscript submitted toMon. Wea. Rev.)
improved EnVA to reduce sampling errors especially
for precipitation-related variables by developing a
neighboring ensemble (NE) approach and scale-
dependent separation of control variables. The NE ap-
proach employed 5 3 5 grids surrounding a grid that
were analyzed based on spectral localization (Buehner
2012) to virtually increase ensemble members. As for
the scale-dependent variable separation, two groups of
control variables were deÞned that consisted of large-
scale variables (U, V, Ps, and RHW) and small-scale
variables (W, Pr, and anomalies from spatial averages
for the large-scale variables). Aonashi et al. (2015,
manuscript submitted to Mon. Wea. Rev.) showed that
the new EnVA successfully suppressed spurious forecast
error correlations.

d. Observation operators

To assimilate radiances and radar reßectivity, we need
observation operators that convert model variables into
their observation counterparts. For radar reßectivity
computations, we applied the Joint-Simulator (Hashino
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et al. 2013). The Joint-Simulator is a multisatellite
sensor simulator that covers visible, infrared, and mi-
crowave passive radiometers, precipitation and cloud
radars, and lidars. The Joint-Simulator calculates optical
parameters (extinction coefÞcient kext, backscattering
coefÞcient s b, single-scattering albedo, and asymmetry
factor) based on Mie theory given the DSD and mass-
dimensional relationship for each hydrometeor cate-
gory that are consistent with the input CRM. In this
study, we derived these parameters from a precalcu-
lated look-up table (LUT) to speed up the radar sim-
ulations. Precipitation reßectivity simulations in the
Joint-Simulator are based onMasunaga and Kummerow
(2005)as follows:

Ze 5
l 4

p 5jK j2
s b exp

�
2 2

ðr

0
kext(r

0) dr0

�
,

K 5
(«2 1)
(«1 1)

,

s b 5 �
5

i5 1

ð‘

0
s b,i (D)N(D) dD ,

kext 5 �
5

i5 1

ð‘

0
kext,i (D)N(D) dD , (1)

where « is the dielectric constant, l is the wavelength of
the radar, r is the distance from the satellite, D is the
hydrometeor diameter, N(D) is the DSD, and Ze is the
reßectivity. The total extinction coefÞcient kext and total
backscattering coefÞcients b are obtained by summing
kext,i and s b,i, respectively, for Þve hydrometeor species
i. Actually we omitted the attenuation term expressed
with exponential of kext because we used attenuation
corrected observations in this study. The Joint-
Simulator has an option to calculate a brightband
echo by taking into account the effective dielectric
constant of melting ice particles. However, we decided
not to use this option because we found that an
anomalously strong echo was produced compared with
the observations (not shown). This stems from the fact
that the JMA-NHM lacks the fraction of water volume
and it has a poor vertical resolution (; 500 m at a 5-km
altitude) that is insufÞcient to represent the melting
layers.

As for the microwave radiances, we adopted the four-
stream, plane-parallel radiative transfer model that was
developed byLiu (2004, hereafter called LiuRTM). The
LiuRTM approximates the single scattering properties
of nonspherical ice particles. The LiuRTM was im-
plemented at each model grid point, and the computed
radiances were averaged within 53 5 model grid boxes
to match the superobbed GMI radiances.

3. Model evaluation

We compared model simulations and DPR KuNS and
KaHS observations in Ze space to understand the
characteristics of the JMA-NHM, Joint-Simulator, and
DPR observations. This investigation helped to develop
preprocessing of assimilating Ze. Among the several
comparison cases we made, one typical result shown in
this paper relates to Typhoon Halong. Halong de-
veloped in the Mariana Islands on 29 July 2014, moved
westward to the Philippines, and rapidly intensiÞed on
1 August 2014. Halong then moved northward and
made a landfall in Japan on 6 August 2014. The GPM
Core Observatory passed over HalongÕs center region
around 148N, 1408E at 1135 UTC 31 July 2014. We ran
12-h forecasts from the operational mesoscale analysis
at 0000 UTC 31 July 2014. Before the comparison, we
removed observations ßagged as bad quality (i.e., by
using ÔÔFLG%ßagEchoÕÕ in the 2ADPR dataset) and
contaminated by ground clutter (ÔÔFLG%qualityDataÕÕ).
We also excluded observations or simulations with Ze
values smaller than 14 dBZ. This threshold was chosen
through a visual examination to make balance between
minimizing Ze noise and maximizing the number of
used data, and based on the nominal minimum detect-
able level of 18 dBZ for KuPR and 12 dBZ for KaPB
(Hou et al. 2014). Because a recent study showed the
minimum detectable echoes were estimated to be be-
tween 12 and 14 dBZ for KuNS and 12 dBZ for KaHS
(Toyoshima et al. 2015), probably we can set lower
thresholds (e.g., 12 dBZ), especially for KaHS. The
comparison was made at observation locations after
implementing a bilinear horizontal interpolation of the
JMA-NHM at the model layers and computing the ra-
dar echo simulation according to Eq. (1) with the Joint-
Simulator. It is noted that no vertical interpolation was
performed in this comparison study to avoid blurring
the vertical structure.

Figure 1 shows horizontal cross sections at 2.5-km
altitude and vertical cross sections at the nadir angle bin
for KuNS Ze. Removal of observations affected by
sidelobe clutter is responsible for the two blank lines
along the satellite path in Fig. 1a. Overall, the JMA-
NHM reproduces observed Ze around the eyewall well.
However, it seems that there is a lack of spread in the
modest echo area (Ze5 30Ð35 dBZ). The vertical cross
section in Fig. 1 shows that the simulated strong rain
echo expands beyond 10 km around 15.58N, although
the observed echo is capped with a melting layer at 5 km.
Figure 2 shows the contoured frequency by altitude di-
agrams (CFADs), which represent the normalized
probability distribution of Ze at different altitudes, for
the observed and simulated Ze of KuNS. The melting
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layer was identiÞed at around a 5-km altitude in the
CFAD from observed Ze in Fig. 2a. One notable feature
was the overestimation of simulated echo above the
melting layer up to 12 km, which made it difÞcult to
distinguish between ice and liquid regions. This problem
was already reported earlier byEito and Aonashi (2009)
who compared ground-based precipitation radar and
JMA-NHM simulations. They attributed the over-
estimation to the larger size of simulated snow particles.
Kotsuki et al. (2014) also showed that the echo top of the
DPR Ze in simulations from the global nonhydrostatic
CRM and Joint-Simulator was systematically higher
than that of observations, thus suggesting that there was
an overestimation of snow and graupel in the model. We

further investigated the cause of this overestimation by
comparing ice particle diameters from the JMA-NHM
and KuNS observations.

Figure 3 shows the accumulated hydrometeor number
density as a function of particle size diameter D and
altitude for observations and simulations. This diagram
was made by counting particles in a diameter bin based
on the DSD form for each hydrometeor. The DSD pa-
rameters were determined from the mixing ratio and
number density at every grid point for each hydrome-
teor for the simulations, and from the mass-weighted
mean diameter and number density at every radar bin
given in the 2ADPR dataset for the observations (Seto
et al. 2013). The observation diagram displays the most

FIG . 1. KuNS reßectivity Ze (a),(b) observed and (c),(d) simulated for Typhoon Halong at 1200 UTC 31 Jul 2014. (a),(c) The horizontal
cross section at an altitude of 2.5 km and (b),(d) the vertical cross section at the nadir angle bin are plotted. The Ze simulation was
performed at the ground point of observations and JMA-NHMÕs vertical levels; this produced gaps in the vertical cross section corre-
sponding to the model resolution.
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frequent occurrence at log10(D) ; 2 0.3 or D ; 0.8 mm
while the simulation diagram shows it at the smallest
diameter. This difference reßects different DSD forms
of a gamma distribution for the observations and in-
verse exponential and monodisperse distributions for
the JMA-NHM data. The outer contour at the loga-
rithm of the number density at 0.1 delineates a gradual
decline above 5 km for the observations, while it stays
constant from 5 to 12 km and rapidly decreases above
12 km for the simulations. These trends correspond
well to the CFAD in Fig. 2. We separated the accu-
mulated number density into Þve hydrometeor species
for simulations. Figure 4 shows that snow accounts for
the largest portion between 5 and 12 km, especially for
hydrometeors with large diameter of D . 10 mm.
These results suggest that the overestimation of simu-
lated Ze above the melting layer, especially between 5
and 12 km, can be explained by the JMA-NHM ex-
cessively generating larger snow particles, which is
consistent with the Þndings ofEito and Aonashi (2009).
This overestimation trend became slightly worse when

a one-moment bulk microphysics scheme for snow and
graupel was applied (not shown).

The CFAD in Fig. 2 also shows that the highest fre-
quency was around 32 dBZ below 5 km for the obser-
vations, while it decreased toward the ground for the
simulations. We speculate that this was associated with
the evaporation process of stratiform rain in the JMA-
NHM in which a one-moment bulk microphysics scheme
was adopted for rain hydrometeor. The evaporation
process decreases mass of rain particles, and then re-
duces effective radius in the one-moment scheme. In
reality, however, smaller particles are more likely to be
evaporated and more large particles remain at a low
altitude. Because this decreasing trend could not always
be seen in other TC cases, however, more careful in-
vestigation will be necessary, for example, by examining
the relationship between the reducing radius and
downdraft, temperature and humidity, before drawing
conclusions.

FIG . 2. Contoured frequency by altitude diagrams (CFAD) for
(a) the observed KuNS Ze and (b) the simulated KuNS Ze from the
samples shown inFig. 1. The bin size of Ze and altitude are 2 dBZ
and 125 m, respectively. The black lines represent frequencies of
0.01, 0.05, 0.1, and 0.2.

FIG . 3. Accumulated hydrometeor number density (N, m2 3 mm2 1)
as a function of the particle (D , mm) size diameter and altitude
for (a) observations and (b) simulations. The number density
and diameter are displayed in the common logarithmic scale.
Black lines are plotted where the logarithm of density is 0.1
and 2.
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The CFAD for KaHS in Fig. 5 shows that the overall
features were similar to that of KuNS (excessive scat-
tering above the melting layer and decreasing scattering
toward the ground in the simulation). The smaller Ze
below the melting layer can be probably generated by
evaporation process in the model. An additional possi-
ble cause is the fact that Joint-Simulator does not in-
clude the multiscattering effect. Battaglia et al. (2015)
suggested that a single-scattering echo can be more
strongly attenuated than a multiple-scattering echo and
that this effect was more obvious for the Ka band than
the Ku band. Although observations affected by ground
clutter were supposed to have been already removed
based on the clutter identiÞcation ßags in the 2ADPR
dataset, there still remained anomalously strong Ze
below 2 km, thus implying some deÞciency in the KaPR
clutter identiÞcation algorithm. Another interesting
difference from KuNS CFAD was the relatively clear
distinction between ice and liquid regions. This is
probably associated with the fact that scattering pro-
cesses in the Ka band slightly deßects away from the Mie

scattering regime that is strongly sensitive to particle
size. Therefore, the JMA-NHMÕs snow particle size bias
was less evident in KaHS than in KuNS.

4. Experimental assimilation

a. Assimilation system for DPR reßectivity

We extended EnVA to assimilate reßectivity proÞles
from space-based precipitation radars by incorporating
the Joint-Simulator and developing preprocessing ded-
icated to reßectivity data. EnVA minimizes a cost
function through iterative calculations in a linear ap-
proximation (inner loop) and by updating the back-
ground state and observation operators (outer loop).
We implemented Þve outer-loop updates and, on aver-
age, three to four inner-loop minimizations in the indi-
vidual outer loop.

Quality control (QC) procedures can exclude not only
erroneous observations but also those that are not well
reproduced by the models or observation operators.
Several QC procedures were developed based on the

FIG . 4. (a) The same asFig. 3b, and the accumulated number density for (b) liquid clouds, (c) rain, (d) ice clouds, (e) snow, and (f) graupel.
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Þndings in section 3. Observations in and above the
melting layers were discarded because the serious bias of
the JMA-NHM and the inability to simulate brightband
echo by the JMA-NHM and Joint-Simulator. Observa-
tions contaminated by ground clutter were also re-
moved. As the clutter ßag in the 2ADPR dataset
occasionally missed the identiÞcation of clutter con-
tamination, we built a look-up table containing the
highest altitude of the clutter-contaminated range bin
as a function of the view angle. We excluded bins where
there was no precipitation both in observations and
ensemble mean Þrst-guess (FG) values. We set the
minimum Ze to 14 dB Z for both KuNS and KaHS and
considered the presence of precipitation when observed
or simulated Ze was over this level. If precipitation was
present in observations but not in FG simulations, we
assigned the minimum Ze (14 dBZ) to the FG and vice
versa. The range bins with isolated precipitation, which
was deÞned as the absence of precipitation in consecu-
tive range bins, were rejected. Finally, we removed cases
with large differences between observed Ze and en-
semble mean FG Ze values. Note that the QC pro-
cedures were applied in each outer loop; hence, some
data could be rescued or excluded as the background
state was updated.

The DPR Ze observations that passed all of the QC
procedures were averaged (or superobbed) in two hor-
izontal and vertical bins. The superobbed Ze reduced
the random noise and helped EnVA to effectively
minimize the cost functions. Moreover, we believe the
reduced spatial resolution in the superob (about 10 km
in contrast to the original 5-km resolution) was more
agreeable to the effective model representative scale.

Figure 6 shows an example of observed Ze before the
QC procedures and superobbed Ze that passed the QC
procedures for KuNS Ze. The available data were sig-
niÞcantly reduced with the QC procedures, in this case,
from 2 658 600 to 133 176 data points (the survival ratio
was 5.0%), and then, the data were further decreased by
the superobbing procedure to 27 849 data points (1.1%).
A similar reduction ratio was found for KaHS; that is,
661 461, 40 438, and 7540 data points before QC pro-
cedures, after QC procedures, and after superobbing,
respectively (6.1% and 1.1%).

Observation errors were empirically set to 4 dBZ for
KuNS and 3 dBZ for KaHS. These Þgures were larger
than what Benedetti et al. (2005) used for PR re-
ßectivities (1.1 dBZ). This could be partially justiÞed by
omitting observation error correlations in neighboring
bins, but such an approach may need reevaluation in the
future. In this study, we did not implement a bias cor-
rection procedure because we removed data suffering
from serious bias in the ice region.

b. Assimilation experiment setup

We performed assimilation experiments to assess the
impacts of DPR reßectivities for the Typhoon Halong
case, as already discussed insection 3. Many NWP
centers wrongly predicted a northward track instead of
westward propagation, and they also failed to predict
the rapid intensiÞcation. The GMI radiances and/or
DPR reßectivities were assimilated at 1200 UTC 31 July
2014 when the GPM Core Observatory satellite over-
passed the center region of Halong, Vietnam. We
implemented JMA-NHM and EnVA with the same
horizontal and vertical resolution (5 km and 50 layers) in
401 3 401 grid points. Figure 7 shows the experiment
domain, the track of Halong every 6 h and KuNS and
KaHS observation pixels at the assimilation time. We
conÞrmed in several sensitivity tests that this domain
was large enough for boundary conditions not to affect
analysis and subsequent 48-h forecast. The number of
ensemble members was 52, and initial perturbations
were created from JMAÕs weekly global ensemble
forecast system (JMA 2013). We ran 12-h ensemble
forecasts, which were used as FG and to construct the
ßow-dependent background error covariance in EnVA.
We found that 12 h was sufÞcient to generate reasonable

FIG . 5. As in Fig. 2, but for KaHS and the altitude bin size of 250 m.
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hydrometeors and their error covariance by validating,
for example, the disappearance of model spinup, in
several different cases.

We carried out seven assimilation experiments with
different data conÞgurations, and these are summarized
in Table 1. The Þrst group of experiments (ÔÔKuonly,ÕÕ
ÔÔKaonly,ÕÕ and ÔÔGMIonlyÕÕ) assimilated the single in-
strument KuNS Ze, KaHS Ze, and GMI radiance data,
respectively. The second group (ÔÔGMI1 KuÕÕ and
ÔÔGMI1 KaÕÕ) assimilated both GMI radiance and Ze
data from KuNS or KaHS. The third group (ÔÔGMI1
KuKaÕÕ) assimilated all of these three types of observa-
tions. In the GMI-related experiments, only clear-sky
GMI radiances were included in the Þrst outer loop and
rainy GMI radiances were assimilated in the second and
later outer loops. Assimilated channels were 10V, 19V,
24V, 37V and 89V, and their observation errors were

assigned to 2.236, 2.236, 2.236, 5.0, and 10.0 K for clear-
sky condition, and 3.162, 3.162, 3.162, 10.0, and 20.0 K
for rainy conditions, respectively. In the Kuonly and
Kaonly experiments, Ze was assimilated in all of the Þve
outer loops. In the GMI 1 Ku, GMI 1 Ka, and GMI 1
KuKa experiments, Ze was assimilated in the third to Þfth
outer loop. This was intended to better assimilate Ze after
the radiance assimilation updated the background state, in
which clouds and rain should be better represented than
by the FG. Note that we did not run cycle experiments in
this study indicating that all of these experiments used the
same FG Þeld. Conventional data were provided with all
of these experiments, but only 47 bogus wind data points
(TC bogus; JMA 2013) were assimilated. As a reference
experiment, we ran a ÔÔCNTLÕÕ experiment that assimi-
lated only conventional data. The DEC was applied to all
of these experiments including CNTL.

FIG . 6. (a),(b) Observed Ze before QC procedures and (c),(d) superobbed Ze after QC procedures for KuNS around Typhoon Halong
at 1200 UTC 31 Jul 2014. (a),(c) Bins at 2.5-km altitude and (b),(d) bins at the nadir angle are plotted. The Ze values smaller than 14 dBZ
were set to the assumed minimum value of 14 dBZ.
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c. Assimilation results: Analysis

An example of the reßectivity assimilation results is
presented in Fig. 8, and the results show the ensemble
mean of the FG and analysis (AN) of KuNS Ze at 2.5 km
and the nadir (26th) angle bin for the Kuonly experi-
ment. Hereafter, FG indicates the ensemble mean of the
FG. Overall, the FG echo was less structured and
broader than the observations inFig. 6. Assimilating the
KuNS Ze sharpened the Ze structure by getting closer
to the observations shown in Fig. 6. Figures 9 and 10
compare the assimilation results among the Kuonly,
GMIonly, and GMI 1 Ku experiments. Figure 9 shows
FG and AN increments (AN minus FG) for the rain
mixing ratio and liquid cloud mixing ratio, vertical wind,
and zonal wind. Assimilating KuPR Ze alone resulted

in a detailed adjustment for rain (Fig. 9b), while use of
GMI alone mostly increased rain (Fig. 9c). As for clouds,
KuPR Ze produced invisibly small changes in Fig. 9f,
while GMI TB signiÞcantly increased clouds in Fig. 9g.
This can be explained by the observation sensitivity
formulated in the observation operators and the cross-
variable correlations in the background error covariance
in EnVA. There is a very large (small) dependence of Ze
on rain (clouds) at DPR frequencies, but TB has large
sensitivity to both rain and clouds although it varies with
the frequency. Second, in the background error co-
variance of EnVA, rain was only marginally correlated
with analysis variables of clouds (Fig. 9f) and potential
temperature (Fig. 9j). In contrast, there was substantial
correlation between rain and vertical wind, and small
correlation between rain and horizontal winds. These

FIG . 7. Domain of assimilation experiment (gray shading, 2000 km3 2000 km). Track of
Halong and minimum pressures from the best track are plotted every 6 h with colored circles.
The square symbol indicates when the assimilation was implemented at 1200 UTC 31 Jul
2014. KuNS and KaHS pixels at the assimilation time were overlaid with green and blue dots,
respectively.

TABLE 1. Observation data (ÔÔOÕÕ) conÞguration used in the assimilation experiments.

Expt name GMI radiance KuPR (KuNS) reßectivity KaPR (KaHS) reßectivity Conventional

Kuonly O O
Kaonly O O
GMIonly O O
GMI 1 Ku O O O
GMI 1 Ka O O O
GMI 1 KuKa O O O O
CNTL O
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correlations produced obvious (small) changes in verti-
cal wind (horizontal winds) by assimilating Ze, shown in
Fig. 9n (Fig. 9r), leading to the change in structure and
location of Halong. Finally, Þne-structured analysis in-
crements in the Kuonly experiment stemmed from the
small horizontal lengths of the background error cor-
relations of rain and the relatively high resolution of
KuNS superobs. The GMI 1 Ku experiment produced
intermediate corrections between the Kuonly and GMIonly
experiments (Figs. 9d,h,l,p,t), as we had expected.

The correction by the assimilation was veriÞed based
on the agreement of AN with observations in Fig. 10.
Figure 10ashows positive FG differences from observed
Ze in the center of Halong and negative differences on
some portions of the rainbands, which are indicative of
overestimations and underestimations of FG rain in the
respective area.Figure 10eshows negative FG differences
from observed TB at 19V in most of the observed area,

thus indicating insufÞcient hydrometeors and humidity in
the FG. Assimilating KuNS Ze obviously brought AN
closer to Ze observations except for in a detached area in
the north of the satellite path ( Fig. 10b). However, the
AN difference in TB at 19V was scarcely changed from
the FG difference except for in the center region
(Fig. 10f). Assimilating only TB corrected the wide area
and various variables, leading to smaller AN differences
in both Ze and TB ( Figs. 10c and 10g). However, the AN
difference in Ze was obviously positive around the center
of Halong ( Fig. 10c), which was probably due to the ex-
cessive increase of rain.Figures 10d and 10hshow that the
GMI 1 Ku experiment resulted in the best balanced
analysis, which was sufÞciently close to both Ze and TB,
and that the experiment seemed to avoid the damage from
excessive correctionby TB assimilation.

The root-mean-square (RMS) and average (bias) of
FG and AN differences from TB and Ze observations

FIG . 8. (a),(b) Ensemble mean of Þrst-guess (FG) Ze and (c),(d) analyzed Ze of KuNS for the Kuonly experiment at (a),(c) 2.5-km altitude
and (b),(d) the nadir bin.

JUNE 2016 O K A M O T O E T A L . 2317

�8�Q�D�X�W�K�H�Q�W�L�F�D�W�H�G���_���'�R�Z�Q�O�R�D�G�H�G���������������������������������$�0���8�7�&




















