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ABSTRACT: We investigate the assimilation of nowcasted information into a classical data assimilation cycle. As a reference
setup, we employ the assimilation of standard observations such as direct observations of particular variables into a forecasting
system. The pure advective movement extrapolation of observations as a simple nowcasting (NWC) is usually much better for
the first minutes to hours, until outperformed by numerical weather prediction (NWP) based on data assimilation. Can now-
casted information be used in the data assimilation cycle? We study both an oscillator model and the Lorenz 63 model with
assimilation based on the localized ensemble transform Kalman filter (LETKF). We investigate and provide a mathematical
framework for the assimilation of nowcasted information, approximated as a local tendency, into the LETKF in each assimila-
tion step. In particular, we derive and discuss adequate observation error and background uncertainty covariance matrices and
interpret the assimilation of nowcasted information as assimilation with an H1-type metric in observation space. Further, we
show numerical results that prove that nowcasted information in data assimilation has the potential to significantly improve
model based forecasting.
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1. Introduction

Forecasting of dynamical systems has a long history in many
application fields. In particular, weather and climate predictions
(cf. Kalnay 2003) are based on sophisticated large-scale and
high-dimensional numerical models run on supercomputers, to
generate forecasts of the atmosphere, ocean, or Earth’s system.
The models are usually based on ordinary or partial differential
equations and combine the Navier–Stokes equations with physi-
cal parameterization of radiation, turbulence, orographic influ-
ence, and microphysics.

These model system are initialized by the use of data
assimilation techniques, such as variational data assimilation
(3D-VAR or 4D-VAR) or ensemble data assimilation, e.g.,
the ensemble Kalman filter (EnKF) or, more recently, parti-
cle filters; for a detailed introduction we refer to Lorenc
et al. (2000), Kalnay (2003), Evensen (2009), Anderson and
Moore (2012), van Leeuwen et al. (2015), Reich and Cotter
(2015), Kleist et al. (2009), Nakamura and Potthast (2015),
Houtekamer and Zhang (2016), and Bannister (2017). The
EnKF (Evensen 2009, 1994; Houtekamer and Mitchell 1998;
Evensen and van Leeuwen 2000; Houtekamer and Mitchell
2001; Anderson 2001; Whitaker and Hamill 2002; Snyder and
Zhang 2003; Houtekamer and Mitchell 2005; Houtekamer et al.
2005) employs an ensemble of states to dynamically estimate the

background uncertainty covariance matrix and applies this matrix
in each assimilation step.

Nowcasting (abbreviated NWC, e.g., Wilson and Edwin
Kessler 1963; Bellon and Austin 1978; Hohti et al. 2000;
Germann and Zawadzki 2002; Turner et al. 2004; Bowler
et al. 2004; Haiden et al. 2011; Bechini and Chandrasekar
2017; Ryu et al. 2020) uses observations measured at high
temporal and spatial density and assumes “Lagrangian
persistence” of the observed phenomena. Observations are
usually aggregated onto a 2D- or 3D-spatial grid to estimate
a motion field from a time series of past observations, which
explains the observed field changes in an “optimal” approxi-
mate way (e.g., Rinehart 1981; Anandan 1989; Li et al. 1995;
Germann and Zawadzki 2002). In classical NWC, the most
recent observations are extrapolated into the future by pure
advective motion along the stream lines of such an esti-
mated motion field, which itself is often assumed to be fro-
zen in time. By doing so, observed and extrapolated time
changes in the field are attributed solely to spatial move-
ment. The forecast quality of this approximation for atmo-
spheric parameters (e.g., precipitation from radar data,
cloudy satellite observations) usually decreases rapidly with
forecast lead time and increases with increasing spatial scale
(e.g., Germann and Zawadzki 2002, 2004). Some NWC sys-
tems try to incorporate growth and decay into the extrapola-
tion (e.g., Li et al. 1995; Golding 1998; Foresti et al. 2018;
Sideris et al. 2020).

In the atmospheric sciences, traditionally nowcasting and
numerical weather prediction have formed two different com-
munities, which had their own methods, techniques, software
environment, and language. More recently, an interplay between
these techniques and communities started to evolve; we exem-
plarily point to the combined use of cloud ceiling height and visi-
bility information with a rapid refresh numerical weather
prediction system in Glahn et al. (2017) and to the SINFONY
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project of Deutscher Wettedienst,1 which aims to generate
seamless forecasts from minutes to days based on an integrated
nowcasting and numerical weather prediction system, or the
RealPEP research group funded by the German Research
Foundation,2 which brings together scientists from three com-
munities to develop tools and methods which underpin and
enable seamless forecasting based on multiple scales and diverse
techniques.

Here, we develop a core part of such an integration by
assimilating nowcasted information into a localized ensemble
transform Kalman filter (LETKF). For this purpose, the now-
casting technique itself is approximated as the use of the local
time tendency of an underlying observation. Of course, classi-
cal NWC may predict also nonlinear time series at fixed loca-
tions (consider a modal spatial structure moving over a certain
location), but for very short lead times one may approximate
any time series by a linear function.

Our setting and basic idea is sketched in Fig. 1. The dotted
lines show an ensemble of forecasts, here taken as linear state
evolutions. The black bullets visualize two observations, one at
analysis time and another one shortly before. We can now
detect the best ensemble member with respect to different met-
rics. Taking just one observation at analysis time leads to the
best ensemble member shown by the green dashed line. Taking
both observations, i.e., using classical 4D metric, leads to the
ensemble member with the magenta dashed line. Taking the
numerical derivative based on the two observations will lead to
the blue dashed ensemble member as the best, because the lin-
ear curves coincide with the nowcasted information when linear
extrapolation is used. Here, the blue curve provides the best fit
to the red dashed line. For the displayed situation, where the
truth is linear, the result is trivial. But it motivates that taking
nowcasted observations into account in data assimilation has
the potential to improve the forecast quality.

To be able to carry out a mathematical analysis and numeri-
cal investigation, we restrict ourselves to a simple oscillator
model and to the popular Lorenz 63 system (Lorenz 1963,
hereafter L63), see for example Evensen (1997), Verlaan and
Heemink (2001), Vukicevic and Posselt (2008), Pu and Hacker
(2009), Ambadan and Tang (2009), Carrassi and Vannitsem
(2010), Lei and Bickel (2011), Hodyss (2011), Lei et al. (2012),
Sakov et al. (2012), Yang et al. (2012), Zhang et al. (2012),
Marzban (2013), and Goodliff et al. (2015) for its study and
use.

When using nowcasted information on top of standard
observations, we need to determine an adequate observation
error covariance matrix. When observations are employed
both for nowcasting and within the data assimilation cycle,
observation errors will be correlated, and these correlations
need to be taken into account to calculate the correct analysis
increment.

In its simplest form nowcasting employs linear extrapola-
tion calculated from differences and sums of observations,

and we can interpret these differences as functional of numer-
ical derivative of the observation. Integrating derivatives into
the data assimilation functional can be interpreted as moving
from classical Euclidean norms ||•||2 to Sobolev norms, such as

�x�2
H1,g :� �x�2

L2 1 dt2
����

dx
dt

����
2

L2

, (1)

with some factor dt, where t is the temporal variable of the
dynamical system under consideration.

We will study the effect of the assimilation of nowcasted
information practically both within an oscillator model and the
well-known Lorenz 63 system, based on the LETKF. For both
models, we will see that using this additional information in
the cycled data assimilation system 1) has no effect of forecast
skill when a linearly transformed observation error covariance
matrix R is used or 2) can clearly improve forecast skill when a
modified R matrix is employed.

The setup is described in section 2. The description of the
LETKF for the assimilation of classical and nowcasted informa-
tion is found in section 3. We carry out a basic mathematical
analysis of assimilating nowcasted fields in section 4. Numerical
results are presented in section 5 and conclusions in section 6.

2. An oscillator model, the Lorenz 63 model, and the
observations setup

We employ a typical nonlinear model to investigate the
assimilation of nowcasted information. The model must be

FIG. 1. The basic setup and idea of assimilating nowcasting infor-
mation or derivative information shown by a display of an ensemble
as dotted lines, some truth as red dashed line, and two observations
at the analysis time and shortly before as black bullets. We also dis-
play best members with respect to different metrics: in dashed green
is the best member with respect to the observation (black bullet) at
analysis time (3D metric), in magenta is the best member when both
observations at analysis time and shortly before the analysis time
are used with classical 4D metric, and in blue is the best member
when the numerical derivative or nowcasted information given the
two observations is used (derivative or nowcasting case). Here, the
best member with respect to the derivative or the nowcasting metric
gives the best forecast, as can be seen by the distance to the two
black bullets at the next analysis time.

1 See https://www.dwd.de/EN/research/researchprogramme/sin
fony_iafe/sinfony_start_en.html.

2 https://www2.meteo.uni-bonn.de/realpep/doku.php.
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complex enough to capture typical nonlinear and potentially
chaotic features of real-world NWP models, but also simple
enough to gain insight into the behavior of the techniques.
We have tested the ideas on two models, a simple oscillator
model and the well-known Lorenz 63 model widely used for
studying data assimilation algorithms and nonlinear determin-
istic chaos.

a. An oscillator model

We study the simple oscillator model defined for x � R2:

ẋ � Gx, (2)

with matrix G defined by

G :�
0 k2

2k1 0

� �
, (3)

with wavenumbers k1 and k2. The system is given by

ẋ1 � k2x2, ẋ2 � 2k1x1, (4)

which by differentiation of x1 with respect to time leads to

ẍ1 � 2k1k2x1, and ẍ2 � 2k1k2x2: (5)

With k � ������k1k2
�

, a solution of the equation is given by x1(t) =
asin(kt) 1 bcos(kt), t � R and analogously for x2. When for
some t � R values x(t) = a0 and ẋ t( ) � a1 are provided, the
solution is unique by the Picard–Lindelöf theorem Agarwal
and O’Regan (2008), Nakamura and Potthast (2015).

b. The Lorenz 63 model

The well-known Lorenz 63 model Lorenz (1963) has been
frequently employed in the data assimilation context over the
past 50 years, see for example Evensen (1997), Verlaan and
Heemink (2001), Vukicevic and Posselt (2008), Pu and
Hacker (2009), Ambadan and Tang (2009), Carrassi and Van-
nitsem (2010), Lei and Bickel (2011), Hodyss (2011), Lei et al.
(2012), Sakov et al. (2012), Yang et al. (2012), Zhang et al.
(2012), Marzban (2013), Goodliff et al. (2015), Otkin et al.
(2020). The model consists of the three coupled equations:

dx1

dt
� s x2 2 x1( ), (6)

dx2

dt
� rx1 2 x2 2 x1x3, (7)

dx3

dt
� x1x2 2 bx3, (8)

where x1(t), x2(t), and x3(t) are the dependent variables and
s, r, and b are parameters. For some parameter values, the
system shows chaotic behavior because very small perturba-
tions in the initial conditions can grow very rapidly into
completely different solutions. The model was designed to
simulate atmospheric dry cellular convection following the
work of Saltzman (1962). The model simulates the evolution
of a forced dissipative hydrodynamic system that possesses

nonperiodic and unstable solutions. The variable x1 meas-
ures the intensity of the convective motion, x2 the tempera-
ture difference between the ascending and descending
currents, and x3 is a measure of the deviation of the vertical
temperature profile from linearity. The model parameters
are the Prandtl number (s), a normalized Rayleigh number
(r), and a nondimensional wavenumber (b). The Rayleigh
number for the system is typically set to the slightly super-
critical value of 28 following the work of Lorenz (1963), and
we set s and b to 10 and 8/3, respectively. The values guaran-
tee a chaotic nature of the model. We employ a Runge–Kutta
method of fourth-order to solve the forward integration fol-
lowing Nakamura and Potthast (2015).

c. The observational setup

We carry out a classical data assimilation cycle as in Kalnay
(2003); Nakamura and Potthast (2015) for synchronizing model
and truth based on observations. Observations yk � Rm are
given in an observation space Rm of dimension m � N at times
tk for k = 1, 2, 3, … . In a classical sequential data assimilation
cycle an estimation (analysis) x(a)

k of the current system state
x(true) tk( ) � Rn with state space dimension n is calculated at
times tk based on the observations yk. Usually some model for
the observation yk at tk is available, called observation operator
H : Rn � Rm, such that H(xk) simulates the observation yk

based on the state xk.
Usually, observations are made at times t � R which do not

necessarily coincide with the analysis times tk, k = 1, 2, 3, … .
In that case, a filter collects all observations, which belong to
the interval between two consecutive analysis times:

Ik :� tk21, tk[ ], (9)

into the observational vector yk based on which the analysis
x(a)

k for the analysis time tk is computed.
Let us now add a simplified version of nowcasting to our

setup. Nowcasting observes some variable or derived phe-
nomenon at present tk and in the recent past sk given by

sk � tk 2 ds, k � 1, 2, 3, :::, (10)

where usually ds ,, |tk 2 tk21| and then extrapolates the evolution
of the variable or phenomenon for times s $ sk, including times
s . tk. We employ the following notation:

xk,1 � x sk( ) � Rn, xk,2 � x tk( ) � Rn, (11)

with time index k = 1, 2, 3, … and x(true)
k,j ,j � 1,2, denoting the

nature run. Here, we will assume that we observe

yo
k,1 :� H x(true)

k,1

� �
1 �,

yo
k,2 :� H x(true)

k,2

� �
1 �,

(12)

with random observation error � (perfect H assumed). If our
observation is obtained from a dynamical system x(t), obser-
vations yo

k,1 and yo
k,2 at times sk and tk can be used to approxi-

mate the temporal derivative:
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H(x)
� 	�(t) :�

dH x(t)
� 	

dt
(13)

at time t � [sk, tk]. The approximation of the temporal deriva-
tive (13) by finite differences is given by

H(x)
� 	�(t) �

yo
k,2 2 yo

k,1

ds
: (14)

Clearly, approximating a derivative by finite differences is a
well-known regularization of the ill-posed mapping from a
function onto its derivative, compare Engl et al. (2000). Com-
bining the assimilation of the observation and its numerical
temporal derivative, this yields the following combination:

yo
k :�

yo
k,2

yo
k,2 2 yo

k,1

ds



�����������������



�����������������, (15)

with ds = tk 2 sk for the standard approximation of the deriva-
tive. For our purpose, we approximate the classical nowcast-
ing by its local linear time tendency at a given location, i.e.,
nowcasting is a simple linear extrapolation in time:

y(nwc,s)
k :� c1yo

k,1 1 s 2 sk( ) •
yo

k,2 2 yo
k,1

ds
, (16)

with a factor c1 chosen to be c1 = 1 for nowcasting and c1 = 0
to include the assimilation of the numerical derivative
described in (15) into one expression.

Collecting all temporal variables into the weight or lead time
factor g = (s 2 sk)/ds or g = 1/ds, we obtain the following form:

y(nwc)
k (g) :� c1yo

k,1 1 g • yo
k,2 2 yo

k,1

� �
, (17)

for s $ sk including times s . tk, as indicated by the straight
lines in Fig. 2. Here, we restrict our attention to this first
approximation to more sophisticated nowcasting algorithms.

Combining classical observations yk,2 at tk with nowcasted
information ynwc

k (g), we study the algebraic transformation
given by (17) as a part of the observation operator, i.e., we
consider observations given by

yo
k(g) :�

yo
k,2

y(nwc)
k (g)



��������



��������, k � 1, 2, 3, :::, (18)

with weight or lead-time factor g. Now Eq. (15) is a special
case of (18) if c1 = 0 is chosen.

3. Using the LETKF for derivative or NWC assimilation

We employ the localized ensemble transform Kalman filter
(LETKF) as suggested by Hunt et al. (2007). This formulation
allows to easily add new observations to the assimilation with-
out changing the core implementation. The formulation Hunt
et al. (2007), see also Nakamura and Potthast (2015, chapter 5)
solves the Kalman filter equations in ensemble space spanned
by the ensemble members x(b,�) for � = 1, … , L with the
ensemble mean given by

x(b) :�
1
L

�L

��1

x(b,�) • (19)

We use the following notation:

Xb :� x(b,1) 2 x(b), :::, x(b,L) 2 x(b)
� 	

, (20)

for the matrix of ensemble member differences from the
mean and (for the case of a linear H)

Yb :� HXb, (21)

for the ensemble differences in observation space, yo for the
observation vector and yb for the mean of observations simu-
lated from the ensemble. The observation error covariance
matrix is denoted by R. Now, we employ Eqs. (20) and (21) of
Hunt et al. (2007):

wa � P̃a Yb( )T
R21 yo 2 yb

� �
, (22)

for calculating the linear coefficients of the analysis mean
with P̃a given by

P̃a � (L 2 1)I 1 Yb( )T
R21Yb

� �21

, (23)

FIG. 2. Assimilation of nowcasted information with nowcasting lead times factors g = (a) 0, (b) 3, and (c) 6 for the Lorenz 63 Model.
This figure clarifies the setup and visualizes the relative size of the nowcasting linear vectors for the choices of g used for the experiments.
For our setup with observation operator H = I, the choice g = 3 has been found to be optimal with respect to the first-guess error.
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with I for the identity matrix. P̃a denotes the L 3 L analysis
covariance in RL. Equation (2) in model space leads to (22)
and (23) of Hunt et al. (2007):

xa � xb 1 Xbwa, (24)

Pa � XbP̃a Xb( )T
, (25)

where xa is the analysis mean and Pa the analysis covariance
matrix. With W calculated by

W � (L 2 1)P̃a
� 	1=2

, (26)

as in (24) of Hunt et al. (2007) the analysis ensemble is given by

Xa � XbW, (27)

where the power 1/2 denotes the symmetric square root of the
symmetric matrix P̃a.

For assimilating nowcasted information, let us employ the
4D extension of the above formulation. Here, the observation
vector yb is not directly calculated by an application of H to
the states x(b,�). For observations at time s � [tk-1, tk], the simu-
lated observation y(b,�)(s) is calculated during the model run
x(b,�)(t). LETKF calculates a transform matrix based on the
matrix Yb (model equivalents of ensemble members minus
their mean) and on observations yo at one or several points in
time. The transform matrix can be applied to the ensemble at
any point in time, such that 3D and 4D just refer to the choice
of observations and their temporal information within Yb.

With the (simulated) observation yo
k,1 at time sk and yo

k,2 at
time tk, as described in Eq. (12), a nowcasted observation is given
by (17). Similarly, the simulated observation for ensemble mem-
ber � is denoted by y(b,�)

k,1 for time sk and y(b,�)
k,2 for time tk, such

that the nowcasted components of the simulation are given by

ynwc,�
k (g) :� c1y(b,�)

k,1 1 g y(b,�)
k,2 2 y(b,�)

k,1

� �
: (28)

With the mean yb
k,j of the set:

y(b,�)
k,j : � � 1, :::, L

� �
, j � 1, 2,

for the observation at sk (j = 1) and at tk (j = 2), the matrix of
differences Yb

k,j is given by

Yb
k,j :� y(b,1)

k,j 2 yb
k,j , …, y(b,L)

k,j 2 yb
k,j

� �
, j � 1, 2, (29)

and the nowcasted differences matrix is

Ynwc
k g( ) :� c1Yb

k,1 1 g • Yb
k,2 2 Yb

k,1

� �
: (30)

To combine classical and nowcasted information following
(18), we need to work with the matrix Yb

k of differences
between simulated observations and their ensemble mean:

Yb
k(g) :�

Yb
k,2

Ynwc
k (g)

� �

: (31)

Note that for g = 0 the lower part of the matrices corresponds
to a measurement at sk. For g . 0 it is a linear combination of
measurements at sk and tk. The case g = c1 is a singular case,
where the observation yo

k,2 at time tk is used twice.

4. Theory for assimilating nowcasted observations

This section develops the mathematical theory for the
assimilation of nowcasted observations as described by Eq.
(18). Later we will use the LETKF to assimilate both classical
and nowcasted observations within the data assimilation cycle
to demonstrate its benefit.

For the assimilation the background error covariance matrix
and the observation error covariance matrix are required. In
section 4a we calculate the observation error covariance matrix
when using linear transformations of observations}as given by
temporal derivatives or nowcasting in the sense of Eq. (17). We
will discuss the theory of assimilating such linearly transformed
observations in section 4b. In section 4c we show that assimilat-
ing nowcasted information with a transformed R matrix is
equivalent to assimilating the observations directly. The same
holds for assimilating the temporal derivative with a corre-
sponding R matrix.

a. Estimating the observation error covariance matrix

We note that basically all data assimilation methods (Lorenc
et al. 2000; Kalnay 2003; Evensen 2009; Anderson and Moore
2012; van Leeuwen et al. 2015; Reich and Cotter 2015; Kleist
et al. 2009; Nakamura and Potthast 2015; Houtekamer and
Zhang 2016; Bannister 2017) somehow minimize a cost func-
tional of the following form:

J(x) :�
���x 2 x(b)

k

���
2

B21
1
���yk 2 H(x)

���
2

R21
, (32)

with

��x̃
��2

B21 :� x̃TB21x̃,
��ỹ
��2

R21 :� ỹTR21ỹ, (33)

where B � Rn3n is the background error covariance matrix
and R � Rm3m is the observation error covariance matrix for
the observations yk at time tk. For the LETKF (Hunt et al.
2007), the background error covariance matrix B is implic-
itly estimated when the update formulas in ensemble space
are carried out. The observation error covariance matrix R
corresponds to the setup of the forward operator H which is
applied to all ensemble members at the observation time.
Now we need to calculate the observation error covariance
matrix for the observation vector of classical plus nowcasted
information, i.e., for the observation yk defined by (18). Let
us assume that

A1: R0 � Rm3m is the observation error covariance matrix
for the observation y(s) at time s, and that

A2: the observations at different times s1 Þ s2 are independent,
i.e., the cross covariances between y(s1) and y(s2) are zero.

Theorem 4.1 Under the assumptions A1 and A2, the obser-
vation error covariance R for the observation yk de�ned in (18)
with g de�ned in (17) is given by
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R � R11 R12

R21 R22

� �
� R0 gR0

gR0 (c1 2 g)2 1 g2
� 	

R0

� �

�:
1 g
g c1 2 g( )2 1 g2

� �
	 R0 • (34)

We now assume g Þ c1. Then, if R0 is invertible, so is R, with
the inverse given by

1
c1 2 g2

c1 2 g( )2 1 g2 2g
2g 1

� �
	 R21

0 : (35)

Proof. We first note that by definition we have

Rij � E
��

yk,i 2 yk,i

��
yk,j 2 yk,j

��
, (36)

where i, j indicate the components of the vector yk. The second
part of yk consists of linear combinations of y1 and y2, which by
assumption both have the observation error covariance matrix
R0. The �rst part of yk consists of yk,2 with the observation error
covariance matrix R0. We �rst note that the observation error
covariance matrix of c1yk,1 1 g yk,2 2 yk,1( ) is calculated by

R22 :� E c1yk,1 1 g yk,2 2 yk,1( ) 2 c1yk,1 1 g yk,2 2 yk,1( )
� 	�

• c1yk,1 1 g yk,2 2 yk,1( ) 2 c1yk,1 1 g yk,2 2 yk,1( )
� 	T�

� Var (c1 2 g)yk,1 1 gyk,2
� 	

� (c1 2 g)2 1 g2
� 	

R0: (37)

In a similar way, we calculate the submatrices:

R12 :� E
�

yk,2 2 yk,2
� ��

yk,1 1 g(yk,2 2 yk,1)

2 c1yk,1 1 g yk,2 2 yk,1( )
� 	�T

�

� E yk,2 2 yk,2
� �

g c1yk,2 2 yk,2
� �� 	T� �

� gR0 (38)

and the same for R21. The Eqs. (37) and (38) together with
the observation error covariance matrix for

R11 � E yk,2 2 yk,2
� �

yk,2 2 yk,2
� �T

� �

� R0

(39)

leads to the result (34). Finally, we note that for g Þ 1 the
determinant of the matrix

C :� 1 g
g (c1 2 g)2 1 g2

� �
(40)

is given by

det C( ) � c1 2 g( )2 . 0,

such that C has the inverse

C21 �
1

c1 2 g( )2
(c1 2 g)2 1 g2 2g

2g 1

� �

and C 	 R0 is invertible if and only if R0 is invertible and the
inverse is given by C21 	 R21

0 as verified by elementary matrix
operations.

b. Equivalence of assimilating linearly transformed data
with their direct assimilation

For the ensemble Kalman filter, following Nakamura and
Potthast (2015), chapter 5, the mean analysis update is based
on the following equation:

xa � xb 1 BHT R 1 HBHT( )21
y 2 H xb( )
� 	

, (41)

and the update of the B matrix given by

Ba � I 2 KH( )Bb, K � BHT R 1 HBHT( )21
: (42)

We include the case where the observation operator operates
on several times. Then xb (and xa) might contain two (or
more) time steps and B includes cross-temporal correlations.
However, the analysis state is usually calculated at one analysis
time only. The standard LETKF formulation of Hunt et al.
(2007) can be seen as a transformed version of the Eqs. (41)
and (42). For the case of H linear, let us now assume that we
carry out a linear transform A of the observations:

~H � AH, ỹ � Ay: (43)

The corresponding transform of the observation error covari-
ance matrix R is given by

~R � ARAT, (44)

and the Kalman matrix for the transformed observations is
given by

~K � B ~H
T ~R 1 ~HB~H

T
� �21

• (45)

We now study the transform of the Kalman filter equations,
Eqs. (41) and (42), based on the transform given by (43), (44),
and (45). We calculate the Kalman equations for the trans-
formed quantities and show that they are identical to the origi-
nal equations. We calculate

xa � xb 1 B~HT
�
~R 1 ~HB ~H

T�21�
ỹ 2 ~H

�
xb
��

� xb 1 BHTAT
�
ARAT 1 AHBHTAT

�21
A
�
y 2 H

�
xb
��

� xb 1 BHTAT
�
AT
�21�

R 1 HBHT
�21

A21A
�
y 2 H

�
xb
��

� xb 1 BHT
�
R 1 HBHT

�21�
y 2 H

�
xb
��

(46)
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and for the background error covariance matrix Ba we
calculate

Ba �
�
I 2 ~K ~H

�
Bb

�
�
I 2 B~HT

�
~R 1 ~HB~HT

�21 ~H
�
Bb

�
�
I 2 BHTAT

�
ARAT 1 AHBHTAT

�21
AH
�
Bb

�
�
I 2 BHTAT

�
AT
�21�

R 1 HBHT
�21

A21AH
�
Bb

�
�
I 2 BHT

�
R 1 HBHT

�21
H
�
Bb: (47)

We can now state the following basic lemma.
Lemma 4.2 Let us carry out an assimilation step with a Kal-

man �lter (41)–(42) for transformed observations ỹ � Ay with
some linear invertible transform A. For the assimilation of the
transformed observation we employ the transformed Kalman
matrix ~K with the transformed observation error covariance
matrix ~R. Then, the analysis mean xa and covariance matrix Ba

are identical to the result when assimilating the original obser-
vations y based on the Kalman matrix K and the observation
error covariance matrix R.

Proof. We note that Eqs. (41) and (42) are purely algebraic
and that they are applicable to any vector xb which may con-
sist of a finite number of time slices, with covariance B taking
these into account. The transform with A takes place in obser-
vation space only. The statement of the theorem is a direct
result of the derivation given in (46) and (47).

For the ensemble Kalman filter (Hunt et al. (2007)) we
note that B is estimated by B = 1/(L 2 1)XXT with the matrix
of L � N ensemble members:

X � x(1) 2 x, :::, x(L) 2 x
� 	

, x �
1
L

�L

��1
x(�):

With Y = HX the term HBHT = 1/(L21)YYT employs simu-
lated observations only. For the LETKF it is used to calculate
a transform matrix to compose the analysis ensemble obeying
(46) and (47) (see Potthast and Welzbacher (2018), section 2,
for details).

c. Nowcasted information or temporal derivatives as
linear transform

Let us now study the assimilation of nowcasted information or
a numerical temporal derivative. According to theorem 4.1, the
transformed observation error covariance matrix for (15) and
(18) is given by (34). With the transform matrix A defined by

A :�
0 1

c1 2 g( ) g

� �
, (48)

we obtain

yo
k(g) � A

yo
k,1

yo
k,2

� �

, R(g) � ARAT: (49)

We are now prepared to formulate an equivalence result
for assimilating nowcasted information.

Theorem 4.3 We consider the assimilation of the combination
(18) of some observation yk,2 at time tk with the numerical tempo-
ral derivative (c1 = 0) or the nowcasted information (c1 = 1) in
the form ynwc(g)based on observations at times sk and tk, k = 1,
2, 3, … , into an ensemble Kalman �lter. We assume that we
employ the transformed observation error covariance matrix
R(g) based on the observation error covariance R0 for the mea-
surement yo

k,1 and yo
k,2, which have uncorrelated observation

errors. Then, for all g $ 0, g Þ c1, the assimilation result is identi-
cal to the assimilation of the original observations yo

k,1 and yo
k,2,

k = 1, 2, 3,… with observation error covariance matrix:

R :� R0 0
0 R0

� �
: (50)

Proof. The theorem is a result of the combination of theo-
rem 4.1 and lemma 4.2. We have calculated the covariance
matrix for observation setup (18) in theorem 4.1. It can be
obtained in the form of a linear transform (49) with A defined
in (48). As worked out in Potthast and Welzbacher (2018),
section 2, the ensemble Kalman filter formulation can be writ-
ten in the form (41) and (42), such that lemma 4.2 is applica-
ble in this case. Thus, lemma 4.2 tells us that the outcome of
each assimilation step is independent of the linear transform.
This then clearly applies to the whole assimilation cycle.

We will later carry out numerical experiments assimilating
(18) into the oscillator model system with different nowcast-
ing lead time factors g. The above theorem is confirmed by
the curve shown in Fig. 3 for c1 = 1. For the choice c1 = 0
assimilating the numerical temporal derivative with different
weights to the derivative, the result is numerically confirmed
with a graph identical to the one shown in Fig. 3. The same
result is observed with the Lorenz 63 model.

With the above equivalence result we have shown that with
the transformed observation error covariance matrix R(g)
given by (34) there is no benefit in using nowcasted informa-
tion. However, we will see in section 5 that the benefit can be
achieved if a different observation error covariance matrix R
is used such that nowcasted information can indeed help to
improve the forecast scores.

5. Numerical study assimilating nowcasted observations

In this section, we show numerical results when assimilating
nowcasted information for the oscillator model in section 5a
and for the Lorenz 63 model in section 5b. In particular, we
will study the choices of R given by (34) and (50) for assimilat-
ing yo

k,2 only, yo
k,1 and yo

k,2, or the combination yo
k,2 with y(nwc,g)

k .
Our general goal is to study the assimilation of nowcasted

information and compare it to classical assimilation of observa-
tions, both with observations at analysis time only (3D-LETKF)
or with an additional observation from the interval between
analysis times (4D-LETKF). Further, we will study the depen-
dence of the results on the weight or lead time factor g, i.e., on
the nowcasting time interval.
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a. Numerical results for the oscillator model

We have implemented a fourth-order Runge–Kutta method
for the oscillator model (2) and a localized ensemble transform
Kalman filter as described in Hunt et al. (2007). We have cho-
sen a nature run with k = 1.2 and used k � 1 1 0:05 • randn(�),
� = 1, … , L, i.e., a random choice with mean k = 1 and variance
0.05 for the ensemble members in the assimilation cycle. The
noise for observations is set to � = 0.013 times Gaussian random
noise. We chose T = 1 for the temporal intervals T = tk 2 tk21

of the assimilation cycle and an initial state given by x0 = (0, 1)T.
The observation operator H is chosen to be H = (1, 0), i.e., we
observe the first component of the two-dimensional oscillating
system.

The results of different setups are shown in Fig. 4. With the
time T between two assimilation times tk21 and tk, the choice
ds = T/6 and the constant g = dt/ds the value g = 12 corre-
sponds to dt = 2T, i.e., we plot the scores for nowcasting lead
times in the interval [0,2T).

The results for choosing R according to theorem 4.3 lead
to the results shown in Fig. 3, where the quality of the com-
bined assimilation of yo

k,2 and ynwc
k (g) is identical to the

assimilation of yo
k,2 and yo

k,1, i.e., to the 4D case, for all lead-
time factors g.

However, using a different observation error covariance
matrix R can improve the results. The experiments shown
in Fig. 4 have been carried out with a diagonal R matrix
R = R0 = (0.013)2 (with the numerical error used to simu-
late the observations) if only the observation yo

k,2 is assimi-
lated or

R � R0 0
0 R0

� �

in the case of two observations yo
k,2 and ynwc(g).

The red lines in Fig. 4 show the result when only the obser-
vation yo

k,2 [see Eq. (12)] is assimilated at each analysis time
tk, k = 1, … , Nnat, which we refer to as 3D case. The results
are independent of the parameter g, since it does not appear
in the formula when yo

k,2 is assimilated. With the parameter
choices above for an analysis cycle with Nnat = 100 analysis
steps we found an average first guess error eb = 0.2137 and an
average analysis error of ea = 0.0902.

With the blue lines in Fig. 4 we now take an additional ear-
lier observation yo

k,1 into account for each of the Nnat = 100
analysis steps, located at time sk = tk 2 ds for k = 1, … , Nnat.
We feed both observations into the LETKF, where now the
observation vector at each analysis time tk consists of

yo �
yo

k,2

yo
k,1

� �

• (51)

We note that this is identical to (18) with g chosen to be zero,
since then

ynwc
k (0) � yk,1 1 0 • (yk,2 2 yk,1) � yk,1 •

The result is again independent of g, and we observe an error
of eb = 0.208 92 and an analysis error of ea = 0.086 012. This
means this 4D version of the LETKF is slightly better than
the 3D version for the above setup.

FIG. 4. We display the first guess (full line) and analysis error
(dotted line) for different setups of the assimilation cycle for the
linear oscillator. The red lines show the results of a 3D setup, the
errors are independent of g, the average first guess error is eb =
0.213, and average analysis error ea = 0.09 for 100 assimilation
cycles. The blue lines display the results for two observations
assimilated by 4D-LETKF, independent of g as well. The magenta
lines show results for a fixed diagonal observation error covariance
matrix in (50). The results show the dependence of the mean anal-
ysis and first guess error on the nowcasting lead time factor g in
(18). The gray lines display the errors for assimilating nowcasted
fields only with fixed observation error covariance matrix R0.

FIG. 3. For the oscillator model, we show the first guess error
(full line) and analysis error (dotted line) for a data assimilation
cycle with 100 steps for data given by (18). Basically the same
image is obtained from (15), not duplicated here. We show the
error in dependence on the lead time of the nowcasting or the scal-
ing of the derivative. Clearly, for each g there are different now-
casted (linearly transformed) observations and corresponding
observation error covariance matrix R(g) entering the LETKF. Up
to numerical precision, the result of theorem 4.3 is confirmed, i.e.,
assimilating linearly transformed data with the corresponding
observation error covariance matrix does not change the result.
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We now assimilate yo
k,2 and ynwc

k (g) for different nowcasting
lead time factors g into the LETKF, displayed by the magenta
lines in Fig. 4. This means that choosing fixed g, with Nnat = 100
assimilation cycles for k = 1, … , Nnat at each analysis time tk we
assimilate both the classical observation at tk and the nowcasted
observation with nowcasting lead-time factor g. Thus, the analy-
sis xa

k and the first guess xb
k11 now depends on g. We run the

experiments for twelve choices of g = 0, 1, 2, … , 11 and display
the first-guess errors eb(g) as well as the analysis errors ea(g).
The minimal first-guess error is given by min eb � 0:16453,
which is about 20% below the error observed for the classical
3D and 4D setup of the assimilation cycle. It can also be
observed that the error decays strongly until approximately g =
6, which roughly corresponds to the first guess lead time T = 6ds

in the assimilation cycle, where our first-guess error is calculated
as eb

k11 :� xb
k11 2 xtrue

k11

�� ��. This means we get best results when
the lead time of the nowcasting is roughly identical to the time
when we evaluate the short-range forecast at the following anal-
ysis time.

A final setup is displayed by the gray lines in Fig. 4, where
we now use nowcasted information ynwc

k (g) only, not assimilat-
ing the observation yo

k,2 directly. With the identical parameter
choices as in Figs. 2a–c, we obtain a minimal first-guess error
eb = 0.17415, which is worse than the joint assimilation of yo

k,2
and yncw

k (g), but still better than the use of the observations in
the 3D or 4D setup without any nowcasting.

b. Numerical results for Lorenz 63 model

For further numerical testing, we employ the Lorenz model
(Lorenz 1963) as described in section 2b. Data assimilation
for the Lorenz 63 model is explained in detail including typi-
cal MATLAB or Octave codes in Nakamura and Potthast
(2015, chapter 6).

Figure 2 shows the setup for our numerical testing. We run
a data assimilation cycle with cylcing interval of dt = 0.12. We
first investigate the case where the observation operator H is
given by H = I, i.e., we observe the full state in each assimila-
tion time step. We calculate a nature run with parameters
s = 10, r = 28, and b = 8/3 for which the system exhibits cha-
otic behavior. We then simulate observations with Gaussian
errors based on a random draw with � = 0.02 and correspond-
ing error covariance matrix given by R0 � �2I. We remark that
the observation error is about 1% and quite realistic com-
pared to typical observations in e.g., atmospheric sciences.

For nowcasting, we also generate observations at a time
tk 2 ds, where we choose ds = 0.02, i.e., 1/6 of the time
between two consecutive analysis steps. This would corre-
spond to a 10-min nowcasting observation interval within an
hourly data assimilation cycle, which is a realistic range com-
pared for example to radar precipitation nowcasting in classi-
cal atmospheric forecasting systems. We test nowcasting for a
lead time of g � [0, 6], which corresponds to nowcasting up to
one assimilation cycle or 1 h in the framework of typical
atmospheric nowcasting.

In Fig. 2, the nowcasting is indicated by straight gray lines
with black dots at the end, which indicate the nowcasted state
at time s = sk 1 gds used as data for the assimilation cycle.

Blue dots show the ensemble mean of the first guess at analy-
sis time, the red dots the mean of the analysis ensemble,
observations are shown in black. The gray curves indicate the
analysis ensemble; its variance is approximately the size of the
observation error, i.e., 0.02.

We carry out our case study with Nnat = 100 steps of the
analysis cycle. This corresponds to approximately 4–5 days of
atmospheric convective scale data assimilation with an hourly
assimilation cycle. We carry out ensemble data assimilation
based on the LETKF as described in section 3. Spread control
is based on the statistics of observations minus first guess
(cf. Desroziers et al. (2005) and Li et al. (2009)) as also
described in Potthast et al. (2019), given by

do2b � yo 2 H xb( ) � yo 2 H xt( ) 1 H xt( ) 2 H xb( ) � eo 2 Heb,

(52)

with the true background state xt, the background state xb,
the linearization H of H, the vector of observation errors eo,
and the vector of background errors eb. If the observation
errors and background errors are uncorrelated, we obtain

E do2bdT
o2b

� 	
� E eo(eo)T
� 	

1 HE eb(eb)T
� 	

HT: (53)

To estimate the inflation factor we substitute the expectation
values of the background and observation error with the
actual ensemble covariance matrix Pb multiplied by the infla-
tion factor r and the nominal covariance of the observation
error R, respectively: E eb(eb)T

� 	
� rPb and E eo(eo)T

� 	
� R

resulting in

E do2bdT
o2b

� 	
� R 1 rHPbHT • (54)

By taking the trace Tr(A) � m
j�1 ajj of the matrices on both

sides, using Tr A 1 ~A( ) � Tr(A) 1 Tr ~A( ), Tr r~A
� �

� rTr ~A( ) and

Tr vvT( ) � Tr vTv( ), the inflation factor r is estimated by

r �
E dT

o2bdo2b
� 	

2 Tr(R)
Tr HPbHT( )

: (55)

The above factor is integrated into the code, estimated at
each analysis step and smoothened over time with a decay
factor of 0.8.

First, we study the system with different lead times for the
nowcasted information. Figure 2 provides an impression of
the dynamics of the nowcasting. We remark that (s 2 sk)/ ds =
6 corresponds to the cycling interval of the data assimilation
cycle. This means that the nowcasted state stays on a straight
line, while the system dynamics follows a quarter of a circle of
one of the wings of the butterfly. Clearly, there are strong dif-
ferences between the linearly nowcasted state and the nonlin-
ear dynamics of the Lorenz system. But this difference is also
there for the nowcasting of simulated observations. So when
R is chosen by (50), the assimilation of the nowcasted state
integrates the derivatives of the system at the analysis time by
(18), and it gives these derivatives some weight by the lead
time of the nowcasted states.
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Next, we evaluate the overall system performance in terms of
the statistics of the first guess and analysis errors compared with
the truth for the Nnat = 100 cycles for which we carry out the
assimilation. Figure 5 displays the mean first guess and analysis
errors for different lead times of the nowcasted information.
Here, we take the mean error over all Nnat analysis time steps.
The dotted curve shows the analysis error, the full line the first
guess error, both compared to the nature run. We also carried
out a standard data assimilation cycle with observations at
tk only, i.e., with the 3D version of the LETKF. The mean first
guess error in this case was eb = 0.25288 and ea = 0.12107. When
we take into account observations at tk and tk 2 ds, we obtain
eb = 0.22988 and ea = 0.11253. This corresponds to a 4D version
of the LETKF, where information is employed at the correct
point in time on the interval [tk21, tk] for the analysis at tk. The
improvement seems plausible, since we have more independent
observations of the state in four-dimensional case. The four-
dimensional case is also the starting point of nowcasted informa-
tion, since in the case s = sk it coincides with using nowcasting
evaluated at time sk,1, the beginning of the graphs at g = 0 in
Fig. 5.

Figure 5 visualizes several important results, using blue
lines for the observation operator H = I and with red lines for
H = (1, 1, 0). First, the error value for g = 0 is the case where
we assimilate observations at tk and tk–ds independently. This
corresponds to a 4D version with the active use of two time
steps close to the end of the time interval under consideration
for each analysis cycle. The use of nowcasted information
reduces the forecast error significantly approximately for a
nowcasting lead time up to 1–2 analysis cycles. For atmo-
spheric data assimilation with hourly assimilation cycle this
corresponds to nowcasting of about two hours. In dependence
on g, starting from g = 1 usually the average first-guess fore-
cast error first decreases with growing g. After reaching a
minimum it starts to grow with growing lead time of the now-
casted information.

Further, with the blue lines in Fig. 5, where H = I, we
observe that the analysis error is minimal for g = 1, which cor-
responds to the case where only observations at analysis time
are assimilated. With growing g the analysis error starts to
grow, though still the forecast error decays until g = 3. We
note that we measure the analysis error in the L2 norm at
analysis time, while the assimilation functional now employs a
norm which consists of the L2 distance plus an L2 distance on
the nowcasted states. This norm resembles a weighted H1

metric, which includes the derivative. This means that a good
fit of the derivative might lead to a worse fit of the state itself,
but to include the direction of motion leads to better fore-
casts. Displayed by the red lines in Fig. 5 we observe and now-
cast the sum of the variables x1 and x2. Here, the assimilation
error is best when the information at sk and tk is used. Again
there is benefit for the forecast score when nowcasted obser-
vations are assimilated with R given by (50), as shown by the
minimum of the bold curve at g = 3.

6. Conclusions and further steps

This work studies the assimilation of nowcasted informa-
tion into a classical data assimilation cycle. We employ the
Localized Ensemble Transform Kalman Filter (LETKF) as
assimilation method. Nowcasting is modeled as a linear
extrapolation of observations based on two temporally close
measurements. We compare the assimilation of observations
at analysis time tk with the assimilation of two observations at
tk and sk = tk 2 ds and the assimilation of observations at tk
plus nowcasted information with a nowcast lead time factor
g = (s 2 sk)/ds. We describe the integration of nowcasted
information into the LETKF. The theory for the assimilation
of nowcasted information has been worked out by calculating
the transformed observation error covariance matrix under
the assumption that observations at different time steps have
an independent observation error with an observation error
covariance matrix R0. When the same transformation is used
for nowcasting of observations and the observation error
covariance matrix R, it has been shown theoretically that no
forecasts improvements can be obtained. However, with a dif-
ferent matrix R we can observe improved forecast scores. A
numerical study based both on an oscillator model and the
popular Lorenz 63 model as a chaotic dynamical system shows
the feasibility of the assimilation of nowcasted information
with an ensemble data assimilation system as well as the
equivalence or benefit of nowcasted information over the
classical three-dimensional or four-dimensional assimilation
of this information depending on the choices of the covari-
ance matrix R. We expect these results to lead to further
research on the assimilation of nowcasted information in typi-
cal atmospheric forecasting systems on the convective scale.
The results are very promising since they improve the forecast
errors within the assimilation cycle significantly.

One key next step is the implementation and experimental
testing of the techniques in a full data assimilation system for
numerical weather prediction. For the Kilometer-scale Ensem-
ble Data Assimilation System (KENDA) of the COSMO Con-
sortium the calculation of observation equivalents, i.e., the

FIG. 5. For the Lorenz 63 model we display the mean first guess
error (full red line) and the mean analysis error (dotted line) for
the analysis cycle assimilating nowcasted information with different
lead times g. The blue lines display results for H = I, red lines dis-
play results for H = (1, 1, 0). Here, we show results for weight or
lead time factor g � [0, 6], approximately for nowcasting lead times
of zero to the analysis cycle interval.
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setup of the vectors y of Eq. (18) and the matrices Y defined in
(31) is carried out during model runs and is passed to the data
assimilation system by so-called feedback �les in netCDF for-
mat. These form a natural interface to feed nowcasted informa-
tion (31) into KENDA, when the nowcasted information
together with their nowcasted simulated counterparts are stored
in the feedback file format and read in the standard way. The
3D-volume radar observations are assimilated operationally in
the regional model of DWD and are a good candidate for test-
ing simplified nowcasting and its assimilation. Technically, the
assimilation of more sophisticated nowcasting objects can be
carried out in the same way and is in preparation.
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