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ABSTRACT

Probabilistic Þre-weather forecasts provide pertinent information to assess Þre behavior and danger of
current or potential Þres. Operational Þre-weather guidance is provided for lead times fewer than seven days,
with most products only providing day 1Ð3 outlooks. Extended-range forecasts can aid in decisions regarding
placement of in- and out-of-state resources, prescribed burns, and overall preparedness levels. We demon-
strate how ensemble model output statistics and ensemble copula coupling (ECC) postprocessing
methods can be used to provide locally calibrated andspatially coherent probabilistic forecasts of the
hotÐdryÐwindy index (and its components). The univariate postprocessing Þts the truncated normal
distribution to data transformed with a ßexible selection of power exponents. Forecast scenarios are
generated via the ECC-Q variation, which maintains their spatial and temporal coherence by reordering
samples from the univariate distributions according to ranks of the raw ensemble. A total of 20 years of
ECMWF reforecasts and ERA-Interim reanalysis data over the continental United States are used. Skill of
the forecasts is quantiÞed with the continuous ranked probability score using benchmarks of raw and cli-
matological forecasts. Results show postprocessing is beneÞcial during all seasons over CONUS out to two
weeks. Forecast skill relative to climatological forecasts depends on the atmospheric variable, season, loca-
tion, and lead time, where winter (summer) generally provides the most (least) skill at the longest lead times.
Additional improvements of forecast skill can be achieved by aggregating forecast days. Illustrations of these
postprocessed forecasts are explored for a past Þre event.

1. Introduction

Fire-weather forecasting for decision-making is a com-
plex process that involves knowledge of atmospheric
conditions, local topography, and state of vegetation/fuels.
WildÞres are a global phenomena that occur often in
Australia, Brazil, Canada, China, Greece, Portugal,
Russia, South Africa, United States, among many other
countries (Shvidenko and Schepaschenko 2013; McGee
et al. 2015; Sharples et al. 2016; Palaiologou et al. 2018;

Moreira and PeÕer 2018; Tedim et al. 2018; Eugenio et al.
2019). Although wildÞres are an integral component to
the natural ecosystem (Hutto 2008; Bowman et al. 2011),
they lead to great loss of lives, property, and vulnerable
habitats. Between 2008 and 2018, wildÞres burned over
30.4 million ha of U.S. lands (NIFC 2019) and more than
29.1 million ha of land in Canada from 2007 to 2017
(NRCAN 2019). WildÞres also generate toxic emissions
and smoke that can disperse hundreds or even thou-
sands of kilometers from a Þre affecting transportation
visibility and human health ( Reid et al. 2016; Black et al.
2017). In these ways, the effects of wildÞres cross geo-
graphical and political boundaries making them a threat
to much of the global population.

The effects of wildÞres are expected to increase as
changes in climate lead to longer Þre seasons, more
frequent wildÞres and lightning discharges, and larger
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Þre-burned areas (Flannigan et al. 2000, 2013; Westerling
et al. 2006). Additionally, recent demographic shifts for
new residential development at the wildlandÐurban in-
terface further bolsters the threat that wildÞres can have
on the human population (Radeloff et al. 2018). Fire-
weather forecasting may not prevent wildÞres from
starting, but a skillful forecast with ample lead time could
help prevent loss of life and property by informing the
decision-making process.

Information about the uncertainty of a forecast can
provide decision-makers with a range of possible out-
comes and the amount of conÞdence associated with
a particular event (Krzysztofowicz 2001), which is
valuable for deciding if, when, and how many precau-
tionary measures should be taken. For Þre- and land-
management agencies, these decisions could include
opting for or against performing a prescribed burn,
issuing public alerts or restrictions, prepositioning non-
local resources for reinforcement, and assessing overall
preparedness levels.

The Þre-forecasting community typically relies on de-
terministic forecasts (also called point forecasts), but a
shift to probabilistic forecasts of Þre-weather indices is
beginning to appear in the literature (Di Giuseppe et al.
2016; Srock et al. 2018). Probabilistic forecasts aim
to predict the uncertainty of a quantity or event of interest
in the form of full predictive probability distributions
(Gneiting and Katzfuss 2014) rather than single-valued or
point forecasts. These aforementioned studies calculated
Þre indices with different forecast ensemble members
out to a maximum of 6 or 10 days ahead. However, these
forecasts are not postprocessed to account for system-
atic biases in the model and loss of skill with longer lead
times. Therefore, we focus this paper on the generation
and validation of postprocessed Þre-weather forecasts
in the extended range (deÞned here as the time range
between 3 and 14 days).

Many meteorological centers around the world are
now running numerical ensemble prediction systems to
generate probabilistic forecasts spanning lead times
of a few hours to several months. Typically, an NWP
ensemble is generated by making slight modiÞcations
to the initial conditions, stochastically perturbing the
model physics, and sometimes by running separate en-
semble members with different physics schemes and/or
dynamic cores to create a blend of models (Buizza et al.
1999; World Meteorological Organization (WMO)
2012). Although ensemble forecasts are available
for lead times in the extended range and beyond, it can
be difÞcult to get skillful predictions at subseasonal to
monthly time scales (Hudson et al. 2011; White et al.
2017). At these scales, forecasts not only include inßu-
ences from initial model conditions but also conditions

that evolve on slower time scales such as soil moisture
and sea surface temperatures (White et al. 2017).

Advances in data assimilation techniques, model
initialization, physics parameterizations, and spatial
and temporal resolution over the last decade now allow
researchers to explore forecasts in the middle range
between short-range weather forecasts and climate
forecasts, known as subseasonal-to-seasonal forecasts
(herein, we focus on predictions in the extended range,
which include subseasonal forecasts out to two weeks).
Even still, unmodiÞed or raw ensemble forecasts are of-
ten underdispersive (Hamill and Colucci 1997; Raftery
et al. 2005; Stauffer et al. 2017); they do not capture the
full range of forecast scenarios and therefore yield in-
sufÞcient estimates of the total uncertainty associated
with a forecast. Raw ensemble forecasts are also often
biased as a result of insufÞcient model resolution, es-
pecially over regions of complex terrain (Stauffer et al.
2017) and from deÞciencies in physical model assump-
tions and data assimilation procedures (Buizza et al.
2005). These errors become even more problematic at
longer lead times as the forecast moves farther away
from initial constraints provided by the data assimila-
tion system and as small errors in the initial conditions
compound with each forecast integration (Hamill and
Colucci 1997).

The presence of these errors necessitates statistical
postprocessing of the raw ensemble to yield calibrated
and sharp probabilistic forecasts, the overall goal of
probabilistic forecasting (Gneiting et al. 2007). Calibrated
refers to the statistical consistency between forecasts
from the predictive distribution and the corresponding
verifying observations whereas sharpness refers to the
spread of the forecast ensemble (Gneiting et al. 2007). A
well-calibrated forecast would suggest a probability of
an event that is consistent with the average proportion
of time that the event is observed, while sharpness im-
plies that the forecast is as speciÞc (e.g., short prediction
intervals, event probabilities close to zero or one) as
possible. Herein, we focus on postprocessing methods
that use raw ensemble forecasts to generate full pre-
dictive cumulative distribution functions (CDFs) for
any grid location on the model domain which are then
turned into Þnite calibrated ensemble forecasts.

Some univariate statistical postprocessing methods
that are commonly used on meteorological ensemble
forecasts are Bayesian model averaging (Raftery et al.
2005), and nonhomogeneous Gaussian regression,
also referred to as ensemble model output statistics
(EMOS, Gneiting et al. 2005). These approaches use
historical forecastÐobservation pairs as training data
to Þt regression models. With these data pairs, the goal is
then to identify and correct biases in the raw ensemble
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by generating predictive distributions that do not suffer
from the same deÞciencies. These methods deÞne the
parameters of the predictive distribution for each lead
time and location. However, forecasters often want to
know how an event will unfold over several lead times or
locations, which requires multivariate statistical post-
processing. Multivariate postprocessing accounts for the
spatial and temporal correlations between lead times
and locations while preserving the initial skill gained by
the univariate postprocessing steps.

DeÞning the relationship between the independent
univariate predictive distributions to generate a multi-
variate ensemble can be done with a nonparametric
sampling-reordering approach. This approach samples
from a marginal predictive distribution and then re-
orders the samples at each lead time according to the
rank structure of a speciÞed dependence template.
Some dependence templates rely on past observations
(e.g., Schaake shufße and adaptions thereof,Schefzik
2016; Scheuerer et al. 2017; Worsnop et al. 2018), while
others rely on the raw forecast ensemble (ECC,Schefzik
et al. 2013).

In this paper, we use 11-member ensemble reforecasts
from an operational version of the ECMWF model
and reanalysis data from ERA-Interim (data described
in section 3) to generate and validate extended-range
probabilistic forecasts of the hotÐdryÐwindy index
(HDWI) (described in section 2), which relies solely on
values of temperature, moisture, and wind speed. We
use the EMOS approach (described insection 4) to Þrst
generate calibrated and sharp univariate predictive
distributions of meteorological variables that are used to
calculate the HDWI. We then apply a variant of the
ECC method (described in section 5) to produce co-
herent multivariate ensemble forecasts of the HDWI
and its components out to two weeks. Performance of
the postprocessing methods against raw and climato-
logical forecasts is evaluated with estimates of the skill
of the continuous rank probability scores (CRPSS) in
section 6. Examples of how the postprocessed forecasts
could be used for forecasting is discussed insection 7and
are followed with conclusions and a discussion of the
utility of these methods for operational Þre-weather
forecasting in section 8.

2. Fire-weather metric: Hot–dry–windy index
(HDWI)

HDWI and the corresponding HDWI climatology
were developed bySrock et al. (2018)and McDonald
et al. (2018), respectively based on the understanding
of how the atmosphere physically affects wildÞres.
Although fuels, ignition agents, weather/climate, and

humans all affect wildÞre activity, weather/climate is
the most important natural f actor that inßuences daily
wildÞre danger (Flannigan et al. 2005). Wind, tem-
perature, and moisture are the atmospheric compo-
nents that most inßuence the amount of Þre-burned
area (Flannigan and Harrington 1988; McDonald et al.
2018). The HDWI is a purely meteorological index that
includes these three components and was therefore se-
lected as our predictand. Of course, even in the most
Þre-primed conditions, a Þre will not start unless fuels
are ready and available to burn and an ignition occurs.
The intended purpose of the HDWI is to bring aware-
ness of days/locations that may encounter a lesser or
greater potential for Þre based on the weather condi-
tions. Complementing it with another index that en-
compasses fuel information would be helpful, and will
be addressed in a separate study.

The HDWI (1) is the product of the maximum wind
speedU(m s2 1) in a layer between the surface and 500 m
above ground level (AGL) and the maximum vapor
pressure deÞcit VPD(Pa), in that same layer. Hereafter,
we denote the maximum U and VPD found within this
vertical layer with a tilde accent. The subscript ÔÔmaxÕÕ
indicates that the HDWI is calculated with the daily
maximum of ~U and

;
VPD over a 24-h period (calculation

of the daily maxima is discussed insection 5b). With these
deÞnitions we obtain the following:

HDWI 5 ~U max 3
;
VPD max(T ,q). (1)

The initial calculation of
;
VPD for the HDWI (before

taking the daily maximum) is a function of temperature
T brought down adiabatically to the surface and spe-
ciÞc humidity q, which is conserved as the parcel is
lowered to the surface. VPD is deÞned as the difference
between the saturation vapor pressurees and the vapor
pressuree. The VPD, in contrast to the ratio of es and e
(i.e., relative humidity), gives a better depiction of the
moisture evaporation rate that results from hot and dry
conditions and therefore the evaporative potential of
fuels (Leighly 1937; Thornthwaite 1940; Simard 1968).
The daily maxima in (1) are only calculated in section
5b, until then we focus on quantities ~U and

;
VPD that

are speciÞc to particular times of the day.

3. Data description

a. Ensemble reforecasts

Reforecasts are based on one model version that is
generally rerun to generate past daily forecasts over a
period of decades. For our analysis, we use medium-
range reforecasts of an 11-member ensemble produced
from the Cycle43r3 version of ECMWFÕs operational
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model (ECMWF 2019). Initial conditions of the reforecasts
are deÞned by ERA-Interim analyses, while the ensemble
members are created by perturbing the initial states and
model physics of the control run (Buizza et al. 1999).
ECMWF ran the Cycle43r3 version so that it produced
reforecasts for dates corresponding to every Monday and
Thursday between 13 July 2017 and 4 June 2018 with the
0000 UTC initial conditions. For each of those dates, the
model was rerun to generate daily ensemble reforecasts
for the previous 20 years (e.g., because 4 June 2018 fell on a
Thursday, daily reforecasts for 4 June over the previous
20 years (1998Ð2017) were generated). We downloaded
12-hourly reforecasts of weather variables over CONUS
at a regular latitudeÐlongitude grid of 0.758(; 80km) from
the ECMWF MARS archive system to match the resolu-
tion of the reanalysis data. Since we are postprocessing
forecasts out to week two, we downloaded data for each
date and 0000 UTC initialization out to lead times of
360 h. We use the forecasted variables inTable 1 to cal-
culate the maximum VPD and the maximum U in a 500-
m layer above the surface before interpolating those
values at each location to match up with locations on the
reanalysis grid (seesection 3b) via conservative regrid-
ding (Jones 1999).

b. Reanalysis

We use the same meteorological variables inTable 1
from reanalysis data to train and verify the post-
processed HDWI forecasts and forecasts of its compo-
nents. Reanalysis data are taken as the truth, because
they are a combination of the NWP model and quality-
controlled observations from weather stations, ships,
buoys, satellites, etc. through data assimilation tech-
niques (Dee et al. 2011). The major advantage of re-
analysis data is that they are available at every grid point
and integration of the NWP model, making them ideal
for comparison with reforecasts.

For the analysis herein, we use regular latitudeÐ
longitude gridded data output from the global ERA-
Interim (ERA-I) reanalysis system of the ECMWF ( Dee
et al. 2011). ERA-I data are available from 1979 to nearÐ
real time and are output every 3 h. The data have a spa-
tial resolution of ; 80km (0.758). We use data every 6 h
starting at 0000 UTC from 13 July 1997 (earliest year
associated with our reforecast dataset) to 4 June 2017
(latest year associated with our reforecast dataset).

4. Forecast calibration via univariate
postprocessing

The gray-shaded boxes (steps 1Ð9) inFig. 1 show a
conceptual diagram of the univariate postprocessing
methods outlined throughout the subsections below.

a. Ensemble model output statistics (EMOS)

We postprocess forecasts of the HDWI components
(i.e., ~U and

;
VPD) at each forecast lead time and lo-

cation on the reanalysis grid using the EMOS approach
(Gneiting et al. 2005). The EMOS approach Þts a
probability distribution model to the raw ensemble
modelÕs output statistics. The result is a calibrated and
sharp predictive distribution function of a continuous
weather variable that is corrected for forecast biases and
ensemble dispersion errors. Linear regression equa-
tions are used to deÞne the Þrst and second moments
of the distributions. EMOS, originally implemented
by Gneiting et al. (2005) to produce probabilistic
forecasts from a Gaussian predictive PDF, has since
been extended for the truncated normal, gamma,
and truncated logistic distributions (Thorarinsdottir
and Gneiting 2010; Scheuerer and Möller 2015). The
truncated distributions have a lower bound set to
zero, which makes them, along with the gamma dis-
tribution, suitable for use with nonnegative quantities
like ~U and

;
VPD.

Since the ensemble members of the ECMWF reforecasts
are created from random perturbations to the initial
conditions, they are considered exchangeable(i.e.,
they produce equally likely scenarios of a future state
and are not systematically distinguishable from one
another; Bröcker and Kantz 2011). Because the en-
semble members are exchangeable, we use a modiÞed
version of the original EMOS multiple linear regression
equation. This modiÞcation is based solely on the fore-
casted ensemble mean and variance instead of weighted
contributions from the individual members ( Gneiting
et al. 2005). Through exploratory analysis, we found that
for most of CONUS and all seasons and lead times, data
transformation in combination with the truncated nor-
mal distribution results in a satisfactory representa-
tion of the forecast uncertainty about ~U and

;
VPD.

For this reason, we focus our analysis in the paper on a
modiÞed version of the truncated normal distribu-
tion (modiÞcation is discussed insection 4d) and test

TABLE 1. Model variables output as ECMWF reforecasts and
used for the calculation of and postprocessing of the hotÐdryÐ
windy index forecasts.

Model level Variables

Surface 2-m dewpoint temperature, 2-m temperature,
10-m u-wind speed component, 10-m
y-wind speed component, geopotential,
mean sea level pressure

Pressure Geopotential, speciÞc humidity, temperature,
u-wind speed component,y-wind speed
component
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different power transformations of the data Þtted to this
distribution (discussed in section 4d).

b. Training period

Training data are comprised of past forecastÐobservation
pairs; in our case, we use the 11-member ECMWF
reforecasts for past forecasts and ERA-I reanalysis data
as a proxy for observations. For each month/year
combination in this 20-yr forecastÐobservation record,
the rolling training period consists of all forecasts from
that same month and from all years excluding the
current year. The training period for each month/year
combination has ; 152Ð171 forecastÐobservation
pairs given that there are two ECMWF reforecasts
per week and 19 years included in the training period.
For each forecast lead time and location, raw fore-
casts of ~U and

;
VPD from the training data are used to

calculate the ensemble statistics used in the EMOS
regression equation described next.

c. EMOS model Þtting

For a given power transformation (if applicable) and
an m-member ensemble of exchangeable forecasts
f1, . . . , fm, estimates of the EMOS regression co-
efÞcients a, b, c, and d deÞne the distribution mean
mand distribution variance s 2 of the truncated normal
predictive distribution N 0(m, s 2). The moments of the
distribution are deÞned as

m5 a1 bfmean and s 2 5 c1 dS2, (2)

wherefmean 5 1/m� m
k5 1fk denotes the raw ensemble mean

and S2 5 1/m� m
k5 1( fk 2 fmean)

2 denotes the raw ensemble
variance of the power-transformed forecasts. These pro-
cesses correspond to step 1 and step 2 inFig. 1.

The EMOS coefÞcients for the distribution in (2) are
Þtted by selecting the values that minimize the mean
continuous ranked probability score (CRPS; Hersbach
2000)Ñaveraged over all forecast dates in the training
periodÑwhen evaluated with the observations in that
same training period. The CRPS is a proper scoring rule
that summarizes the sharpness and calibration of a pre-
dictive distribution ( Gneiting et al. 2005; Gneiting and
Raftery 2007). CRPS is negatively oriented and is de-
Þned for a given univariate predictive cumulative dis-
tribution function (CDF) F and a verifying observation
y as

CRPS(F, y) 5
ð‘

2‘
[F(t) 2 H (t 2 y)] 2 dt , (3)

where H is the Heaviside step function that equals 1
when its argument $ 0 and equals 0 otherwise.

To Þt EMOS coefÞcients for data transformed with a
given power transformation, we employ a closed-form
expression of the CRPS (detailed insection 4d). This step
corresponds to step 3 inFig. 1. Power transformations
of the data (typically with an exponent j between 0
and 1) are often used to reduce skewness and achieve
spread that is independent of the forecast magnitude
(i.e., homoscedastic). However, strong transformations

FIG . 1. Schematic of the general concept of the univariate and multivariate postprocessing methods. The steps are numbered in the
order in which they are performed. Technical details for each step are discussed insections 4and 5. The whole process outlined in this
schematic refers to one particular month, year, lead time, and location, except for Step 14 which requires several lead times in a day to
calculate the daily maxima.
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(i.e., small j ) have the negative side effect of empha-
sizing small forecast values at the expense of larger
ones (which are often more important in applications)
when the mean CRPS of the power-transformed fore-
casts and observations is calculated. We try to mini-
mize this effect by using a closed-form expression
that evaluates the CRPS on a scale that is as similar
as possible to the original (untransformed) scale. The
combination of EMOS coefÞcients that minimize the
mean CRPS for a given power transformation deÞne
the m and s 2 of the predictive distribution in (2). This
step corresponds to step 4 inFig. 1. Special care is
needed to choose a closed-form expression of the CRPS
that will work for a range of candidate power trans-
formations; we detail this process next.

d. Selection of closed-form CRPS expression and
data transformation

We are not aware of any closed-form expressions
available for an arbitrary exponent j in combina-
tion with the truncated normal distribution, however,
Taillardat et al. (2016) provided a closed-form expres-
sion of the CRPS for the square rootÐtransformedtrun-
cated normal distribution. This expression represents
the CRPS of a CDF and the verifying observation on
the original scale when a predictive truncated normal
distribution is Þtted to square root-transformed data
(j 5 0.5). However, exploratory analysis of our data
showed that the optimal power j can be either below
or above 0.5. It is possible to test a range of other
j exponents using theTaillardat et al. (2016) formula-
tion by Þrst applying a pretransformation to the data.
If a power j , 0.5 or j . 0.5 is required, a pre-
transformation with an exponent h 5 j /0.5 is applied to
the data and then theTaillardat et al. (2016) expression
of the CRPS for the square root-transformed truncated
normal distribution is used with the pretransformed
forecasts and observations.

We test different power transformations j 2 [0.2, 0.3,
0.4, 0.5, 1.0], which correspond to pretransformations
h 2 [0.4, 0.6, 0.8, 1.0, 2.0]. Using the training forecast
and observation pairs for each year, month, lead time,
and location, the EMOS coefÞcientsa, b, c, and d are
selected separately for each candidate power transfor-
mation by CRPS minimization. The result is an optimal
univariate calibration for each candidate power trans-
formation. Next, we determine which of the candidate
power transformations j yields the overall best cali-
bration for each year, month, lead time, and location.

e. Selection of optimal power transformation

The optimal exponent j is also chosen by CRPS
minimization, but is performed after the best EMOS

coefÞcients for each candidate j are determined.
Since mean CRPS values obtained with different
pretransformations are not directly comparable, the
CRPSs have to be compared on the original scale. We
are not aware of any closed-form expression for an
arbitrary exponent j , and only 5 possible choices have
to be evaluated, so we use the sample CRPS, which is
calculated in the following steps:

1) Using the power-transformed ensemble forecasts
(for each j 2 [0.2, 0.3, 0.4, 0.5, 1.0]) from the
training period and the EMOS coefÞcients esti-
mated as described above, calculate the calibrated
predictive distributions according to Eq. (2) for
each candidatej . This step corresponds to step 5 in
Fig. 1.

2) Calculate a CRPS-optimal sample (e.g., Bröcker
2012) from the calibrated predictive distribution for
eachj by choosingK 5 20 equidistant quantile levels
t k 5 (k 2 0.5)/K, k 5 1, . . . , K . This step corresponds
to step 6 in Fig. 1.

3) Convert this sample of transformed forecasts back to
the original scale for each candidatej using a power
transformation exponent j 2 1. This step corresponds
to step 7 in Fig. 1.

4) Calculate the sample CRPS (Grimit et al. 2006) from
these (inverse) power-transformed quantile forecasts
and the (untransformed) verifying observation. This
step corresponds to step 8 inFig. 1.

After we calculate the sample CRPS using the steps
above for each month, we deÞne a monthly mean sample
CRPS by averaging the sample CRPS over all training
dates in a rolling 3-month period centered on a given
month. Monthly mean sample CRPS values are cal-
culated with the training data for each month, year,
lead time, and location, and for each candidate power
transformation. The data transformation j that pro-
duces the minimum sample CRPS is selected for that
month, year, lead time, and location. The selection of
j based on the minimum sample CRPS corresponds to
step 9 in Fig. 1.

Note that we select the power transformation based
on the minimum mean sample CRPS for each loca-
tion, year, month, lead time, and atmospheric variable
~U and

;
VPD separately. The necessity of this ßexible

model approach is illustrated in Figs. 2 and 3, which
show that the optimal power transformation is de-
pendent on all of those factors. We provide a discus-
sion on how this ßexible model approach could be
modiÞed to run in an operational setting in the con-
clusion section. In either case, a ßexible distribution
model may not be needed for smaller regions or
countries, but to produce the most skillful forecasts
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over all areas of CONUS and for all seasons, this ap-
proach is critical.

f. VeriÞcation of calibrated univariate forecasts

To verify that the univariate forecasts obtained with
the selected power transformation and Þtted EMOS
coefÞcients yield calibrated probabilistic forecasts
during the veriÞcation period, we use probability in-
tegral transform (PIT) ( Gneiting et al. 2007; Dawid
1984). PITs are calculated for the predictive CDFs Fi

of the square root-transformed truncated normal
distribution deÞned by the corresponding ßexible
selection of power transformations. The Fi and its
verifying observation yi deÞne the ßexible PIT values
as Fi(yi) for each month, year, lead time, and loca-
tion. A histogram of the resulting PIT values for
all years, all locations, and for all veriÞcation days
within a given month will be uniformly distrib-
uted if the forecasts from the predictive distribution
are perfectly calibrated. VeriÞcation PIT histograms
in Fig. 4 show that the ßexible predictive distribu-
tion model produces calibrated forecasts for ~U and

;
VPD; therefore, we proceed with this ßexible model
framework.

5. Multivariate postprocessing

The orange-shaded boxes (steps 10Ð14) inFig. 1 show
a conceptual diagram of the multivariate postprocessing
methods outlined throughout the subsections below.

a. Ensemble copula coupling (ECC)

The calculation of the HDWI involves different
weather variables ( ~U and

;
VPD) and different lead times

(daily maxima of these quantities are required). The
forecasts of ~U,

;
VPD, and subsequently HDWI should be

spatially and temporally coherent. Sampling-reordering
techniques, such as ECC restore dependencies between
variables, lead times, and spatial locations that were lost
in the univariate postprocessing steps. Each member of
the raw ensemble is based on a physical model and can
thus be expected to have a realistic spatial, temporal,
and intervariable structure. ECC seeks to transfer this
structure to the calibrated forecasts by imposing the

FIG . 2. Power transformation exponents selected by the ßexible distribution model for
;
VPD. The middle month

of each season and two forecast horizons starting from a 0000 UTC initialization are shown. The time of day
associated with each lead time is written in parentheses.
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rank of an exchangeable raw ensemble onto samples
drawn from a postprocessed marginal predictive distri-
bution (like the ßexibly transformed truncated Gaussian
distribution).

The ECC approach generates a postprocessed en-
semble of the same size,m, as the raw ensemble.
Various methods of sampling m members from the
postprocessed marginal predictive distributions in-
clude the random draw (ECC-R), transformation
(ECC-T), and the equidistant quantile (ECC-Q)
approaches (Schefzik et al. 2013). The quantization
used in the ECC-Q approach is the standard and
recommended method to generate a representative
sample of the postprocessed marginal predictive
distribution ( Schefzik et al. 2013), so we proceed
with this method.

We construct the postprocessed marginal ensembles
xj,k 5 (xj,k

1 , . . . , xj,k
m ) in the transformed space for each

lead time j and location k by samplingm quantiles from
the marginal distribution N 0j,k that resulted from the
EMOS univariate postprocessing steps for each vari-
able, month, and year. The quantile levels are deÞned
in the same way ast k in section 4e, now with K 5 m 5 11.
These processes correspond to step 10 and step 11 in

Fig. 1. After back-transformation to the original data
space (step 12 inFig. 1), xj,k is rearranged and matched
according to the rank of the raw forecast ensemble (step
13 in Fig. 1).

b. Calculating daily maxima

Recall that the reforecast data are available at 12-h
increments starting from 0000 UTC initialization out
to 2 weeks. However, the HDWI calculation calls for
the maximum value over 1200, 1800, and 0000 UTC (i.e.,
daylight hours in CONUS). Therefore, we do the same
analysis for an estimate of the 1800 UTC forecast, which
we calculated as the average~U and

;
VPD at 1200 UTC

ÔÔtodayÕÕ and 0000 UTC the ÔÔnext dayÕÕ. These average
forecasts likely suffer from systematic biases, but with
ERA-I reanalysis data being available at 6-h intervals,
we were able to correct any systematic biases in our
estimate of the 1800 UTC reforecast through the
postprocessing steps insections 4and 5. From the 1200,
1800, and 0000 UTC data, we calculate the maximum
daily ~U and

;
VPD for each postprocessed ensemble

member, which we denote as ~U max and
;
VPD max, re-

spectively. We then calculate the resulting product of
those values to yield the daily maximum HDWI.

FIG . 3. As in Fig. 2, but for ~U.
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Calculation of these daily maxima corresponds to step
14 in Fig. 1.

c. VeriÞcation of calibrated multivariate ensemble
forecasts

Even though the HDWI indicates a hazard for sig-
niÞcant Þre-weather conditions, a Þre will not start if
there is not an ignition. For this reason, verifying HDWI
forecasts with observed Þres may result in many false
alarms. Instead, the 11 members of the ECC-Q forecasts
of ~U max,

;
VPD max, and HDWI were evaluated against

reanalysis data of the same variable for every date in each
year, month, and day ahead. The skill score, namely the
skill of the CRPS (CRPSS) is used to evaluate the overall
performance of the postprocessed forecasts to a deÞned
benchmark. While the score is negatively oriented
(smaller positive and negative values are better than
larger values), the skill score is positively oriented
so that larger positive values are better than smaller
positive or any negative values. The CRPSS is calculated
as CRPSS5 2 [(CRPSfcst 2 CRPSref )/CRPSref ], where
CRPSfcst is the CRPS of the ECC-Q ensemble forecast

FIG . 4. VeriÞcation PIT histograms of (a),(b) ~U and (c),(d)
;
VPD for the middle month of each season and for two forecast horizons.

The horizontal blue line indicates uniformity.
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and CRPSref is the CRPS of the reference ensemble
forecast. Herein, we mostly consider an ensemble of
climatological forecasts as references for comparison,
but in some cases we use the raw ensemble forecast
as a reference in order to quantify the improvement
due to statistical postprocessing. A CRPSS value be-
tween 0 and 1 translates to improved forecasting skill
over the reference forecast.

6. Veri�cation results and discussion

a. Calibration and sharpness of the raw and ECC-Q
forecasts

We Þrst quantify the performance of the postprocessed
ensemble forecasts using the methods described in the
previous sections by calculating the widths and empirical
coverages of two predictions intervals for each season.
The 83.33% and 66.66% prediction intervals shown in
Table 2 (winter) and Table 3 (summer) are bounded by
the values of the 1st and 11th and the 2nd and 10th or-
dered members of the forecast ensemble, respectively.
The widths of the prediction intervals allow one to
quantify the sharpness of the forecasts and the coverages
represent the relative frequencies of the observations

lying within those intervals (in the case of optimal cali-
bration, these frequencies would match the nominal
levels of the prediction intervals). To normalize the
widths so that we can aggregate across all CONUS
grid points, we divide the ensemble forecast widths at
each location for a given season by the corresponding
climatological widths.

Results in Tables 2 and 3 for different lead times
show that the raw ensemble is underdispersive, as in-
dicated by the narrow widths and poor coverage of the
prediction intervals. The ECC-Q forecast ensemble has
wider prediction intervals which capture more possible
observed outcomes in the future. Note that the ECC-Q
widths are still more sharp than the climatological
widths as indicated by width values less than one. For
these reasons, the coverage and therefore forecast
calibration of the postprocessed forecasts increases.
We found similar results during spring and fall (tables
are available in the online supplemental material A).

b. Skill scores of HDWI at select locations

Skill of the ECC-Q ensemble forecasts compared to
the raw ensemble forecasts is evaluated with the CRPSS
veriÞcation tool. To quantify the uncertainty of the

TABLE 2. Sharpness and calibration results for the raw ensemble and postprocessed ensemble (ECC) for day 6, 8, 10, and 12 lead times
during the winter.

83.33% prediction interval: Median width relative to
climatological width 83.33% prediction interval: Coverage (%)

Method D6 D8 D10 D12 Method D6 D8 D10 D12

Raw 0.44 0.54 0.63 0.68 Raw 69.42 72.87 75.0 76.73
ECC 0.61 0.71 0.78 0.82 ECC 84.04 83.96 84.04 84.13

66.66% prediction interval: Median width relative to
climatological width 66.66% prediction interval: Coverage (%)

Method D6 D8 D10 D12 Method D6 D8 D10 D12

Raw 0.45 0.57 0.65 0.69 Raw 52.12 55.15 57.5 59.23
ECC 0.64 0.75 0.82 0.85 ECC 67.69 67.33 67.31 67.69

TABLE 3. As in Table 2, but for the summer.

83.33% prediction interval: Median width relative to
climatological width 83.33% prediction interval: Coverage (%)

Method D6 D8 D10 D12 Method D6 D8 D10 D12

Raw 0.59 0.68 0.74 0.78 Raw 73.13 75.31 76.41 77.19
ECC 0.76 0.86 0.90 0.93 ECC 85.31 85.31 85.31 85.63

66.66% prediction interval: Median width relative to
climatological width 66.66% prediction interval: Coverage (%)

Method D6 D8 D10 D12 Method D6 D8 D10 D12

Raw 0.61 0.71 0.77 0.80 Raw 55.31 57.81 59.06 59.69
ECC 0.80 0.89 0.93 0.96 ECC 68.75 68.75 69.06 68.75
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