The Mindanao and Halmahera Eddies—Twin Eddies Induced by Nonlinearities

WILTON Z. ARRUDA* AND DORON NOF†

Department of Oceanography, The Florida State University, Tallahassee, Florida

(Manuscript received 27 June 2002, in final form 8 May 2003)

ABSTRACT

It is shown analytically that a nonlinear collision of northward- and southward-flowing western boundary currents (WBC) on a β plane produces both an anticyclonic and a cyclonic eddy. (On an f plane no eddies are established; similarly, no eddies are established in the linear limit.) The length scales of both the anticyclonic and cyclonic eddies are larger than most eddies in the ocean. Furthermore, the anticyclone scale is larger than the cyclone length scale because of the higher upstream momentum flux. A reduced-gravity numerical model is used to validate these analytical results. The balance of forces and the eddy size estimates (derived from the numerical simulations) agree with the analytical results. Based on the above collision problem, it is argued that the Halmahera and Mindanao eddies are required to balance the nonlinear momentum fluxes of their colliding parent currents, the southward-flowing Mindanao Current (MC) and the northward-flowing South Equatorial Current (SEC). Assuming that the interior is in Sverdrup balance, it is further argued that neither of the eddies would have been present had the Indonesian Throughflow not been active.

1. Introduction

The western equatorial Pacific plays a key role in the establishment of El Niño–Southern Oscillation (ENSO) events and may also be an important part of the so-called “great conveyor belt” (e.g., Gordon 1986) because of the Pacific-to-Indian throughflow. The eddies and low-latitude western boundary currents (WBC) addressed here (Fig. 1) are important aspects of these processes.

The equatorward-flowing WBCs provide the closure to two symmetrical gyres relative to the equator (Kessler and Taft 1987). One gyre is entirely in the Northern Hemisphere whereas the other (which is mostly in the Southern Hemisphere) crosses the equator. The North Equatorial Countercurrent (NECC) forms the boundary between these two gyres at about 5°N. North of the NECC the westward-flowing North Equatorial Current (NEC) bifurcates (Toole et al. 1990) into the northward-flowing Kuroshio and the southward-flowing Mindanao Current (MC). A similar situation takes place in the Southern Hemisphere where the westward-flowing South Equatorial Current (SEC) bifurcates (around 15°S) into a branch flowing northwestward and a branch flowing southward. Along the New Guinea coast the northwestward-flowing branch of the SEC is usually recognized as a subsurface current, the New Guinea Coastal Undercurrent (NGCUC), and a surface current, the New Guinea Coastal Current (NGCC). The NGCC retroreflects to the east of the Halmahera Island and joins the retroreflect flow of the MC to flow eastward as the NECC.

There are two semipermanent eddies in the retroreflection area of the MC and SEC (Fig. 1). The first, the Mindanao eddy (ME), is situated north of the NECC (near 7°N, 128°E) and has cyclonic circulation, whereas the second, the Halmahera eddy (HE), which is situated south of the NECC (near 4°N, 130°E), has anticyclonic circulation (Wyrtki 1961). The reason for the existence of the eddies is not obvious. One would intuitively expect that such eddies are established by friction that enables the turning fluid to drag some interior fluid along with it as it turns. Another possibility would be that the eddies result from instability of the eastward flowing NECC and the westward propagation of such instabilities. We shall show in this article that neither of the two ideas is correct. We shall demonstrate that both friction and instability do not play any role in the establishment of the eddies. Rather, it is nonlinearity and β that are responsible for the establishment of the eddies. In what follows we shall briefly describe the two
Fig. 1. The flow pattern in the western equatorial Pacific (adapted from Ffield and Gordon 1992). The Mindanao eddy and the Halmahera eddy are semipermanent and do not usually drift away from their generation area. Dashed arrows denote the southern part of the Indonesian Throughflow.

colliding boundary currents (MC and SEC) and the two eddies.

a. Observational background

1) THE MINDANAO CURRENT (MC)

The MC extends to a depth of 600 m and a distance of 100 km offshore (Wyrtki 1961; Masuzawa 1968). Wyrtki (1956, 1961) first estimated a baroclinic transport ranging from 8 to 12 Sv ($Sv = 10^6 m^3 s^{-1}$) in the upper 200 m and 25 Sv in the upper 1000 m. Different transport estimates were later made by Masuzawa (1969) who gave a transport from 13 to 29 Sv relative to 600 dbar, Kendall (1969) who argued that the MC carries 14 Sv, Cannon (1970) who estimated a geostrophic transport of 18–31 Sv relative to 1000 dbar, Toole et al. (1988) who gave a transport of 17–18 Sv for waters warmer than $12.8^\circ C$, and Lukas et al. (1991) who calculated a transport from 13 to 33 Sv between 10.8° and $5.5^\circ N$. Regardless of the values that one chooses, the velocities are relatively high [$O(1 m s^{-1})$] and the width is fairly narrow (150 km). These give a fairly high Rossby number (~0.5 taking into account that the maximum speed is at that jet’s center), suggesting that the current is nonlinear.

2) THE MINDANAO EDDY (ME)

Takahashi (1959) first noted the existence of “a cold region of distorted elliptic form” east of the MC and related this feature to the cyclonic circulation inferred from dynamic topography. This closed circulation is named the “Mindanao eddy” following the work of Wyrtki (1961) who noted that the ME is a quasi-permanent eddy associated with the turning of the NEC waters at the coast of the Philippines and its subsequent flow to the east as part of the NECC. The existence of the eddy was later verified by Lukas et al. (1991) who reported that drifters launched in the ME described closed loops with diameters of about 250 km and by Qu et al. (1999) who identified the ME as a depression (of less than 130 m) in the 24.5 σ_θ isopycnal surface centered at $7^\circ N$, 129$^\circ E$.

3) THE SOUTH EQUATORIAL CURRENT AND THE NEW GUINEA COASTAL CURRENT

As mentioned, the westward-flowing SEC bifurcates near $15^\circ S$. The equatorward branch of the Great Barrier Reef Undercurrent (Church and Boland 1983) later flows into the NGCC. A shallow current (NGCC) overlying the NGCUC was first observed by Masuzawa (1968). Cantos-Figuerola and Taft (1983) found a NGCC transport of 11 Sv, whereas Wyrtki and Kilonsky (1984) estimated a total transport (NGCC plus NGCUC) of about 40 Sv. Gouriou and Toole (1993) found a total transport of 24.8 Sv from direct measurements, 37.7 Sv from geostrophy relative to 600 dbar, and 41.7 Sv from geostrophy relative to 1000 dbar. Like the MC, the NGCC is fairly nonlinear, with a Rossby number of approximately 0.4.

4) THE HALMAHERA EDDY (HE)

As with the ME, the HE appears in the dynamics topography maps of Takahashi (1959) and was named after the work of Wyrtki (1961). It is well developed only during the northern summer monsoon, when the South Pacific water from the NGCC recurves into the NECC. Within the HE, Lukas et al.’s (1991) drifters executed closed loops of about 300 km diameter and velocity of about 50 cm s$^{-1}$. Using shipboard ADCP, Kashino et al. (1999) identified the center of the Halmahera eddy to be east of 130$^\circ E$ at $4^\circ N$. They also identified a horizontal scale of about 500 km (at 50 m).

b. Modeling and theoretical background

It is sufficient to point out here that there are no explanations for the establishment of the eddies, primarily because the earlier theories are linear (i.e., quasigeostrophic) which, as we shall see, filters out the eddy generation mechanism (Cessi 1990, 1991) or f-plane theories (Lebedev and Nof 1996, 1997), which also filters out the eddies.

Before proceeding, it is appropriate to point out that the Indonesian Throughflow (ITF) is critical to the collision of the MC and the NGCC and, therefore, to the
establishment of the eddies. Arruda (2002) showed that, without any net meridional flow a few degrees north of the equator (i.e., no ITF), there would be no WBC transport and, hence, no collision and no eddies. This is consistent with the picture described in Nof (1998) (see his Fig. 2) where, because of the vanishing wind stress curl a few degrees north of the equator (implying zero Sverdrup transport there) and, because of deep water formation in the northern Pacific, there can be no WBC a few degrees north of the equator unless the basin has “holes.” Namely, with Sverdrup dynamics and zero wind stress curl north of the equator, a no-ITF scenario must involve no net WBC transport (i.e., no collision) because, in a closed basin, the WBC transport is equal and opposite to the interior transport (zero in our case).

c. Present work

As mentioned, our goal is to examine the nonlinear collision of opposing WBCs on a β plane. We shall see that it is the nonlinear curving of these retroreflecting currents and β that are responsible for the generation of the eddies. Since our problem involves nonlinearity, a “head-on” approach is not useful, and we shall look at the problem in terms of integrated momentum flux balances that circumvent the need to find a solution valid in the entire field. Before attacking the full collision problem, it is useful to first examine the behavior of currents in a concave solid corner formed by a solid boundary. We shall do so by using the momentum flux approach (see, e.g., Lebedev and Nof 1996, 1997) and begin by examining a northward-flowing current.

This paper is organized as follows. After presenting the method of analysis in section 2, we address the problem of a WBC in a concave solid corner in section 3. In section 4 we focus on the collision problem, and in section 5 we apply the results of the previous sections to the equatorial western Pacific and suggest the physical mechanism responsible for the existence of the ME and HE. The conclusions are given in section 6.

2. Flow in a concave solid corner

a. Analytical considerations

1) FORMULATION

As the WBC (Fig. 2) flows northward, it encounters a zonal wall that forces it to change direction and flow eastward. Assuming a steady state and integrating (after multiplying by h) the steady and inviscid nonlinear y-momentum equation over the fixed region S bounded by the dashed line ABCDA (shown in the upper-left panel in Fig. 2), we get

\[
\int_S \left[\frac{\partial(hu)}{\partial x} + \frac{\partial(hv)}{\partial y} \right] dx \, dy - \int_S f \frac{\partial \psi}{\partial y} dx \, dy
\]

\[
\begin{align*}
- \int_S \int_S & \left[\frac{\partial(\beta y \psi)}{\partial y} - \beta \psi \right] dx \, dy \\
+ & \frac{g'}{2} \int_S \int_S \left[\frac{\partial(h^2)}{\partial y} \right] dx \, dy = 0. \tag{1}
\end{align*}
\]

Application of Green’s theorem gives

\[
\int_S huv \, dy - \int_S \int_S \left[hv^2 + \frac{g' h^2}{2} - (f_0 + \beta y) \psi \right] dx
\]

\[
+ \beta \int_S \psi dx \, dy = 0. \tag{2}
\]

where ∂S is the boundary of S and g' is the reduced gravity, $g \Delta \rho / \rho$.

Next, we take $\psi = 0$ along the wall and note that at least one of the velocity components vanishes on every portion of the boundary ∂S. It then follows from (2) that

\[
\int_S \int_S huv \, dy - \int_S \int_S \int_S \left[hv^2 + \frac{g' h^2}{2} - (f_0 + \beta y) \psi \right] dx
\]

\[
- \beta \int_S \psi dx \, dy = 0. \tag{3}
\]

Assuming now (and later verifying with our numerics) that, away from the corner, the flow is geostrophic in the cross-current direction, we get (after multiplying the geostrophic relation $(f_0 + \beta y)v = g' \partial h / \partial y$ by h and integration in x),

\[
(f_0 + \beta y) \psi = [h^2 - h(0, y_c)^2]. \tag{4}
\]

Combining (3) and (4) we get our desired expression,

\[
\int_0^L huv \, dx + \frac{g'}{2} \int_0^{L_2} \left[h^2(0, y_c) - h^2(x, 0) \right] dx = \beta \int_S \psi dx \, dy = 0. \tag{5}
\]

where L is the boundary current width and L_2 is the zonal extent of our region S. It is straightforward to show that, for southward-flowing WBC, the equivalent momentum balance in the region S (bounded by ABCD) is very similar.

2) THE f-PLANE LIMIT

Although β is important for the establishment of the WBC in the first place, once a WBC is established, the role of β is frequently minor, particularly if the process in question is of the Rossby radius scale. For this reason, it makes sense to first examine the behavior of a boundary current on an f plane.
Fig. 2. Schematic diagram of the solid corner model. (upper) A northward-(southward-) flowing western boundary current encountering a zonal wall. Here H is the upper layer far east from the western boundary on a latitude a few Rossby radii away from the zonal wall. (lower) Vertical cross section of the approaching northward-(southward-) flowing WBC.

On an f plane the pressure force should balance the WBC momentum flux if a steady state is to be established. To see this, note that, as we approach the corner, the velocity along the wall gradually decreases to zero (see Kundu 1990, chapter 4). Since the wall is a streamline, the Bernoulli function $B = g'(h + (u^2 + v^2)/2)$ implies that the upper-layer thickness increases to a maximum at the corner (Fig. 3, upper panel). Consequently, the pressure force in (5) points in the opposite direction to that of the WBC momentum force and a balance without an eddy appears to be possible. Numerical simulations will later verify this outcome. Note that, in the case of no zonal wall (i.e., the WBC separates due to a vanishing upper-layer thickness), the pressure term vanishes (since $h = 0$ on the western boundary and on the outcropping streamline). As a result, the WBC momentum flux is unbalanced and the f-plane system cannot reach a steady state (see Arruda et al. 2003, manuscript submitted to Deep-Sea Res.).

3) The “No eddy on a β plane” scenario

Here, we temporarily assume that no eddy is associated with the turning boundary current on a β plane and show that this hypothetical scenario is impossible. Note that the geostrophic transport relationship $T = g'(H^2 - h^2)/2f$, where H and h are the thicknesses off and on the wall] implies that on a β plane the near-wall thickness of a northward-flowing WBC decreases as we proceed downstream along the western boundary (Fig. 3, lower panel). This implies that there is an additional pressure force (resulting from the decreasing near-wall thickness due to β) pointing in the same sense as the upstream momentum flux. Hence, the wall pressure cannot balance the net (upstream) northward force. Taking the zonal extent of S to be $O(R_0)$ we see that, in the absence of an eddy, the β term in (5) is negligible when compared with the WBC momentum flux so that it cannot balance the WBC momentum flux either. The no-eddy scenario is, therefore, impossible. In what follows, we first present numerical simulations and then present our analytical solution.

b. Numerical simulation for a flow in a concave solid corner

We use a reduced-gravity version of the isopycnic model developed by Bleck and Boudra (1981, 1986)
and later improved by Bleck and Smith (1990). The equations of motion are the two momentum equations,
\[
\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = -g' \frac{\partial h}{\partial x} + \nu \nabla \cdot (h \nabla u) \quad \text{and}
\]
\[
\frac{\partial u}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = -g' \frac{\partial h}{\partial y} + \nu \nabla \cdot (h \nabla v),
\]
and the continuity equation,
\[
\frac{\partial h}{\partial t} + \frac{\partial (hu)}{\partial x} + \frac{\partial (hv)}{\partial y} = 0,
\]
where \(\nu\) is the frictional coefficient.

The model uses the Arakawa (1966) C grid where the \(u\)-velocity points are shifted one-half grid step to the left from \(h\) points, the \(v\)-velocity points are shifted one-half grid step down from the \(h\) points, and vorticity points are shifted one-half grid step down from the \(u\)-velocity points. On open boundaries the Orlanski (1976) second-order radiation boundary condition was implemented. The list of experiments is given in Table 1. The walls were slippery and the vorticity was taken to be zero near them.

Table 1. Table of experiments. The parameters \(f_0 = 0.8573 \times 10^{-4} \text{s}^{-1}\), \(g' = 0.014 \text{m}^2 \text{s}^{-1}\), \(\Delta x = \Delta y = 7.5 \text{km}\) (horizontal resolution), and \(\Delta t = 12 \text{min}\) (time step) are common for all experiments.

<table>
<thead>
<tr>
<th>Expt</th>
<th>Expt description</th>
<th>Parameters</th>
<th>Rossby radius (km)</th>
<th>Current transport</th>
<th>Shown in Fig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>(f)-plane solid corner</td>
<td>(\beta = 0, \nu = 50 \text{m}^2 \text{s}^{-1}), (H = 360 \text{m}), (H_a = 270.3 \text{m})</td>
<td>(R_o = 26.2)</td>
<td>4.6 Sv (northward)</td>
<td>5, 6, 7</td>
</tr>
<tr>
<td>E2</td>
<td>(f)-plane solid corner</td>
<td>(\beta = 0, \nu = 50 \text{m}^2 \text{s}^{-1}), (H = 200 \text{m}), (H_a = 270.3 \text{m})</td>
<td>(R_o = 19.5)</td>
<td>2.6 Sv (southward)</td>
<td>8, 9, 10</td>
</tr>
<tr>
<td>E3</td>
<td>(\beta)-plane solid corner/ cyclone</td>
<td>(\beta = 1.849 \times 10^{-11} \text{m}^2 \text{s}^{-1}), (\nu = 500 \text{m}^2 \text{s}^{-1}), (H = 360 \text{m}), (H_a = 270.3 \text{m})</td>
<td>(R_o = 26.2)</td>
<td>4.6 Sv (northward)</td>
<td>5, 6, 7</td>
</tr>
<tr>
<td>E4</td>
<td>(\beta)-plane solid corner/ anticyclone</td>
<td>(\beta = 1.849 \times 10^{-12} \text{m}^2 \text{s}^{-1}), (\nu = 1500 \text{m}^2 \text{s}^{-1}), (H = 200 \text{m}), (H_a = 270.3 \text{m})</td>
<td>(R_o = 19.5)</td>
<td>2.6 Sv (southward)</td>
<td>8, 9, 10</td>
</tr>
<tr>
<td>E5</td>
<td>(\beta)-plane solid corner/ cyclone</td>
<td>(\beta = 1.849 \times 10^{-12} \text{m}^2 \text{s}^{-1}), (\nu = 1500 \text{m}^2 \text{s}^{-1}), (H = 360 \text{m}), (H_a = 270.3 \text{m})</td>
<td>(R_o = 26.2)</td>
<td>4.6 Sv (northward)</td>
<td>5, 6, 7</td>
</tr>
<tr>
<td>E6</td>
<td>(\beta)-plane solid corner/ anticyclone</td>
<td>(\beta = 1.849 \times 10^{-12} \text{m}^2 \text{s}^{-1}), (\nu = 1500 \text{m}^2 \text{s}^{-1}), (H = 360 \text{m}), (H_a = 270.3 \text{m})</td>
<td>(R_o = 19.5)</td>
<td>2.6 Sv (southward)</td>
<td>8, 9, 10</td>
</tr>
<tr>
<td>E7</td>
<td>(\beta)-plane solid corner/ anticyclone</td>
<td>(\beta = 1.849 \times 10^{-12} \text{m}^2 \text{s}^{-1}), (\nu = 3000 \text{m}^2 \text{s}^{-1}), (H = 200 \text{m}), (H_a = 270.3 \text{m})</td>
<td>(R_o = 26.2)</td>
<td>4.6 Sv (northward)</td>
<td></td>
</tr>
<tr>
<td>E8</td>
<td>(\beta)-plane solid corner/ cyclone</td>
<td>(\beta = 1.849 \times 10^{-12} \text{m}^2 \text{s}^{-1}), (\nu = 3000 \text{m}^2 \text{s}^{-1}), (H = 200 \text{m}), (H_a = 270.3 \text{m})</td>
<td>(R_o = 19.5)</td>
<td>2.6 Sv (southward)</td>
<td>5, 6, 7</td>
</tr>
<tr>
<td>E9</td>
<td>(\beta)-plane collision</td>
<td>(\beta = 1.849 \times 10^{-12} \text{m}^2 \text{s}^{-1}), (\nu = 1500 \text{m}^2 \text{s}^{-1}), (H = 200 \text{m}), (H_a = 270.3 \text{m})</td>
<td>(R_o = 26.2)</td>
<td>4.6 Sv (northward)</td>
<td>13, 14, 15</td>
</tr>
</tbody>
</table>
1) NORTHWARD-FLOWING WBC IN A CONCAVE CORNER

Figure 4 shows the upper-layer thickness and streamfunction for the f-plane experiment E1 and the β-plane experiment E5 (Table 1) at day 2500, and Fig. 5 shows the upper-layer thickness along the western boundary and along the zonal wall. We see that, as mentioned, on an f plane the upper-layer thickness increases to a maximum near the corner, producing a southward pressure force. For the f-plane experiment E1 the downstream upper-layer thickness along the zonal wall is 270.7 m, which is very close to our specified value of 270.3 m. Figure 5 shows that the pressure force points southward along the zonal wall and the net pressure force is southward with a southward momentum flux of the WBC (indicating that the inviscid balance is attained). We also see that, as mentioned, in this f-plane case, no eddy is necessary to achieve the momentum balance.

When β is introduced (Fig. 4), an anticyclonic eddy (attached to the curving flow) is generated. As seen in Fig. 5, in this case, the net pressure force points northward since the upper-layer thickness along the western boundary is larger than its average value on the zonal wall (270.2 m). In addition, note that the thickening of the upper layer at the corner is compensated by the eddy so that the average value of the upper-layer thickness on the zonal wall is 270.2 m, which is practically indistinguishable from the initial value for H_0 (270.3 m). This numerical observation will be used shortly in our detailed derivations. Figure 6 shows that the combination of β and the pressure terms is a southward force that balances the northward momentum force of the WBC. With the aid of (5) and a scale analysis, which we shall perform later, we shall show that the eddy is the main contributor to the combined β and pressure terms.
terms. The eddy’s β force is due to the particle circulation within the anticyclonic eddy that causes a greater Coriolis force on the northern portion of the eddy than on the southern.

2) SOUTHWARD-FLOWING WBC IN A CORNER

Figure 7 shows contour plots of the upper-layer thickness and streamfunction at day 2500 for the f-plane experiment (E2) and the β-plane experiment (E6). Similarly, Fig. 8 displays the upper-layer thickness along the western boundary and along the zonal wall at the same day. In the f-plane situation, the upper-layer thickness increases to a maximum in the corner, producing a northward pressure force that, according to Fig. 9, balances the southward momentum force of the WBC. This indicates that the inviscid balance is attained.

When β is introduced (Fig. 7), a cyclonic eddy is formed. Also, as seen in Fig. 8, the pressure force points southward since the upper-layer thickness along the western boundary is larger than its average value on the zonal wall (268.6 m). The average value of the upper-layer thickness along the zonal wall is 268.6 m, which coincides with its average value at the last 50 grid points, showing that the thickening at the corner (associated with the Bernoulli function conservation) is compensated by the shallowness produced by the eddy. Again, this will shortly be used in our derivations. As seen in Fig. 9, the combination of the β and the pressure terms is a northward force that balances the southward momentum force of the WBC.

c. Estimates of the eddy radius

We shall now use both the analytical considerations given in section 3a and the numerical simulation given
in section 3b to derive an estimate for the eddy radii. An alternative form of the momentum balance relation for northward-flowing WBC in a concave solid corner (3) can be derived by noting that, at $x \to \infty$, the zonal flow is geostrophic in the y direction so that (3) can be written as (northward WBC)

$$\int_0^L h u^2 \, dx + \frac{g'}{2} \int_0^{L_2} [H_0^2 - h^2(x, 0)] \, dx$$

$$- \beta \int \int_S (\psi - \psi_0) \, dx \, dy = 0. \quad (8a)$$

It is straightforward to show that, for a southward-flowing WBC,

$$- \int_0^L h u^2 \, dx + \frac{g'}{2} \int_0^{L_2} [h^2(x, 0) - H_0^2] \, dx$$

$$- \beta \int \int_S (\psi - \psi_0) \, dx \, dy = 0. \quad (8b)$$

In the next two sections we shall use (8a) and (8b) to derive analytical expressions for the eddy radius. We shall treat the cases of northward- and southward-flowing WBC separately (because the scales are different).

1) NORTHWARD-FLOWING WBC AND THE ANTCYCLONE

As pointed out earlier, the numerical simulations indicate that the average value of the upper-layer thickness...
on the zonal wall is approximately \(H_0 \) (the value of \(h \) on the zonal wall as \(x \to \infty \)). Although we cannot come up with any argument explaining why this should be so, we shall use this information for our calculations and neglect the second term in (8a). Recall that, on an \(f \) plane, the pressure term is negative and that a neglect of a negative term would overestimate the eddy size. We shall assume here that this is also true on a \(\beta \) plane, implying that our estimate will be a lower bound on the eddy size. With the above neglect, the momentum balance (8a) reduces to

\[
\int_0^L h v^2 \, dx = \beta \int_0^x \hat{\psi} \, dx \, dy, \tag{9}
\]

where \(L \) is the boundary current width, \(\hat{\psi} = \psi - \psi_e \), and \(\psi_e \) is the streamfunction at \(x \to \infty \).

Next, we take the following scales:

\[
L \sim O(R_d), \quad \Delta H = (H - H_0) \sim O(H),
\]

\[
u \sim O[(g' H)^{1/2}],
\]

\[\hat{\psi} \sim O\left(\frac{g' H^2}{f_0^2}\right) \text{ in the current, and}
\]

\[\hat{\psi} \sim O\left(\frac{g' H_0^2}{f_0^2}\right) \text{ in the eddy},
\]

where \(R_d = (g' H)^{1/2}/f_0 \) and \(H_0 \) is the thickness scale for the eddy. Note that the second term in (8a) is nonzero only in the eddy and the boundary current (because the streamfunction \(\psi \) coincides with \(\psi_e \) in the interior). Following Nof and Pichevin (1999) we now take \(R_d = R/f \) \(\epsilon^{1/6} \) where \(\epsilon = \beta R_0 f f_0 \) and obtain the leading-order balance,
\[\int_0^{L(0)} h^{(0)}[v^{(0)}]^2 \, dx = \int \psi^{(0)}_e \, dx^e \, dy^e, \quad (10) \]

where \(h^{(0)}, v^{(0)}, \psi^{(0)}_e, \) and \(L(0) \) are the zeroth-order approximations of the respective dependent variables.

Next, we take the flow to have zero potential vorticity and find that the solutions are straightforward despite the nonlinearity. Note that, with this assumption, the interior of the basin is motionless (with thickness \(H \)) and the velocity is zero along the bounding streamline of the current offshore (see, e.g., Anderson and Moore 1979). As we shall see later, in this limit, the obtained estimate is a lower bound on the eddy radius. The leading-order velocity and thickness for a zero potential vorticity northward-flowing boundary current are

\[v = \begin{cases} f_o(L - x), & x \leq L \\ 0, & x > L \end{cases} \quad (11) \]

\[h = \begin{cases} H - f_o(L - x)^2 / 2g', & x \leq L \\ H, & x > L \end{cases} \quad (12) \]

where \(L = 2^{1/2} R_d \) for \(R_{cd} = [g'(H - H_0)]^{1/2}f_o \). Since the eddy’s upper-layer thickness scale is \(H_c = H(R_{cd} / R_o)^2 = e^{-1/2}H \), we can take \(h_c = 0 \) along the eddy’s boundary and find that, for the zero potential vorticity eddy (i.e., \(v_c = -f_o r/2 \)), (8)-(10) give

\[R_{uni} = 2 \left(\frac{2^{1/2}}{\pi} \right) \left(\frac{H - H_0}{H} \right)^{1/2} \left(\frac{H}{H - H_0} - 3/5 \right)^{1/6} R_d / e^{1/6}. \quad (13) \]

This relation is a lower bound because the zero potential vorticity eddy has the strongest nonlinearity (due to the highest steepness) and, consequently, it also has the smallest radius.

To validate (13) we determine analytically the numerical eddy radius using the parameters of the numerical experiment E5 (Table 1), getting \(e^{1/6} = 0.42 \) and \(R = 2.84 R_d \). Taking the streamline corresponding to the maximum gradient as the eddy boundary (6.5 Sv in Fig. 4) we find that 3.75\(R_d \) is the average numerical radius between days 1500 and 5000, in very good agreement with the above analytical estimate (2.84\(R_d \)). In the next section we shall derive the radius estimate for the cyclonic eddy formed by a southward flowing WBC in a concave solid corner on a \(\beta \) plane. We shall see that the scales of the cyclone are quite different from the scale of the anticyclone.

2) SOUTHWARD-FLOWING WBC AND THE CYCLONE

We proceed in a similar fashion to that of the previous section, pointing out that in this case the eddy upper-layer thickness scales with \(H \) so that the obtained eddy size scale is \(R_d / e^{1/2} \) rather than \(R_d / e^{1/6} \). A zero potential vorticity flow is impossible here and we take the zeroth-order (basic state) boundary current and eddy to have uniform potential vorticity. We shall use the Csanady (1979) solution for uniform potential vorticity cyclonic eddy (Fig. 10). Next, the variables are expanded around the \(f \)-plane solution with potential vorticity depth \(H \), and we ultimately find

\[R_{cyclone} = \left(\frac{1}{3\pi} \right) \left(\frac{H_0 - H}{H} \right) \left(\frac{H + 2H_0}{H} \right)^{1/2} R_d / e^{1/2}. \quad (14) \]

As in the anticyclonic case, (14) is lower bound because the uniform potential vorticity eddy outcrops along a contour of radius \(\bar{R} \) (where the streamfunction reaches the minimum value of \(-g'H^2/\beta f_o\)).

Again, to validate (14) we estimate the eddy radius using the parameters of the numerical experiment E6 (Table 1), obtaining \(e^{1/2} = 0.06 \), \(R_0 = 1.92 R_d \), and \(R = 3.35 R_d \). As before, taking the streamline corresponding to the maximum gradient as the eddy boundary in E6 (3.5 Sv in Fig. 7), we estimate 4.28\(R_d \) as the average numerical radius between days 1500 and 5000. This is in fair-to-good agreement with the analytical estimate (3.35\(R_d \)).

3. The collision problem

In this section we will examine the full collision problem of two opposing WBCs on a \(\beta \) plane (Fig. 11). Recall that, as in the earlier case mentioned above, \(\beta \) is crucial here as, for an analogous \(f \)-plane situation, Agra and Nof (1993) showed that net momentum flux of the colliding currents is balanced; that is, no eddies are necessary for the \(f \)-plane momentum balance to hold.

a. Formulation

We shall denote the northward-flowing current as the “main current” and the southward-flowing one as the “countercurrent.” At some point on the western boundary the currents collide and veer offshore as a joined

\[\text{FIG. 10. Schematic representation of our cyclonic eddy; } \bar{R} \text{ is the radius of the outcropped region, } R \text{ is the eddy mean radius, and } H \text{ is the undisturbed thickness at } r \to 0. \]
current. We place the origin of our coordinate system at the collision (stagnation) point on the western boundary and assume that, far east of the western boundary and a few Rossby radii away from the dividing streamline ($y = 0$) the upper-layer thickness has a value of H_s in the main current (south) side and H_n in the countercurrent (north) side. Assuming a steady state and integrating (after multiplying by h) the steady, inviscid nonlinear y-momentum equation over the fixed region S bounded by ABCDA, we get

$$
\int_0^{L_x} h u^2 \, dx - \int_0^{L_x} h v^2 \, dx \\
\quad + \frac{g' h}{2} \int_0^{L_z} [h^2(0, y) - h^2(0, y_n)] \, dx \\
\quad - \beta \int_S \psi \, dx \, dy = 0,
$$

where L_x and L_z are the main current and countercurrent widths, S is the integration region bounded by ABCDA (Fig. 11), L_z is the zonal width of S, and y and y_n are the y coordinates of the southern and northern boundaries of S.

To apply our previous analytical approach to the collision problem, we divide the integration region into two subdomains S^+ and S^-, north and south of $\psi = 0$, respectively:

$$
\int_0^{L_x} h u^2 \, dx + \frac{g' h}{2} \int_0^{L_z} [H_n^2 - h^2(0, \phi)] \, dx \\
\quad - \beta \int_S (\psi - \psi_n) \, dx \, dy = 0 \quad \text{and} \quad (16)
$$

$$
\int_0^{L_x} h v^2 \, dx + \frac{g' h}{2} \int_0^{L_z} h^2(0, \phi) - H_n^2 \, dx \\
\quad - \beta \int_S (\psi - \psi_n) \, dx \, dy = 0, \quad (17)
$$

where H_n is the upper-layer thickness on $\psi = 0$ as $x \to \infty$ and ψ_n (a function of y only) is the limit of ϕ as $x \to \infty$. As expected, the two have a mutual term

$$
\frac{g' h}{2} \int_0^{L_z} h^2(x, \phi) \, dx,
$$

where $y = \phi(x)$ is a Cartesian representation of the curve $\phi = 0$. We shall see in the next section that the second term in (14) and (15) is approximately zero and that, consequently, our solid corner solutions will also be valid here.

b. Numerical simulations

The parameters for the collision experiment E9 on a β plane (Table 1) are identical to those used for experiments E5 and E6 for the concave corner. Figure 12 shows contour plots of the upper-layer thickness and streamfunction for experiment E9 at day 2500. It is evident that an anticyclonic eddy is formed south of the joined offshore current and cyclonic eddy north of it.
Figure 12. (left) Upper-layer thickness contours and (right) streamfunction contours for the collision experiment on a β plane at day 2500. The axis marks are 10 grid points (75 km) apart. Areas within closed contours are shaded. Recall that no eddies are produced in the f-plane case (see Fig. 5 in Lebedev and Nof 1997).

Figure 13 shows the upper-layer thickness along the western boundary (upper panel) and along the $\psi = 0$ streamfunction (lower panel). The pressure force points in the same direction as the momentum flux (in each of the individual subdomains). Therefore, eddies are necessary in order to reach the integrated momentum balances in S^- and S^+ individually. The average value for the upper-layer thickness along the zero streamfunction is 270.8 m while the mean value outside the eddy influence area is 271 m (Fig. 13), showing that, even in the collision problem, the condition that the second term in (16) and (17) vanishes is valid.

Figure 14 shows the numerical estimates for the terms in (15) (upper panel), (16) (middle panel), and (17) (lower panel). In all the cases the inviscid momentum balances hold. The analytical estimates for the flow inside a concave corner can also be used here by considering the $\psi = 0$ streamfunction as a “wall” dividing the basin in two parts (the main current side and the countercurrent side). Taking the -4 Sv streamline as the boundary of the cyclonic eddy and the 6.5 Sv streamline as the boundary of the anticyclonic eddy (Fig. 12) we estimate (from the numerics) an average radius of $4.5R_{dn}$ [where $R_{dn} = (g'H_n)^{1/2}/f_0$] and $3R_{ds}$ [where $R_{ds} = (g'H_s)^{1/2}/f_0$]. With differences of less than 26%, we can say that these are in decent agreement with the analytical estimates (of $3.35R_{dn}$ and $2.84R_{ds}$). Recall that these analytical estimates neglect the second terms in (16) and (17).

In the next section we shall apply the theory of the collision of opposing flowing WBC on a β plane to the western equatorial Pacific; in this scenario, the NGCC is the “main current” and the MC is the “countercurrent.”

4. Discussion and summary
The sizes of the eddies as a function of their thickness are shown in Fig. 15. We see that in the linear limit ($H_0/H_n \to 1$ for the cyclone and $H_0/H_s \to 1$ for the anticyclone) both eddies disappear. This is consistent with Morey et al. (1999) who showed that both eddies do not exist in the linear case. Figure 15 also displays the ME and HE radii. We obtained these values by taking 26 Sv for the MC transport and 22 Sv for the NGCC transport. Approximately 11 Sv from the MC and 1 Sv from the SEC flow into the ITF. Using the values calculated by Nof (1996) for the offshore upper layer thicknesses of the colliding currents ($H_n = 97.83$ m for the MC and $H_s = 235.32$ m for the NGCC) we obtain H_0...
Fig. 13. (upper) Upper-layer thickness h (m) along the western boundary and (lower) along the offshore branch of $y = 0$ for the collision expt E8 at day 2500.

Fig. 14. (upper) Momentum balance for the area containing both colliding currents, (middle) momentum balance for the area south of the zero streamfunction, and (lower) momentum balance for the area north of the zero streamfunction. All terms were computed from expt E8.

A fundamental question to ask is what causes the factor of 2 or so difference in the calculated eddy sizes. The answer is primarily nonlinearity that manifests itself through both large momentum fluxes and large difference between the thickness north and south of the NECC (H_n and H_s). Variations in the composition of the ITF would, of course, lead to changes in H_0 and, consequently, to variations in the relative sizes of the eddies.

Figures 4 and 8 are the most elucidating of our analysis because they highlight the profound difference between an f-plane and a β-plane flow in a concave solid corner. In the f-plane case there is no eddy and the flow is diagonally symmetric while in the β-plane case there is lack of symmetry and a stationary eddy is attached to the curving flow. The momentum balance relations (4) for nonlinear WBC in the concave solid corner shows that, on an f plane, no eddy is necessary because the pressure force (produced by the difference between the upper-layer thickness) balances the current’s momentum flux. On a β plane, on the other hand, the pressure force and the boundary current momentum force point in the same direction. Consequently, a permanent eddy is necessary to produce an opposing β force leading to the required momentum balance. Nonlinearities are of equal fundamental importance because in the linear limit the boundary current momentum flux approaches zero so that no eddy is established. This is why Morey et al.’s (1999) experiments show that there are no eddies when the nonlinearity is very small. In this sense our work has some similarity to the much larger (basin scale) recirculation regions, which also show up only when nonlinearity is present (i.e., they are not present in the limit of a frictional WBC and a Sverdrup interior). The lower bound estimate for the radius of the anticyclonic eddy is given by (13) and, similarly, the lower bound estimate for the radius of the cyclonic eddy is given by (14).

Applying the collision theory for the MC and NGCC in the western equatorial Pacific taking into account only the effective part of each current that participates in the collision process (i.e., excluding the parts that form the ITF), we estimate a diameter of 252 km for the ME and 520 km for the HE. These are in close agreement with the observed values of 250 km and between 470 and 500 km (Lukas et al. 1991; Kashino et al. 1999). We show that the difference between the two is primarily due to nonlinearity (Fig. 15), that is, the stronger mo-
Fig. 15. The eddies’ size as a function of the thickness ratio. The importance of nonlinearity is illustrated very vividly here as both the size of the cyclone and the anticyclones go to zero for small amplitude ($H_0/H_n \to 1; H_0/H_s \to 1$). Note that, on average, the HE is about 2 times the ME (solid dots). The difference in size is due to the difference in nonlinearity. Note that, for $H_0/H_n \gg 2$, a larger HE implies a smaller ME and vice versa. Similarly, a weak NGCC (i.e., $H_n/H_s \to 1$) corresponds to no HE but large ME. Likewise, a weak MC (i.e., $H_0/H_n \to 1$) implies a small ME and large HE.

momentum flux of the NGCC relative to that of the MC. This nonlinearity manifests itself in a large difference in the thickness of the upper layer north and south of the NECC. An additional aspect that explains some (~50%) of the difference in the size is the difference in the Coriolis parameter (due to the different latitudes) which contributes to a larger Rossby radius in low latitudes.

Also, note that, according to our solution (Fig. 14), a weaker MC and stronger NGCC (i.e., $H_0/H_n \to 1$) imply smaller ME and larger HE. Similarly, a stronger MC and a weaker NGCC (i.e., $H_0/H_s \to 1$) imply larger ME and smaller HE. This is in agreement with Wawraunruth (1999) statements that in December–February there is almost no HE but the ME is large (because the NGCC is very weak, i.e., $H_n/H_s \to 1$). In the autumn, on the other hand, the HE is strong and the ME is weak because the NGCC is strong (i.e., H_0/H_s is small). These results are also consistent with the reports of Lukas et al. (1991) and Kashino et al. (2001).

The above arguments show that the physical mechanism proposed here (i.e., that the eddies are necessary to balance the nonlinear momentum flux of their parent currents, the southward-flowing MC and the northward-flowing NGCC) are indeed responsible for the formation of the ME and HE. Of course, our model does not describe all of the oceanic details because it neglects motions below the upper layer as well as the inclination and complexity of the coastline. These could, no doubt, alter our results, but our findings are nevertheless informative because they provide a first glance at the processes in question. We also point out that, although the ITF plays a secondary role in our theory, its existence is essential for the formation of the cross-equatorial flow of the NGCC (see, e.g., Arruda 2002; Nof 1998). Without the ITF there would be no collision and no eddies. Consequently, it is not surprising that variations in the ITF transport lead to variations of the relative sizes of the ME and the HE.

Acknowledgments. This study was supported by the Binational Science Foundation Grant 96-105, National Science Foundation Grants OCE 9911324 and OCE 0241036, National Aeronautics and Space Administration Grants NAG5-7630 and NAG5-10860, and Office of Naval Research Grant N00014-01-0291. Wilton Z. Arruda was funded by “Conselho Nacional de Desenvolvimento Científico e Tecnológico” (CNPq-Brazil) under Grant 202436/91-8 and a fellowship from the Inter-American Institute for Global Change Research (IAI) through South Atlantic Climate Change Consortium (SACC). The authors thank Dr. Nobuo Suginohara for his helpful comments and careful reading of the manuscript. We also thank Steve Morey and Jay Shriver for making additional runs of their linear model.

APPENDIX

List of Symbols and Acronyms

- B: Bernoulli function, $g'\, h + (u^2 + v^2)/2$
- f: Coriolis parameter ($f_0 + \beta y$)
- g': Reduced gravity, $g\Delta p/\rho$
- h: Upper-layer thickness
- H: Undisturbed interior upper-layer thickness (replaced by either H_α or H_s for the collision problem); see Fig. 2
- H_0: Upper-layer thickness on the zonal wall as $x \to \infty$ (Fig. 3)
- \hat{h}: Upper-layer thickness at the center of the anticyclonic eddy
- H_{max}: Upper-layer thickness at the corner (Fig. 3)
- H_α, H_s: Upper-layer thicknesses at fixed latitudes in the countercurrent side and main current side (Fig. 11)
- L: Boundary current width (Fig. 2)
- L_2: Width of square domain S (Fig. 2)
- L_n: Countercurrent width (Fig. 11)
- L_s: Main current width (Fig. 11)
- R: Eddy radius
References

Toole, J. M., E. Zou, and R. C. Millard, 1988: On the circulation of the

