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ABSTRACT

One central problem in the study of wind-generated gravity waves is the energy balancing process in the
equilibrium spectral subrange. In considering the predicted equilibrium spectral forms from physical models
proposed by Kitaigorodskii, other investigators accepted that the statistical equilibrium state is effectively char-
acterized by the wave action conservation law: 3E/dt + 'C"g~ VE =0, where E is the wave energy spectrum and
a = Vww(k) is the group velocity. Here the continuous wavelet transform is used to analyze typical sets of
wind-generated gravity wave data obtained both in the ocean and in a wind-wave channel. This “space scale”
analysis is shown to provide the first visual evidence that when the fetch is not very short, the wave action
conservation law mentioned above is not convenient to describe the dynamics of the wave components in the

equilibrium range estimated from its energy spectrum.

1. Introduction

The mechanisms involved in wind-generated gravity
waves have been the subject of intensive theoretical
and experimental investigation over the last three de-
cades. According to the current status of our under-
standing, the random character of wind waves can be
effectively approached by a stationary, ergodic random
process. Wind waves, being dominated by strong grav-
itational restoration, are weakly nonlinear with wind
forcing, wave breaking, and the interaction among dif-
ferent scales as the associated control terms.

The common model for the surface elevation {(x,
t), initiated by Longuet-Higgins (1957), assumes

{(x, 1) = % a, cos(k,«x + wyt + ¢,), (1.1)

n=1

where ¢,, is uniformly distributed between 0 and 2~
and the a,, k,, and w, are considered to be fixed for
all realizations. The a, are constrained such that

k+8k wtdew

DD %a3,=E(k,w)6k6w, (1.2)
k w

where E(k, w) is the Fourier wave spectrum. The di-
rectional frequency spectrum is defined as

G(w, 8) = ZJ:O E(k, w)kdk, (1.3)
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where 8 is the angle between the wind direction and
the wavenumber vector. The frequency spectrum is
defined as

L3

S(w) = G(w, 0)dS.

-

(1.4)

The evolution of the directional frequency spectrum
G{w, 8, x, t) was described by Hasselman and others
(see, e.g., Khandekar 1989), based on the wave action
conservation law

G
D_G = — 4 Cg-VG = Sm+ Sn.l+ Sa’s-

L.5
Dt o (15)

Here S;,, Sy, and S, are the source terms representing
the spectral distributions of wind input, the transfer of
energy associated with nonlinear wave-wave interac-
tions, and the energy dissipation through wave breaking
and turbulence; C, is the group velocity of the wave
field

Lk

2wk (1.6)

G, = Viwlk) =

This spectral approach of the wind waves has proven
to be successful in diverse fields, such as practical wave
forecasting and the engineering design of marine struc-
tures and vehicles. But when we use the wave spectra
to describe the finestructure of wind wave surfaces, we
find that our knowledge of the wind wave spectra is
incomplete. Interest in this problem has been height-
ened in recent years by the fundamental role of short
surface wave components in active microwave remote
sensing of the oceans. The two following questions
seem to be fundamental. First, can {(x, ) be ap-
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proached effectively by a superposition of infinitesimal
trigonometric wave components? Second, does the en-
ergy of the short wave components propagate at the
group velocity C?

In this paper our investigation is of the surface ele-
vation {(¢). Wind waves in nature, instead of being
permanently superposed by free infinitesimal trigo-
nometric wave components, experience continuously
the turbulent wind forcing, wave breaking, and energy
exchange between different scales. These three pro-
cesses may well result in localized singularities in {(¢).

In such cases, when applying a Fourier transform to’

$(1), these localized singularities will be completely
delocalized throughout the frequency spectrum S(w).
If this singularity contribution to S(w) is significant,
we will lose the essential information of {(¢) in de-
scribing wind waves by the Longuet-Higgins spectral
model Egs. (1.1) and (1.2).

The singularities in {(z) can be visualized by the
continuous wavelet transform, which is a mathematical
technique introduced in the early 1980s in the context
of seismic data analysis (Goupillaud et al. 1984 ). The
wavelet analysis provides a two-dimensional unfolding
of one-dimensional signals, resolving both position and
scale as independent variables. It has been shown that
the continuous wavelet transform is well adapted for
investigating the coherent structures in turbulent flows
(Farge 1992). In the present paper, wind-generated
gravity waves are analyzed with a continuous wavelet
transform, which is introduced in the following section.
It is shown that there are isolated singularities in {(¢).
They make a significant contribution to the observed
Fourier frequency spectra, especially in the high fre-
quency range. The results give some new viewpoints
concerning our understanding of wind waves and sug-
gest that the spectral model Egs. (1.1),(1.2), and (1.5)
are not suitable for describing the dynamics of short
wave components of {(¢) when the wind fetch is long.

2. Wavelet transform

We introduce here the continuous wavelet transform
of a real function over a real line R. We limit this study
to the basic facts used in the following; for more detailed
information see Grossmann and Morlet (1987) and
Farge (1992).

The continuous wavelet transform of a real signal
{(t) with respect to the analyzing wavelet g(¢) [in gen-
. eral, g(t)is complex] is defined as the function:

§(r, T) = f (l

where T € R™ is the scale dilation parameter corre-
sponding to the width of the wavelet, 7 € R is the
translation parameter corresponding to the position of
the wavelet, and g* denotes the complex conjugate of
g. The wavelet g(€EL* N L') satisfies the following
admissible condition:

T );’(t)dt, (2.1)
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C, = 21rf 18?22 < 40, (2.2)
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where ¢(w) is the Fourier transform of g(z); that is,

g(w) = —f g(tye™™“dr. (2.3)
Ifg(w)=0 for w < 0, we shall say that g(¢) is a pro-
gressive wavelet. Expressing Eq. (2.1) in terms of Fou-
rier transforms, one gets

§r, T) = 22VT f_ " E(w)g( Ta;)e"""d.w. (2.4)

The wavelet transform (2.1) is a sort of a mathematical
microscope, whose magnification is 1/7, whose po- -
sition is 7, and whose optics is given by the choice of
the specific wavelet g.

In this paper, the analyzed wavelet is chosen as

g(t) = e(_tZ/Z_HZ”). (2.5)

This is the “standard Morlet wavelet,”” which has been
used extensively. As shown in Fig. 2, the standard
Morlet wavelet is a plane wave of frequency w, = 2,
modulated by a Gaussian envelope of unit width. In
Fourier space, the standard Morlet wavelet is given by
—(w=2m)Y2

1
f(w)=——=¢ 2.6
&(w) Vor (2.6)
For all practical purposes, the Morlet wavelet is ad-
missible and progressive.

It has been proven that the information contained
in the wavelet coeflicients is redundant and there are
many different reconstruction formulas, of which we
write down the most simple one:

so-c' [T nAL, e

T3/2 ’
with

Feo dw
C, = Var f B(w) — .
e lw]

Now we list some of the main properties of the
wavelet transform. We denote the continuous wavelet
transform of a function {(¢) by the operator notation
WI[{](¢) and the resulting wavelet coefficients by
§(r, T).

A very simple but fundamental property of the con-

‘tinuous wavelet transform 1is its covariance with respect

to translations and dilations of the signal; namely,
WL = 10) = {(v — 10, T), (2.8)
WIS Tot) = To'{(Tor, ToT).  (2.9)

The covariance of translation (2.8) has an immediate
consequence. It can be shown that the frequency of a
monochromatic signal can be obtained from the phase
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FIG. 1. Plan of the wind wave channel.
of any restriction of its wavelet transform to a hori- Tooy Tooy

zontal line T = const. Let f(z) be a function that is
continuous, not necessarily differentiable in 74, such
that

e+ 1) — f(2)| = clt]*

with & < 1 and constant ¢ > 0. Then in the neighbor-
hood of 7 = 1y, it is easily verified from the covariance
of dilation (2.9):

f(Tor, ToT) = T§f(7, T) (2.11)

with T, € R™. This implies that the wavelet transform
of a homogenous signal is fully determined by its re-
striction to any line T = const, It can also be proved
that the following estimate of f(zy, T') is valid:

J(to, T) ~ ce®T=*"2

(2.10)

(2.12)

for T'— 0, where ¢ is the phase of the wavelet coeffi-
cients. Equations (2.11) and (2.12) will be used in the
following section to test singularities categorized by Eq.
(2.10) in wind wave datasets.

The effective width, o, say, of the standard Morlet
wavelet (2.5) is a limited value (o, =~ 4.), as shown
in Fig. 2. Hence it can be verified from Eq. (2.1) that
the wavelet coefficients corresponding to the position
to will all be contained in the influence cone in the
wavelet space:

TE[tg— Tag/2,to+ Toy/2]. (2.13)
Similarly, on account of the fact that the effective
widths of Egs. (2.5) and (2.6) are identical, the wavelet
coefficients corresponding to the scale Ty will only be
contained in the subband defined by

TE[TO— (2.14)

47 + o’ 0 4T — g, |’

Another property of the continuous wavelet trans-
form is that it conserves the energy of the signal:

f_w ()] 2dt

drdT
T2

+c0 +o0
= fo f {(r, T)$*(7, T) (2.15)
It implies that there is no loss of information in trans-
forming the signal into its wavelet coefficients. In fact,
the energy conservation is not only true globally, but
also locally if one considers all coefficients inside the
influence cone (2.13) and (2.14).

3. Experimental results using wavelet

The wave data used in the present paper were ob-

_ tained from both laboratory simulations and sea field

observations. The laboratory data measured by a ca-
pacitance wave gauge and a resistance wave gauge in
the laboratory wind wave channel (Fig. 1) are listed
in Table 1. The field observations were performed at
an oil platform (39°15'N, 119°50'E) located in the
Bohai Sea, which is semiclosed and connected with the
Yellow Sea through a strait. Only waves generated by
offshore winds are considered. The Bahai Sea bottom
is flat and shoals to the shoreline at a gentle slope.
Waves grow while propagating from shore to the plat-
form where the depth is 27 m, so the waves may be
considered as being generated in deep water. Details
of these observations are summarized in Table 1.
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The selected wave data satisfy the following criteria:
1) Waves are generated by an approximately constant
wind of long duration (>1.5 h in the field and >10
min in the laboratory); 2) dominant swells do not co-
exist with wind waves; and 3) wave frequency spectra
(estimated by standard numerical methods) are of a
single peaked form.

Figures 3a and 4a show typical examples of the three-
dimensional display of the modulus of the wavelet
transform Eq. (2.1), that is, |{(+, T)|. Figure 3a is
calculated from laboratory dataset 2; only a small sec-
tion of it is shown. Figure 4a is calculated from field
dataset 4. The two corresponding water surface ele-
vation datasets are plotted in Figs. 3b and 4b. It is
found that amplitudes of the wave components at high
frequencies (corresponding to small 7°) are remarkably
inhomogeneous, with very sharp peaks sporadically
distributed along the time axis 7. As noted in section
2, being different from a Fourier transform, the infor-
mation contained in the wavelet coefficients is redun-
dant. The value of |{(7¢, Ty)| cannot be absolutely
interpreted as the amplitude of the wave component
of w=2n/Ty at t = 7¢. Here {(7¢, Tp) is only local
in the influence cone specified by Eqs. (2.13) and
(2.14). At high frequencies, the distances between the
sharp peaks along the 7 axis in Figs. 3a and 4a are at
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TABLE 1. Field and laboratory wind wave data details.

Time U Duration

Dataset Date (GMT) (ms™) (h) Channel
1 22 Oct. 1992 9:45 6.0 0.17 1 (lab.)
2 22 Oct. 1992 9:45 6.0 0.17 2 (lab.)
3 22 Oct. 1992 9:45 6.0 0.17 3 (lab.)
4 17 Sept. 1991 10:00 10.0 35
5 25 Nov. 1991  05:00 10.0 2.0
6 7 Jan. 1991 00:30 20.0 2.5

least five times larger than the width of the influence
cone (2.13), To,. Hence we can interpret the inho-
mogeneity of the modulus of the wavelet coeflicients
along the 7 axis at high frequencies as the inhomoge-
neity of the high-frequency wave components of {(¢).
A common pitfall in decoding the wavelet coeflicients
is emanated from Eq. (2.4): it seems that the wavelet
transform was only a filter operating on the signal, so
the behavior of the wavelet coeflicients should appear
as a wave group. From Egs. (2.4) and (2.14), it is easy
to verify that the effective width of §( Thw) is

WO
A = 2% (3.1)
2
1.00
0.50
o
e
=)
S 0.00
>~
<
o
[eB]
S e0.50
o
£
—1.00
—1.50 T T T T T —rT T T
~12.00 —8.00 —4.00 0.00 4.00 8.00
tirme

FIG. 2. The standard Morlet wavelet g(¢) defined in Eq.
(2.5): (a) the real part of g, (b) the imaginary part of g, and
(c) the Fourier spectrum g(w).
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FIG. 3. The wavelet transform of laboratory dataset 2. (a) Three-dimensional display of the

modulus A(7, T) [with {(=, T) = A(, T)e**"7], the period of the dominant waves being about
4.5 s; (b) the corresponding wave elevation ¢(¢).
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FIG. 4. The wavelet transform of field dataset 4. (a) Three-dimensional display of the modulus
Az, T) [with {(r, T) = A(r, T)e™""], the period of the dominant waves being about 2.5 s;
{b) the corresponding wave elevation {(t).
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with wo = 27w/ T,. The effective width of the wavelet
is proportional to the frequency to be analyzed, and
they are of the same order. However, for a signal ap-
pearing as a group, Aw should be much less than the
principle frequency wy. Hence Figs. 3a and 4a imply
that the wave components of high frequencies in
observed wind wave datasets are not constant in am-
plitude and that there are sharp peaks sporadically dis-
tributed along the time axis. In other words, the high-
frequency wave components in wind waves are inter-
mittent. This observation is in contradiction to the

wind wave spectral model of Longuet-Higgins Eq.
(1.1). According to this model, every wave component
should be of constant amplitude.

To decode the origin of the sharp peaked amplitudes
of the high-frequency wave components, one of the
sharp peaks in Fig. 3a is magnified in Fig. 5a. Let 1,
be the location of the sharp peak in the time axis; then
we find that | {(¢o, T')| has the appearance of a power
law function of 7 when T is small. According to the
wavelet transform property specified by Egs. (2.10),
(2.11), and (2.12), we assert that this sharp peak is
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F1G. 6. Three-dimensional display of the modulus of the wavelet transform
of laboratory dataset 1, the period of the dominant waves being about 0.24 s.

originated from the singularity specified by Eq. (2.12)
in the wind wave datasets being analyzed. The curve
in Fig. 5b is the amplification of the original {(¢) cor-
responding to the sharp peak. Ahead of the wave apex
the curve is concave, while behind the apex the curve
is convex. Schematically, we draw this wave (seen at
a given instant) in Fig. 5c. It suggests that the sharp
peaks in wavelet space correspond to wave singularities
resulting from nonlinear advection, where wave break-
ing generally occurs.

The influence of wave breaking on the surface pres-
sure distribution in wind-wave interactions was in-
vestigated by Banner (1990). It is observed that since
the airflow is always separated in the trough between
breaking crests, a strong local momentum (and energy)
flux to the water surface must appear downwind of the
breaking wave trough. Banner’s observation is con-
firmed by the appearance of a sharp peak in the wavelet
space coexisting with the horizontal asymmetry of the
wave profile resulted from wave breaking.

It is worthwhile to remark that wind waves in nature
are always coexisting with different scale water motions
involving different physical factors. The horizontal
asymmetry of the wave profile may well be produced
by nonlinear interaction between the wind waves and
other kinds of water motions (see Phillips 1977, section
3.7). It is therefore reasonable to anticipate that this
kind of nonlinear interaction may be derived from the
wind wave data since it produces local significant en-
hancement of the energy of short wind wave compo-
nents. Is it the basic mechanism involved in that in-
ternal waves and fronts can sometimes be found from
the ocean wave imaging by the synthetic aperture radar
technique?

In Figs. 3a and 4a, along the time axis for a given T’
(T being small), the wave components inside the sharp
peaks are dynamicaily different from the one outside
the sharp peaks. Generally, the latter are considered as
a free infinitesimal wave component, which satisfies
the linear dispersion relation w? = gk, and its group
speed is much less than the group speed of the domi-

nant wave component. But the waves inside the sharp
peaks, being produced by strongly nonlinear advection,
propagate at the same speed as the dominant waves,
and there is no effective dispersion among wave com-
ponents of different scales.

It is expected that breaking of the dominant waves
is less active at short fetches. Figure 6 shows the mod-
ulus of the wavelet coefficients calculated from labo-
ratory dataset 1, which is observed at a much shorter
fetch than that of dataset 2. In this figure there are no
sharp peaks at the high-frequency range. It implies that
nonlinear advection is not strong enough to cause ef-
fective horizontal asymmetry of the wave profiles as
shown in Fig. 5c.

To visualize the intermittency of the wave compo-
nents in the wavelet space, we define the energy inter-
mittency measure (see Farge 1992):

1§, DI

I D)= 0w nim,

(3.2)
with

~Tz—l'lfA”Tzar 3.3
<|§(Ta )l >T_A1£I:oA b |§-(T9 )' T, ( . )

I(r, T)=1,V7 and VYT, means that there is no wave
intermittency, that is, that each location has the same
energy spectrum, which then corresponds to the Fourier
frequency spectrum.

Figures 7 and 8 show the energy intermittency mea-
sure calculated from laboratory dataset 3 and from field
dataset 5. We can see that the wave energy at small
scales is highly intermittent in space. In fact, the average
of the wavelet coeflicients along the 7 axis corresponds
to the square root of the Fourier frequency spectrum
VS(w). It can be seen from Figs. 7 and 8 that in the
high-frequency range [i.e., the equilibrium range, see
Phillips (1985)] the Fourier frequency spectrum is de-
rived from, in a large ratio (being about 60% in these
two cases), the noninfinitesimal waves produced with
the nonlinear advection mentioned above. This new
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result is important in that it challenges our conven-
tional understanding of wind waves determined by a
Fourier frequency spectrum. In this case, the wave
components in the equilibrium range estimated from
the Fourier frequency spectrum are not effectively the
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infinitesimal waves satisfying the dispersion relation
w? = gk. It is worthy of note that w? = gk is the essential
condition to describe the dynamics of the wind waves
by the action conservation law Eq. (1.5), in which each
part of the wave components is considered as a wave
group traveling at group velocity

-

C, = vio. (3.4)

It is clear that while the nonlinear advection of dom-
inant waves is active, the mathematical description of
Egs. (1.1), (1.2), and (1.5) will not be convenient for
small-scale waves in the equilibrium range.

The dynamics of the averaged properties of short
wave components in the equilibrium range was for-
mulated by Phillips in 1958 and 1985, and recent in-
vestigation on this subject can be found, for example,
in the work of Banner (1989, 1990) and Shen and Mei
(1993). Their models, being based on the wave action
conservation law Eq. (1.5), are only applicable in re-
gions corresponding to the part outside the sharp peaks
in the wavelet space. It is interesting to remark that
since the experimental investigation of Banner (1989)
was performed on a small square (1.6 m X 1.6 m) of
sea surface by a stereophotogrammetric technique, the
dominant wave elevations have been automatically fil-
tered out by the applied technique itself. Hence, his
wavenumber spectra, having not been biased by the
local singularities mentioned above, are effectively in
agreement with the predicted spectrum of Phillips
(1985); see Shen and Mei (1993). Unfortunately, until
now almost all other experimental research on the
spectral forms in the equilibrium range has been per-
formed on wind wave datasets of long duration and/
or large areas. Because the properties of the dominant
wave breaking may well be dependent not only on the
wind speed but also on other physical factors, such as
the fetch, the stability of the air and water, the water
undercurrents, and so on, the local enhancement of
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FiG. 8a. The energy intermittency measure I(r, T') calculated from field dataset 5:
three-dimensional display of I(7, T').

short wave components originated from wave breaking
should be effectively different between different obser-
vations. The consequence is that the observed wind
wave spectra in the equilibrium range will manifest
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F1G. 8b. The isogram of I(7, T').

6 8

considerable fluctuations, as having been observed by
Phillips (1985).

4. Conclusions

The following conclusions can be drawn from the
present study.

1) When one is interested in the short Fourier wave
components, the wind wave field must be divided into
two classes according to the local property of the short
wave components. In the first class, 2, say, the short
wave components are effectively infinitesimal and sat-
isfy the linear dispersion relation w? = gk, and the
second class, 2 say, is characterized by a much en-
hanced energy density, where the short Fourier wave
components are not infinitesimal and propagate with-
out dispersion at the same velocity as the dominant
waves.

2) The measure of X is much less than that of >,
and 2, is composed by subsets sporadically distributed
on the whole wind-wave field. The ratio of the short
wave energy distributed on 2, to that on the whole
field 2o + 2, can be greater than 50% when the fetch
is not too short.

3) The enhancement of the energy of short wave
components on 2 is physically originated from the
horizontal asymmetry of the dominant wave profile
shown in Fig. 5¢c, where the dominant wave is breaking.

4) The equilibrium spectra predicted by Phillips
(1985) are only applicable to describe the average
properties of the short wave components on 2. More
theoretical and experimental investigation of the en-
hanced short waves on 2 should be performed in the
future to complete our understanding of the mecha-
nisms of the wind-generated gravity waves.

5) When the fetch is not too short, the action con-
servation law Eq. (1.5) is not convenient to describe
the dynamics of the short wind wave components in
the equilibrium range.
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