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ABSTRACT

The observed subtropical gyre in the North Pacific shows a shift in meridional location with depth. At shallow
levels the density deviation peaks at around 158N while at deep levels the peak is more like 308N. It is argued
here using analytical solutions to the beta-plane shallow-water equations that such a shift can be explained by
the effects of oceanic dissipation processes. These solutions show that the highly damped solution is approxi-
mately proportional to Ekman pumping whereas the lightly damped case tends toward the classical Sverdrup
solution. In the North Pacific, Ekman pumping peaks near 158N while the Sverdrup solution peaks at 308N. It
is further demonstrated that 1) density deviations in the upper ocean are more highly influenced by higher order
baroclinic modes than those in the deep, which are influenced by the lower modes, and 2) constant dissipation
effectively acts much more strongly on the higher order baroclinic modes because of their slower speeds and
smaller Rossby radii. These two factors thus explain the observed shift in the gyre with depth.

1. Introduction

Why are the subtropical gyres of the world oceans
where they are? In his seminal work Sverdrup (1947)
showed that the location of gyres was intimately related
to the curl in the surface wind stress vector field. In
particular the shift in the lower atmospheric easterlies
of the tropics to the midlatitude westerlies was identified
as the primary cause of the subtropical depression in
the deep thermocline and an associated depth-averaged
current gyre.

The observations in the Northern Pacific show, in
fact, that this subtropical thermocline depression varies
markedly with depth. Figure 1 displays a meridional
section of density at 1808 and shows that the minimum
of density occurs at about 158N for depths of the order
of 100 m and at about 308N for depths around 500 m.
This deep gyre location1 is in agreement with the Sver-
drup solution.

The subtropical adjustment process towards the Sver-

1 In this paper we define this to mean the latitude of the pressure
or density extremum at a given depth in the ocean.
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drup equilibrium solution was studied by Anderson and
Gill (1975), who showed that the initial response to wind
stress forcing is proportional to the local Ekman pump-
ing and that the Sverdrup solution is only obtained after
the arrival from the east of long Rossby waves. In a
number of papers in the early 1980s2 (Rhines and Young
1982a,b; Young and Rhines 1982) the issue of the ver-
tical structure of this adjustment process was discussed.
It was argued that in the case of the barotropic mode,
the long Rossby waves are able to fully penetrate to the
west and set up the Sverdrup solution. In the case of
some baroclinic modes the Rossby wave speed may be
of the same order or smaller than typical gyre currents
and the authors suggest that this has the effect of
‘‘shielding’’ the gyre from baroclinic Rossby waves
generated in the eastern basin. This is argued to occur
by means of a refractive effect. Evidently such an ‘‘in-
complete’’ Sverdrup adjustment process could, in prin-
ciple, lead to vertical variation in the meridional location
of the gyre as can indeed be seen in Rhines and Young’s
solutions.

The interaction of baroclinic modes with the mean
state is currently an unresolved issue both observation-
ally and theoretically. Early observational studies in-
volving XBT data (see White et al. 1985 and references

2 A good summary of this material may be found in chapter 3 of
Pedlosky (1996).
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FIG. 1. A meridional section of density in the North Pacific at 1808.
The dashed line shows the approximate latitude of minimal density
for a given depth in the ocean. Units are g cm23 2 1 and the data
is derived from the annually averaged Levitus and Boyer (1994)
climatology.

cited therein) found reasonable evidence for propagation
of low-order, long-wave baroclinic Rossby waves across
most of the basin at North Pacific subtropical latitudes.
The phase speed of the diagnosed perturbations agreed
reasonably with linear theory, which argued against a
major interaction with the mean flow. More recently the
TOPEX/Poseidon altimeter data has been analyzed by
Chelton and Schlax (1996) (see also LeTraon and Min-
ster 1993; Cipollini et al. 1997) who found that the phase
speed of disturbances tended to be somewhat above that
predicted by linear theory with this effect increasing
with latitude and being of order 10% to 20% in the
subtropics. The reason for this discrepancy is presently
uncertain with authors such as Qiu et. al. (1997) sug-
gesting that it is due to the observed perturbations being
a combination of forced and free modes, while others
such as Killworth et. al. (1997) and Dewar (1998) argue
that the mean state tends to increase the wave speeds.
The latter theoretical studies presented no evidence of
a refractive effect, which agrees with earlier studies that
used idealizations of observed currents (see Philander
1990, p. 150) to suggest that such an effect (involving
a critical layer) may occur at 108 and 38N but not at
subtropical latitudes. It should be noted that these stud-
ies apply primarily to the first baroclinic mode, which
for some parameter choices may not be highly refracted
in the Rhines and Young theoretical framework. Evi-
dently to resolve these issues, the interaction of higher-
order baroclinic modes needs also to be addressed.

Given these uncertainties in the verification of this
important aspect of the Rhines and Young theory, there
seems grounds for considering a simpler explanation for
the gyre location. In the present contribution we shall
argue that dissipation is a plausible candidate for such
a differential barotropic–baroclinic response. We shall
demonstrate that a simple linear model with this mech-
anism is able to account for several important aspects
of the observations in the North Pacific. In particular,
the change in the meridional location of the gyre with
depth and also its varying longitudinal character may

be qualitatively accounted for by a relatively simple
model.

The paper is organized as follows: Section 2 develops
the simple linear model and analyses a variety of lim-
iting solutions. Section 3 computes horizontal solutions
for a variety of idealized forcings as well as an estimate
for the actual North Pacific forcing. In section 4, the
three-dimensional solutions are then compared with the
observations and conclusions drawn as to the implied
dissipation rates for the baroclinic modes. Section 5
contains a summary and conclusions.

2. Relevant equations and simple analytical
solutions

Consider the usual primitive equations (Gill 1982, pp.
84–85) and make the assumptions of (i) incompressi-
bility, (ii) a Boussinesq approximation, (iii) a hydro-
static approximation, and (iv) an equatorial beta plane.
The resulting equations are

du 1 ]p
2 fy 5 2 1 M(u)

dt r ]x0

dy 1 ]p ]w ]u ]y
1 fu 5 2 1 M(y) 1 1 5 0

dt r ]y ]z ]x ]y0

]p dr
5 2rg 5 N(r),

]z dt

where the symbols M and N denote mixing operators
for momentum and density respectively and f 5 by.
Consider now a linearization of these equations about
a state of rest and a mean vertical density profile:

1
u 2 fy 5 2 p 1 M(u)t xr0

1
y 1 fu 5 2 p 1 M(y) w 1 u 1 y 5 0t y z x yr0

p 5 2rg r 1 wr 5 N(r).z t z

We are motivated to consider such a linear approxi-
mation by its great success in the past in explaining
very important aspects of the tropical atmosphere and
ocean circulations (e.g., Gill 1980; McCreary 1981).
Obviously to get more accurate depictions of the sub-
tropical flow we shall require consideration of the ef-
fects of nonlinearity and varying mean circulations;
however, since our purpose here is only to propose how
certain qualitative features of the circulation may be
explained, a linear model with constant stratification
will suffice. What is the validity of such an approxi-
mation for the total flow? As we are interested in large-
scale subtropical flows, the Rossby number will be very
small, which justifies the neglect the momentum ad-
vection terms in the first two equations. The neglect of
perturbation advection of perturbation density is less
justifiable; however, in most of our domain of interest
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it will be small relative to the term w9r z (see appendix)
and solutions discussed below should not be qualita-
tively affected on the large scale by its inclusion. As a
further simplification we shall, for the present, neglect
ventilation processes in the near-surface layers. Such
processes evidently play a significant role in determin-
ing density structures in such layers and a very simple
parameterization of their effects will be considered in
the next section.

With this set of approximations, it is well known that
a separation of variables in the vertical and horizontal
is possible providing we make certain assumptions
about the form of the M and N operators (see, e.g.,
McCreary 1981). For our present purposes we choose
the simplest possible form for them, namely that of
linear drag; however, more general forms shall be dis-
cussed below. The separation of variables means that
the vertical parts of each variable satisfies a Sturm–
Liouville system. This has a set of eigenfunction so-
lutions each of which specifies the vertical structure of
each variable for the so-called vertical modes (i.e., the
barotropic and baroclinic modes; see Gill 1982, p. 161).
The horizontal parts of each of these modes satisfy shal-
low-water equations with a shallow water speed derived
from the mode’s eigenvalue. Imposing the relevant up-
per boundary condition for surface wind stress in the
momentum equations and dropping time dependency
(we are interested only in steady flows) allows us to
write the horizontal equation for each mode as

xeu 2 fy 5 2(p ) 1 t /(r H )n n n x 0 n

yey 1 fu 5 2(p ) 1 t /(r H )n n n y 0 n

2ep 1 c = · u 5 0, (1)n n n

where the subscript n specifies the vertical mode under
consideration, t is the surface wind stress, cn is the
shallow water speed of the mode, e is the linear drag
coefficient assumed, and Hn is the projection coefficient
of the windstress onto the mode n and is determined
from the upper boundary condition. The reader is re-
ferred to Cane and Sarachik (1977) for further discus-
sion of these equations and the precise meaning of the
variables. For the rest of this section we drop the sub-
scripting of each vertical mode for pedagogical con-
venience. The equations may be reduced to one equation
in y (see Gill 1982, p. 467):

3 2e e f
y 1 y 2 ey 2 ey 2 by 5 forcing.xx yy x2 2c c

If we assume that e is small, we can neglect the first
term on the left-hand side. Further, if we assume that
the forcing has a characteristic zonal wavenumber k and
that ek K b, then the third term is much smaller than
the last and we can neglect it. We shall be interested in
zonal scales of ø 3.0 3 106 m, so this assumption is
equivalent to e K 1025 s21, which will be met by our

solutions.3 The neglect of these two terms is equivalent
to dropping the term ey in the second equation of (1),
an assumption known as the long-wave approximation
(see Cane and Sarachik 1977). We now nondimension-
alize variables by dividing velocities by c and horizontal
distance by the equatorial Rossby radius ( c/(2b)).Ï
This implies that p and t /r0 [ X (the pseudostress) are
divided by c2 whereas e is multiplied by 1/(2bc). TheÏ
relevant equations for these new nondimensionalized
variables are

1 1
x yeu 2 yy 5 2p 1 X /H yu 5 2p 1 X /Hx y2 2

ep 1 = · u 5 0.

This flow is formally separable into a part that is the
traditional Ekman flow and a remainder that represents
wave effects:

u 5 uE 1 up,

where

1 1
x y2 yy 5 X /H yu 5 X /H,E E2 2

so therefore

1
eu 2 yy 5 2p (2)p p x2

1
yu 5 2p (3)p y2

x y2 ] X ] X
ep 1 = · u 5 2= · u 5 2p E 1 2 1 2[ ]H ]y y ]x y

1
5 w [ F , (4)E EH

where wE is the Ekman pumping velocity. This kind of
separation of the flow has been used previously by
Phlips (1987) to look at the equatorial region. Here we
use it to examine the subtropics. It is interesting to note
that these equations are identical in form to those used
by Gill (1980) to model the response of the tropical
atmosphere to diabatic heating. Here the forcing rep-
resents Ekman pumping rather than diabatic heating. It
is also interesting to note that very similar equations
have been used by Kawase (1987) and Cane (1989) to
model the abyssal circulation.

We now introduce the ancillary variables q 5 p 1
up, r 5 p 2 up and obtain from Eq. (2) plus Eq. (4),
and Eq. (2) minus Eq. (4) together with Eq. (3):

3 We shall retain the fourth term as for our solutions, variations in
the meridional direction are more rapid than those in the zonal di-
rection implying that this term is generally significantly larger than
the third.
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1
eq 1 q 5 y 2 ] y 1 Fx y E1 22

1
er 2 r 5 2 y 1 ] y 1 Fx y E1 22

1 1
] 1 y q 1 ] 2 y r 5 0. (5)y y1 2 1 22 2

Note that we are dropping the p subscript.
These equations can now be expanded again into me-

ridional modes with the useful expansion basis being
parabolic cylinder functions. In order to facilitate this
analysis at higher latitudes, we use parabolic cylinder
functions with a different normalization to the usual
Dm(y):

21E 5 [(m 2 1)(m 2 3)(m 2 5) · · · 1] D .m m

The advantage of this normalization is that the Em are
approximately equal in amplitude whereas the Dm in-
crease rapidly with m. This modified normalization im-
proves convergence outside the equatorial region of
quantities that are a sum of the parabolic cylinder func-
tions. Using the lowering and raising relations for Dm

(see Gill 1982, p. 439) we obtain analogous relations
for Em:

 1
] 1 y Ey m1 22  m(m 2 2) · · · 1 Em215  1 2(m 2 1)(m 2 3) · · · 1 2E1 m11
] 2 y E y m1 22 

Em21[ g(m) . (6)1 22Em11

Expanding q, r, and y in terms of these renormalized
functions we obtain from Eqs. (5) and (6),

(] 1 e)q 5 g(m 2 1)y 1 F (7)x m m21 m

(e 2 ] )r 5 2g(m 1 1)y 1 F (8)x m m11 m

m 1 2
r 5 q , (9)m m12m 1 1

where Fm is the projection of the Ekman forcing FE onto
the mth parabolic cylinder function. Substituting Eq. (9)
in Eq. (8) and lowering indices by 2 we obtain

(e 2 ]x)mqm 5 (m 2 1)g(m 2 1)ym21 1 (m 2 1)Fm22.

Combining this with Eq. (7) we obtain

[e(2m 2 1) 2 ]x]qm 5 (m 2 1)[Fm 1 Fm22] (10)

which is the equation we will solve.
Consider now an idealized Ekman pumping, which

for simplicity is constant in the region 0 # x # L but
for now has arbitrary meridional dependency. The par-

ticular solution for such forcing from Eq. (10) is given
by

(m 2 1)[F 1 F ] Am m22 msq 5 [ . (11)m e(2m 2 1) e

Further, we shall assume that the Kelvin mode (m 5 0)
plays an insignificant role in the solution as we are in
the subtropics.4 It follows easily then that the general
solution to Eq. (10) is

Amq (x) 5 [1 2 exp((2m 2 1)e(x 2 L))]. (12)m e

We are using here the assumed insignificance of the
equatorial Kelvin mode to impose q0(L) 5 0. The van-
ishing of um 5 (qm 2 rm)/2 at the eastern boundary then
implies [using Eq. (9)] that qm(L) 5 0 for all m. This
boundary condition then allows us to derive our solu-
tion.

The solution for pressure is

1 1 m 1 2
p (x) 5 (q 1 r ) 5 q 1 q (13)m m m m m121 22 2 m 1 1

1
5 A (1 2 exp[(2m 2 1)e(x 2 L)])m2e

m 1 2 Am121 (1 2 exp[(2m 1 3)e(x 2 L)]).
m 1 1 2e

(14)

We consider now some special limits. First consider the
case for which 2me(x 2 L) is small. In this case we can
replace the exponentials in Eq. (14) with unity plus the
exponent. Using Eq. (11) the above equation reduces to

pm 5 (x 2 L)[(m 2 1)Fm22 1 (2m 1 1)Fm

1 (m 1 2)Fm12],

and then using the relations (6) it follows easily that

2y
p(x, y) 5 F (x 2 L). (15)E4

This is simply the Sverdrup relationship (see Gill 1982,
p. 465), which holds for an inviscid flow; it is the so-
lution to Eqs. (2)–(4) with e 5 0.

Next consider the case for which 2me(x 2 L) is large
and negative. This will occur for the large damping case
or when x is small relative to L (i.e., in the western part
of the basin). In this case the exponential terms in Eq.
(14) are small compared to unity and the pm are ap-
proximately independent of x. The solution then is pro-
portional to the zonally independent case, which we can

4 This approximation is less justified for the barotropic mode but
the essentially inviscid nature of this mode shall allow this issue to
be bypassed. See below.
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FIG. 2. Plots of the qm (x) function for varying choices of the
dissipation parameter e (see text). The dashed line has e 5 0.0001;
the dash–dot line has e 5 0.001; the dotted line has e 5 0.005 while
the solid line has e 5 0.05.

obtain directly from the original Eqs. (2)–(4) by drop-
ping terms with x derivatives. These then reduce to

1
2y 2 y y 5 (F ) (16)yy E y4

1
2p 5 2 y y /e. (17)y 4

For the case which shall interest us, y is large (;10)
and the forcing varies reasonably slowly compared to
the Rossby radius. In such a case the first term in Eq.
(16) may be neglected and we obtain simply

p ; FE/e. (18)

By numerically integrating Eqs. (16) and (17) with
Gaussian forcings of varying half-widths we have con-
firmed that Eq. (18) is indeed a good approximation,
even when the half-width is a fraction of the Rossby
radius. The proviso here is that y must be large. When
it is not, the approximation (18) breaks down and the
solution takes on the character discussed by Gill (1982,
p. 467); that is, it shows a greater amplitude equatorward
of the symmetric Gaussian forcing used.

The two solutions (15) and (18) obviously imply dif-
ferent meridional locations for the pressure response to
Ekman pumping. In the case of the pumping associated
with the variation from trade easterlies to midlatitude
westerlies it implies that the Sverdrup solution (15) will
be located more poleward. In the next section we shall
show that the difference in gyre location can amount to
more than 108 in latitude, a difference that seems to also
occur in the observations.

We now consider the transition between the two lim-
iting solutions. Displayed in Fig. 2 is a plot of qm(x)
for values of e varying between the two solutions. So-
lutions have been scaled to have the same value at the

western boundary. The heavy dashed line solution is the
Sverdrup one, while the light solid line solution is close
to the zonally invariant one for values of x not too close
to L. Clearly intermediate solutions tend to resemble
more the Sverdrup relation in the east where |me(x 2
L)| K 1 and more the zonally invariant Ekman pumping
response in the west where |me(x 2 L)| k 1. Given the
discussion of the differences meridionally between the
two, one should expect intermediate solutions for the
subtropical gyre to slant from the southwest to the north-
east.

3. Horizontal solutions for various forcings

We consider solutions first for an idealized zonally
invariant patch of forcing. The forcing chosen is in-
tended to resemble the observed transition between trop-
ical easterlies and midlatitude westerlies and has the
form

1, y , y , yT M(y 2 y 1 Dy)/Dy, y 2 Dy , y , yT T Tw 5E (y 2 y 1 Dy)/Dy, y , y , y 1 DyM M M
0, otherwise.

As in the previous section we assume that this holds for
the zonal domain 0 , x , L and the Ekman pumping
is zero outside. The dimensionless parameter choices
are

(yT, yM, Dy, L) 5 (7.5, 15.0, 2.5, 20).

For the first baroclinic mode (c ; 3 m s21) these choices
can be multiplied by about two degrees to obtain ap-
proximate latitudinal and longitudinal bounds. The forc-
ing together with the corresponding zonal wind stress
are depicted5 in Fig. 3. We consider now e 5 0.025,
0.001, 0.0001, which for the first baroclinic mode cor-
respond to damping times of approximately 40 days,
2.8 yr, and 28 yr respectively.

Plots of pressure–dynamic height are displayed in
Figs. 4a–c. The transition between the two limiting so-
lutions discussed in the previous section is quite ap-
parent: The maximum of dynamic height shifts from a
broad peak centered on the western boundary at y 5
11.25 for high dissipation to a more peaked maximum
centered at y 5 15 for low dissipation. Other features
include a greater zonal gradient in the east, as predicted
in the previous section, and a more zonally uniform
solution at higher latitudes. This latter property is due
to the fact that Rossby modes propagate at increasingly
slower speeds at higher latitudes and consequently the
high dissipation solution becomes more relevant here.
Mathematically one can see this dependency in Eq. (14)

5 We use the first 200 meridional components to compute this so-
lution. This is sufficient for reasonable solution convergence.
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FIG. 3. The idealized Ekman forcing (solid line) and corresponding
wind pseudostress (dotted line) used to construct analytical solutions.
The extreme left vertical axis is for the pseudostress while the inner
axis is for the Ekman pumping (see text).

FIG. 4. (a) The solution for pressure for the idealized forcing and
high dissipation (e 5 0.025). Contour interval is 0.1 (b) Same as (a)
but for moderate dissipation (e 5 0.001). Contour interval is 1.0. (c)
Same as (a) but for low dissipation (e 5 0.0001). Contour interval
is 10. Note that contours have been rescaled for comparison purposes.

through the factors 2m 2 1 and 2m 1 3 in the exponents.
It is interesting to compare these solutions mathemati-
cally with similar ones of Kawase (1987) for the abyssal
circulation.

We now consider the observed forcing. First the an-
nually averaged Hellerman and Rosenstein (1983) wind
stress data was used to construct two relevant fields—
the Ekman pumping velocity (under the assumption of
a b plane) and f 2 times this field, which represents the
meridional component of the Sverdrup solution for p,
namely, Eq. (15). A horizontal plot of the first field (not
shown) shows it to be reasonably zonally uniform, so
displayed in Fig. 5 are zonally averaged versions of the
two fields (the zonal averages are from 1508E to 1358W
where zonal uniformity is a reasonable approximation).
It is apparent that the Ekman pumping peaks well to
the south (;158N) of where the Sverdrup solution does
(;308N). This situation therefore resembles the ideal-
ized case considered above. Making the assumption that
the forcing is zonally uniform and using the pumping
cross section shown in Fig. 5, we obtain solutions cor-
responding to Figs. 3a–c with the scaling set by a shal-
low water speed of 3.2 m s21. These are displayed in
Figs. 6a–c and show a peak in pressure at just less than
208N for the high dissipation case: a reasonably broad
peak between 208N and 308N for the moderate dissi-
pation case and a strong pressure peak at 308N in the
case of weak dissipation. Other features of the idealized
case are apparent: In particular the weaker the dissi-
pation the greater the zonal gradient of pressure, which
corresponds with the transition from the zonally in-
variant case to the Sverdrup solution.

4. Observed structure of the gyre and vertical
solutions

Finally we turn to direct observations of the sub-
tropical gyre. We use the recently updated annually av-

eraged Levitus and Boyer (1994) density fields for the
North Pacific. We chose to use density observations
directly rather than to calculate pressure–dynamic
height because the latter quantity requires an arbitrary
reference level for calculation and also the former quan-
tity shows meridional shifts more clearly. The two quan-
tities are of course simply related by the hydrostatic
relation and hence each baroclinic mode should have
the same horizontal structure in both quantities. What
is interesting about the observations is the variation with
depth of the gyre. Displayed in Figs. 7a–c is the density
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FIG. 5. Zonal-average Ekman pumping velocity for the North Pa-
cific together with the meridional part of the Sverdrup solution to
this forcing.

field at 110 m, 250 m, and 500 m. These show a clear
migration of the gyre from around 158N at shallow lev-
els to around 308N in the deep. Also apparent is a change
from a more zonally uniform nature at shallow levels
to a gyre that varies linearly in the zonal direction at
depth. In terms of the solutions discussed in the previous
section, it seems that the higher dissipation solutions
apply at shallow levels while the low dissipation cases
are more relevant at depth.

As discussed in section 2 above it may be expected
that surface ventilation processes will play some role in
setting densities at the 110-m level. Such processes in-
volve strong vertical mixing during late winter and early
spring (see Pedlosky 1996). There is a transfer of the
cold surface waters to depth via very deep mixed layers.
This is well known to be a difficult process to model
well, and we shall consequently adopt a very simple
parameterization of its effect just to allow a better com-
parison of our solutions with the observations: The
mixed layer at the latitudes under consideration reaches
its maximum depth in late winter, so we shall assume
that water at 110 m (our comparison point with the
observations) is modified by turbulent contact with the
surface at that time. We thus assume that the ventilation
acts to add a density perturbation to our solutions that
is equal to the observed late winter meridional surface
density profile north of a critical latitude. This latitude
is determined by whether, at some point in the annual
cycle, the water at 110 m is in turbulent contact with
the surface even if such contact is intermittent. A rea-
sonable choice for such a latitude is around 208N as this
is the approximate limit to which synoptic incursions
from the midlatitudes are able to penetrate into the sub-
tropics during winter. Such incursions in the North Pa-
cific are associated often with very cold surface air and
hence the possibility of deep oceanic mixed layers. The
mean mixed layer depth in late winter in the North

Pacific exceeds 100 m north of around 258–308N (see
Pedlosky 1996, p. 234), however one should expect that
intermittent mixed layers of this depth should be ob-
served farther equatorward.

The greater applicability of damped solutions at shal-
low levels and less damped solutions at depth can be
explained by consideration of the character of vertical
modes6 (see McCreary 1981; Philander 1990): The high-
er modes with significant projection from wind stress
tend to have relatively more of their amplitude near the
surface compared with lower modes, which are more
uniform in amplitude with depth. This is illustrated in
Figs. 8a,b, which shows the density perturbations with
depth of the significantly forced vertical modes. The
modes were calculated using a background stratification
appropriate to the North Pacific subtropics (258N at the
date line), which was obtained from the 33 levels of
Levitus and Boyer observations. This result implies that
the behavior of the density gyre closer to the surface
will be more heavily influenced by the higher order
baroclinic modes provided they have significant pro-
jection from the surface wind stress. This is an issue
because such projection tends to be different in the sub-
tropics compared to the equatorial region, which is per-
haps more familiar to some readers. The amplitude of
this projection is given by the value of the normalized
pressure vertical eigenvector at the surface. This is plot-
ted in Fig. 8c together with the corresponding shallow
water speed. As can be seen there is significant projec-
tion throughout the vertical spectrum.7 Note that this
situation is different from the equator where Cane
(1984) showed that there is a greater relative projection
onto the lower-order modes.

We note next that for a fixed dissipation rate, the
solutions derived from Eq. (14) for the higher order
baroclinic modes tend toward the more highly damped
case. This follows because the exponents in Eq. (14)
when redimensionalized are proportional to me(x 2 L)/
c, where c is the shallow water speed. Clearly c drops
as the baroclinic mode order increases. In addition, be-
cause the Rossby radius also drops, the Ekman forcing
FE will project more heavily onto horizontal modes with
larger values of m (in nondimensional units the forcing

6 Recall that such modes are eigenvectors of the Sturm–Liouville
system, which applies to the vertical structure of our solutions (see
Gill 1982, p. 161). They are depth-dependent structure functions for
both pressure and momentum. Different structure functions for a par-
ticular baroclinic mode apply for other variables such as vertical
velocity. We normalize our eigenvectors here by dividing by the
vertical integral of the eigenvector squared (the so-called L2 norm).

7 Note that at the high end of the spectrum there is likely to be
noisiness in the specific projection onto particular modes due to small
amounts of vertical scale noise in the observed vertical stratification
profile. The ragged values here are evidence of this. Nevertheless
there is still significant real projection onto modes greater than 10.
It is to be noted, however, that for the very high modes (20–30) the
effects of dissipation in our model become very important and so
they contribute only in a minor way to the total solution.
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FIG. 6. As in Figs. 4a–c but for the case of a representation of ob-
served Ekman forcing.

occurs at a greater distance from the equator). Both of
these factors ensure that the higher-order modal gyre
solutions will more resemble the zonally invariant so-
lution discussed in the previous section.

A final point worth noting is that at significant depth
(say 500 m) the eigenvector for density appears to have
equal amplitude for the first few modes, so one might
not expect at first glance that the lowest-order modes
should dominate the solution at this level. In fact this

does occur because the dimensionalized FE involved in
the solution (14) is proportional to c2.

In order to confirm that the three factors discussed
above combine to produce solutions resembling the ob-
servations, we use the three-dimensional linear model
discussed in section 2. With regard to dissipation we
first use a constant value for all modes, which is intended
to represent horizontal mixing processes. Vertical mix-
ing is often thought to be highly mode dependent (see
McCreary 1981) because of the increasing vertical
structure with mode number and will be considered be-
low. Forcing is taken from the observations in the same
manner as at the end of the previous section. In addition,
to model the influence of surface mixed layer processes
(see the discussion above) a linearly increasing density
offset was added to this solution northward of 208N at
the depth of 110 m (no offset is added at deeper levels).
All further solutions below have this offset added. Its
value was determined by calculating the approximate
surface poleward gradient of density from the Levitus
and Boyer (1994) climatology for the month of March
(taken to represent late winter) in the mid North Pacific
and is set at 0.001 56 g cm23 per 108 of latitude.

Solutions proportional to density perturbations at
depths 110 m, 250 m, and 500 m are displayed in Figs.
9a–c and show the character already noted in the ob-
servations. We have used here a damping time of 3 years
for all modes. Solutions for a damping time of 1 year
(not shown) were very similar to those for 3 years.
Those for a damping time of 15 years (Figs. 9d–f) were
somewhat different. Overall the more highly damped
solutions are in better agreement with the observations
particularly at 110 and 250 m. Note the larger contour
intervals for Figs. 9d–f. This result therefore appears to
provide some constraint on the value of subtropical oce-
anic isopycnic dissipation. If we assume that such damp-
ing has the form of a Laplacian and acts on structures
of the scale depicted in Fig. 9 (i.e., around 1000 km),
then a value of around 1000 m2 s21 is indicated for the
viscosity and diffusivity—a value commonly assumed
in good non-eddy-resolving ocean models to simulate
this subgrid scale mixing.

As already mentioned we might expect vertical mix-
ing processes to act in a highly modal-dependent fashion
with dissipation increasing strongly with mode number.
Here we examine this question using the vertical mixing
parameterization of McCreary (1981):

1
n, k ; , (19)

2N

where n and k are the coefficients of vertical viscosity
and diffusivity respectively while N is the Brunt–Väisälä
frequency. Equation (19) implies that the modal dissi-
pation varies as

en 5 A/ 5 e1 / ,2 2 2c c cn 1 n (20)

where cn is the shallow water speed relevant to the nth
mode. Solutions were calculated with only this kind of
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FIG. 7. (a) The annually averaged Levitus and Boyer (1994) density field at depth 110 m. Units
are g cm23 2 1. Contour interval is 0.0005. (b) The same as (a) but for depth 250 m. Contour
interval is 0.0002. (c) The same as (a) but for depth 500 m. Contour interval is 0.0001.

dissipation and with small and large values for (321e1

and 60 years, respectively). Agreement with observa-
tions (not shown) is not as good as in Figs. 9a–c, which
argues for the importance of horizontal mixing. Of
course some vertical (diapycnal) mixing is present in
the real ocean and, if we add the vertical dissipation
with the large value for to the constant value as-21e1

sumed for horizontal mixing in Figs. 8a–c, we again
obtain a reasonable solution (Figs. 10a–c). Such a ver-
tical dissipation rate corresponds to a value of 1023 m2

s21 for N 2 5 5 3 1026 s22. The latter value is not
unreasonable for the mixed layer, while the former is
not atypical of values often used in the mixed layer of
high-resolution ocean models. It is interesting to note
that these results suggest that for low-order baroclinic
modes, horizontal rather than vertical mixing may be
the major dissipation mechanism and that a decay time
of several years is indicated.

Finally it is worth commenting on the barotropic

mode. Here, because the shallow water speed is so fast
(;200 m s21), dissipation at the rates discussed above
is essentially irrelevant and the steady solution is thus
very close to the inviscid Sverdrup solution given in
Eq. (15). The classical conclusions of Sverdrup theory
for depth-averaged flow (primarily the barotropic flow)
are therefore not affected by the discussion in this paper.

5. Summary and discussion

The influence of dissipation on the steady state wind-
forced shallow-water equations (b plane) in the sub-
tropics has been explored by using a convenient flow
separation and a well-known solution technique. It is
found that solutions for pressure vary between a zonally
uniform structure proportional to the Ekman pumping
when dissipation is high through to a solution varying
linearly with longitude and displaced poleward of the
Ekman pumping when the dissipation is small. The latter
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FIG. 8. (a) High-order vertical mode structure functions for density.
The light solid line is mode 10; the dotted line is mode 8 while the
heavy dashed line is mode 6. (b) Same as (a) but for first three low-
order modes. The light solid line is mode 3; the dotted line is mode
2 while the heavy dashed line is mode 1. (c) The projection of surface
wind stress forcing onto vertical modes (solid) together with the
corresponding shallow water speeds (dotted).

solution is the classical one due to Sverdrup (1947). In
the subtropical North Pacific the meridional displace-
ment between the two solutions amounts to about 158.

Observations of the North Pacific gyre show that at
shallow levels it resembles the highly damped solution,
while in the deep it resembles the Sverdrup solution. By
extending our two-dimensional solutions in the obvious
manner to the usual three-dimensional barotropic/baro-
clinic modal decomposition, we find that we are able to
reproduce these observations to a fair extent with rea-
sonable assumptions about the rate of horizontal and ver-
tical mixing. The shallow-level solutions are dominated
by higher order baroclinic modes, which are more ef-
fectively damped than the low order modes for a given
constant dissipation. Conversely deep solutions are dom-
inated by the first few baroclinic modes, which are much
less damped. It is concluded that these latter modes are
likely to be more dissipated by horizontal rather than
vertical mixing8 and that the timescale of this process is
estimated to be of the order of several years. Such a decay
time is commonly assumed in intermediate coupled mod-
els of the equatorial Pacific (e.g., Zebiak and Cane 1987)

8 Another possibility is that real vertical mixing processes are less
mode dependent in their dissipative effects than that assumed in the
model of McCreary (1981).

and the implied value for Laplacian viscosity and dif-
fusivity (103 m2 s21) is widely used in good non-eddy-
resolving ocean models. Given this situation, it would be
interesting in a further study to examine the dependence
of the solutions here on various forms of horizontal mix-
ing. Such parameterizations are, of course, an important
area of uncertainty in ocean modeling.

The current study focussed on the Northern Pacific
subtropical region. It would be very interesting to extend
the comparison here between theory and observations to
other subtropical and indeed subarctic regions. The latter
regions would require some minor modification of the
b-plane model, which has less validity at higher latitudes.

A further study, which is being planned, will examine
the sensitivity of our solutions to background states of
barotropic and low-order baroclinic currents. Such a
study would help address the relative importance of the
mechanisms proposed here and those previously pro-
posed by Rhines and Young (1982a).

An issue addressed in theories such as Rhines and
Young (1982a) is that of potential vorticity (PV) homog-
enization: Observations show that the middle thermocline
of the subtropics has reasonably constant values for this
field (see, e.g., Keffer 1985). Rhines and Young explain
this process as follows: In their inviscid nonlinear, non-
ventillated model, PV is conserved. The addition of in-
terlayer linear drag has the effect of adding a diffusive
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FIG. 9. The modeled quantities corresponding to the observations in Fig. 7 for a variety of constant dissipations: (a)–(c) The case e 5 (3
yr)21. (d)–(f ) The case e 5 (25 yr)21. The contour intervals are the same as Figs. 7 for a–c. The contour interval in (d) is 0.002; 0.0008
for (e); and 0.0002 for (f ).

sink in the PV equation. Advection of PV around the
subtropical gyre ensures that this quantity is approximately
constant on closed streamlines providing that the diffusion
of PV is not too strong (equivalently that the interlayer
linear drag is small). Once the boundary of the closed
streamline has established an approximately constant PV,
this value is slowly diffused into the interior of the loop,
eventually establishing a pool of homogenized PV.

Clearly for this process to take place, advection of
PV is required and this is not present in the linear model
considered in this paper. Consistent with this, the model
PV near the mid thermocline (Fig. 11) does not show
quite the same degree of PV homogenization as the
observations (compare with Keffer’s Fig. 11), particu-
larly in the central Pacific. How does this relate to ob-
servations of density such as Fig. 1? Pedlosky (1996)
shows that to a reasonable approximation,

PV 5 frz.
Thus if PV were completely homogenized meridionally,
the increase in f with latitude would be balanced by a
spreading of density contours in the thermocline, as may
indeed be noted in Fig. 1. Thus our simple linear model
is able to account for the meridional shift in gyre location
with depth as well as the concomitant changes in zonal
structure but is less able to explain the ‘‘fanning out’’ of
the thermocline with increasing latitude. Evidently the
linear processes discussed in this paper may be partially
responsible for the structure observed, but nonlinearity
probably needs to be invoked to get full agreement (see
also the appendix below). Such a discrepancy is only to
be expected given the relative simplicity of the model
deployed here, which is used only to illustrate how dis-
sipation can account for a number of characteristics of
the observed gyre structure, not all of them.
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FIG. 10. As in Figs. 9a–c but with a vertical dissipation term add-
ed which acts selectively on the vertical modes (see text).

FIG. A1. (a) The values of the linear density tendency term w9r z.
(b) The value of the density advection tendency term. Units for both
frames are 1029 kg m23 s21.

FIG. 11. The midthermocline potential vorticity from the 3D mod-
el. Units are the same as those used by Keffer (1985).

Acknowledgments. The authors wish to thank two
anonymous reviewers who helped to significantly im-
prove an earlier version of this paper. The first author
wishes to thank the hospitality of the International Re-

search Institute for Climate Prediction at Lamont-Do-
herty Earth Observatory in New York where most of
this work was carried out.

APPENDIX

Relative Importance of Nonlinearities

As noted in the text, our interest in large-scale flows
means that we can neglect the advection of momentum
terms from the primitive equations due to the smallness
of the Rossby number. We consider here therefore only
the likely effects of the advection of density. This is
approximately assessed by calculating the value of these
terms for the 3D model configuration displayed in Figs.
9a–c. The value of the linear term retained in our model,
namely w9r z, was also calculated for comparison. Over
most of the domain that we have considered the ad-
vection terms are small compared with the linear term.
In certain reasonably small-scale areas however the
terms can become comparable, suggesting that there
may be a minor nonlinear correction to the large-scale
linear solutions presented in this paper. This may be
confirmed by viewing, for example, horizontal plots of
the terms at 250 m in Fig. A1. It is evident that advection
may play some role in the northeast of the gyre and, in
fact, more detailed analysis of the nonlinear terms sug-
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gests that it will act to drag the gyre depression south-
ward here. This effect may indeed be noted in the ob-
servations (cf. Figs. 7b and 9b).
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