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ABSTRACT

In this paper the authors investigate the action of ambient turbulence on thermohaline interleaving using

both theory and numerical calculations in combination with observations from Meddy Sharon and the Faroe

Front. The highly simplified models of ambient turbulence used previously are improved upon by allowing

turbulent diffusivities of momentum, heat, and salt to depend on background gradients and to evolve as the

instability grows.

Previous studies have shown that ambient turbulence, at typical ocean levels, can quench the thermohaline

interleaving instability on baroclinic fronts. These findings conflict with the observation that interleaving is

common in baroclinic frontal zones despite ambient turbulence. Another challenge to the existing theory

comes from numerical experiments showing that the Schmidt number for sheared salt fingers is much smaller

than previously assumed. Use of the revised value in an interleaving calculation results in interleaving layers

that are both weaker and thinner than those observed. This study aims to resolve those paradoxes.

The authors show that, when turbulence has a Prandtl number greater than unity, turbulent momentum

fluxes can compensate for the reduced Schmidt number of salt fingering. Thus, ambient turbulence de-

termines the vertical scale of interleaving. In typical oceanic interleaving structures, the observed property

gradients are insufficient to predict interleaving growth at an observable level, even when improved turbu-

lence models are used. The deficiency is small, though: gradients sharper by a few tens of percent are sufficient

to support instability. The authors suggest that this is due to the efficiency of interleaving in erasing those

property gradients.

A new class of mechanisms for interleaving, driven by flow-dependent fluctuations in turbulent diffusivities,

is identified. The underlying mechanism is similar to the well-known Phillips layering instability; however,

because of Coriolis effects, it has a well-defined vertical scale and also a tilt angle opposite to that of finger-

driven interleaving.

1. Introduction

Thermohaline interleaving is a vital mechanism for

lateral mixing across watermass boundaries (e.g., Ruddick

and Richards 2003). Interleaving may be generated by

a variety of processes, including double diffusion (salt

fingering or diffusive convection, separately or in com-

bination; Ruddick and Kerr (2003)), molecular diffusion

(e.g., Holyer et al. 1987), differential turbulent diffusion

(Hebert 1999), and baroclinic instability (McIntyre 1970;

May and Kelley 1997). While interleaving signals are

often of large amplitude and therefore demand a non-

linear theoretical treatment (e.g., Walsh and Ruddick

1998; Mueller et al. 2007), linear perturbation theory

provides an essential starting point for defining spatial

and temporal scales and for identifying the central

mechanisms (e.g., Stern 1967; May and Kelley 1997;

Walsh and Ruddick 2000; Smyth 2007). Here, we use

linear analysis to explore the role of ambient turbulence

in interleaving driven by salt fingering (more properly,

salt sheets, a planar variant of salt fingering that forms

when shear is present; e.g., Linden 1974; Kimura and

Smyth 2007). We focus on the importance of the tur-

bulent Prandtl number and show how the variability of

turbulent fluxes leads to a new class of interleaving

mechanisms related to the layering instability of Phillips

(1972) and Posmentier (1977).
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This study was motivated by several intriguing dis-

crepancies between theory and observations of thermo-

haline interleaving. The first discrepancy concerns the

suppression of interleaving instability by ambient turbu-

lence. Zhurbas et al. (1988), Kuzmina and Rodionov

(1992), and Kuzmina and Zhurbas (2000) analyzed baro-

clinic fronts unstable to salt fingering and found that a

finite value of turbulent diffusivity can suppress inter-

leaving completely. In contrast, Walsh and Ruddick’s

(2000) study of a barotropic front found that instability

exists regardless of the strength of ambient turbulence,

though its growth rate is reduced. A later study by

Zhurbas and Oh (2001) confirmed that turbulence, even at

the relatively low levels common in the ocean interior, can

completely prevent interleaving on fingering-favorable

baroclinic (though not barotropic) fronts. This leaves us

with a paradox: interleaving is observed in many baro-

clinic fronts where theory suggests it should not happen.

The second discrepancy concerns momentum trans-

port by salt sheets. The Schmidt number Scd is the ratio of

eddy viscosity to saline diffusivity. The first theory of in-

terleaving (Stern 1967) ignored eddy viscosity (i.e., set

Scd 5 0) and found ultraviolet catastrophe: the growth

rate of the instability grows monotonically with increas-

ing vertical wavenumber; therefore, there is no preferred

vertical scale. Toole and Georgi (1981) added an eddy

viscosity to the model and thereby obtained a preferred

scale. Ruddick and Hebert (1988) fit the Toole and

Georgi (1981) model to interleaving observed on Meddy

Sharon and found that a Schmidt number of 40 gave good

agreement. Smyth (2007) repeated this fit, taking bar-

oclinicity into account and found a similar result. There is

no evidence, however, that salt sheets possess such high

Schmidt number; if anything, the reverse is true. Ruddick

et al. (1989) pointed out that, because of the high mo-

lecular Schmidt number of seawater, salt sheets growing

vertically lose momentum much more rapidly than they

lose salinity variance; therefore, they transport salt more

effectively, that is, Scd , 1. This prediction has now been

confirmed in both linear stability analyses (Smyth and

Kimura 2007) and nonlinear direct simulations (Kimura

and Smyth 2007), which indicate that Scd ; 0.1 or less.

With Scd this small, the growth rate of interleaving is

small and the preferred vertical scale is much too small to

match observations. This second paradox suggests that

some process other than salt fingering must provide the

vertical momentum transport that sets the scale of in-

terleaving. Ambient turbulence is an obvious candidate,

except that it also has the property of quenching the in-

stability entirely (see paradox 1).

A third discrepancy concerns the relative amplitudes

of the temperature and salinity fluctuations that signal

interleaving in observational profiles. On baroclinic

fronts, these amplitudes are similar (when expressed in

terms of buoyancy fluctuations). Theory suggests, how-

ever, that the temperature signal should be at least an

order of magnitude stronger (Smyth 2007).

We will show that all three discrepancies can be re-

solved, or at least greatly mitigated, by the inclusion of an

improved turbulence model. The main improvement will

be a more realistic representation of the turbulent Prandtl

number. Even with this improvement, however, we will,

in some cases, be left with predicted growth rates too

small to account for observations. To better understand

this, we will explore the possibility that interleaving can

be observed on fronts that are linearly stable, because the

effect of interleaving is to reduce the mean gradients.

Every instability is a mechanism for an unstable mean

flow to relax to a stable state. Every instability therefore

results in a temporary state in which the finite-amplitude

fluctuations due to instability are evident, but the mean

flow obtained by averaging those fluctuations away is

stable. For example, Kelvin–Helmholtz instability is

known to be a common mechanism for mixing the oceans

(e.g., Gregg 1987; Smyth et al. 2001), even though the

necessary condition of subcritical Richardson number

is rarely observed. The latter fact is largely due to the

reduction of gradients (and hence the increase of the

Richardson number) by the instability itself. Here, we will

see examples where interleaving growth rates computed

from observed mean flows are too small to account for the

observed instability, but a modest increase in horizontal

gradients (i.e., a decrease in the width of the front) results

in a much more robust growth rate. We therefore suggest

that instability grew at some previous time when the

gradients were steeper and that it has since acted to

broaden the front.

Most of our analyses will include the common assump-

tion that turbulent diffusivities are spatially uniform.

While this simplification can result in useful insights, tur-

bulence in nature is much more complex. In particular,

interleaving layers alter the velocity and buoyancy gradi-

ents that support turbulence. As a result, they produce

fluctuations in the turbulent diffusivities that mirror the

spatial structure of the interleaving and can affect the in-

terleaving growth mechanism. Beyond simply modifying

thermohaline interleaving, this feedback loop creates an

entirely new class of interleaving mechanisms.

In section 2, a linear, normal mode theory is developed

to describe perturbations on a broad, baroclinic front in

which both salt sheets and turbulence are active. An en-

ergy analysis provides a unified framework to describe

the diverse mechanisms that have been proposed for in-

terleaving instability. In section 3, we describe two special

classes of solutions that are important in the interpre-

tation of later results: reverse diffusion leading to layering
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(Phillips 1972; Posmentier 1977) and the turbulence-driven

McIntyre mode (Ruddick 1992). As motivation for later

analyses, section 4 contains a brief overview of numer-

ical results showing the effect of turbulence for the

particular case of interleaving on the lower flank of

Meddy Sharon. In general, the theory does not have

analytical solutions simple enough to yield insight;

therefore, we rely on numerical explorations of partic-

ular points in parameter space. In section 5, though, we

develop a simplified analytical representation for the

stability boundary that allows us to assess and extend the

generality of the numerical results.

The main numerical results are given in section 6. We

look at two particular cases: the well-known Meddy

Sharon (Armi et al. 1989) and the more strongly baroclinic

Faroe Front (Hallock 1985). We find that turbulence,

rather than suppressing interleaving, can actually be re-

sponsible for setting its vertical scale. We test the hypoth-

esis that interleaving layers observed on fronts that appear

stable may be the result of an earlier phase of frontal

evolution in which gradients were stronger. We show that

an extension of the McIntyre (1970) theory of frontal in-

terleaving, which is entirely independent of double diffu-

sion, accounts well for interleaving on the Faroe Front.

Finally, we identify a new class of frontal interleaving in-

stabilities driven by fluctuations in turbulent diffusivities.

2. Theory

a. Equations of motion

Motion is assumed to take place on an f plane. Space

is measured by the Cartesian coordinates x, y, and z

and the corresponding unit vectors i, j, and k, denoting

the cross-front, along-front, and vertical directions,

respectively.

The fluid is incompressible and is stratified by temper-

ature and salinity such that the Boussinesq approximation

applies. The buoyancy is defined by b 5 2g(r 2 r0)/r0,

where r is the density with characteristic value r0 and g is

the acceleration due to gravity. The equation of state is

assumed to be linear, so that b is just the sum of thermal

and saline contributions:

b 5 b
T

1 b
S
, (1)

with positive bS being fresh and positive bT being warm.

The resulting equations of motion are

$ � u 5 0, (2)

Du

Dt
5 � f k 3 u � $p 1 bk 1 n=2u 1

›

›z
A

›u

›z

� �
, and

(3)

Db
i

Dt
5 k

i
=2b

i
1

›

›z
K

i

›b
i

›z

� �
, (4)

in which u is the velocity vector,

D

Dt
5

›

›t
1 u � $ (5)

is the material derivative, t is the time, f is the Coriolis

parameter, and p is the pressure scaled by r0. The final

terms of (3) and (4) represent parameterized mixing

processes; their explicit forms will be given later. In (4)

the subscript i may indicate either S for salinity or T

for temperature. Molecular viscosity is represented by

n, while ki is the molecular diffusivity of salinity or

temperature.

Many authors have assumed that interleaving on a

baroclinic front must be confined to cross-front modes—

that is, layers that do not tilt in the along-front direction—

and Smyth (2007) has recently demonstrated the truth of

this numerically over a wide range of cases. Accordingly,

we assume that ›/›y 5 0. This allows us to rewrite (2)

and (3) as

Dv

Dt
5 f

›v

›z
� ›b

›x
1 n=2v � ›2

›x›z
A

›2c

›x›z

� �

� ›2

›z2
A

›2c

›z2

� �
and (6)

Dy

Dt
5 �fu 1 n=2y 1

›

›z
A

›y

›z

� �
, (7)

where c is a streamfunction for the motion in the x2z

plane:

u 5�›c

›z
; w 5

›c

›x
(8)

and v is the corresponding along-front vorticity

v 5
›u

›z
� ›w

›x
. (9)

Motions are assumed to take place in a frontal zone of

scale sufficiently large that it can be represented locally

by uniform property gradients. The fields are then per-

turbed by a small-amplitude, cross-front disturbance.

The buoyancy fields are therefore given by

b
i
5 B

i,x
x 1 B

i,z
z 1 b

i
9(x, z, t), (10)

in which Bi,x and Bi,z are constants, i once again denotes

either S or T, and the subscripts x and z represent partial

derivatives. The prime denotes the perturbation. The

along-front velocity has a background part that varies

linearly in x and z:
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y 5 V
x
x 1 V

z
z 1 y9(x, z, t), (11)

where Vx and Vz are constants. The streamfunction and

vorticity are pure perturbations c 5 c9; v 5 v9.

The net vertical gradient of the background buoy-

ancy Bz 5 BSz 1 BTz is equal to the squared buoy-

ancy frequency, commonly written as N2. In the

fingering-favorable case on which we focus here,

BTz . 0 and BSz , 0. The net horizontal gradient of

the background buoyancy determines the background

shear via the thermal wind balance: fVz 5 Bx 5 BSx 1

BTx.

Substituting the flow decompositions (10) and (11)

into (4), (1), (6), and (7) gives

(›
t
� c9

z
›

x
1 c9

x
›

z
)v9 5 f y9

z
� b9

x
1 n=2v9 � (Ac9

x,z
)

x,z
� (Ac9

z,z
)

z,z
,

(›
t
� c9

z
›

x
1 c9

x
›

z
)y9 5 V

x
c9

x
� V

z
c9

x
1 f c9

x
1 n=2y9 � [A(V

z
1 y9

z
)]

z
,

(›
t
� c9

z
›

x
1 c9

x
›

z
)b9

i
5 B

i,x
c9

z
� B

i,z
c9

x
1 k

i
=2b9

i
1 [K

i
(B

i,z
1 b9

i,z
)]

z
, and

v9 5 �=2c9. (12)

We assume planar intrusions (neglecting the noses),

with uniform tilt angle u that we treat as a free param-

eter. The advantage of this approach is that the problem

reduces to partial differential equations in one variable

plus time, and nonlinear advective terms vanish. Ac-

cordingly, the coordinate frame is now tilted by the in-

trusion angle u, such that x represents the tilted x

coordinate (along intrusion direction) and z represents

the tilted z coordinate (across intrusion direction). The

rotation operator is

›/›x

›/›z

� �
5

C �S

S C

� �
›/›x

›/›z

� �
,

where C 5 cos(u) and S 5 sin(u).

Perturbations vary only in the z direction, so that

›/›x 5 0 for perturbation quantities. Background fields

depend on both coordinates. The parameterized diffu-

sivities A and Ki will be defined in detail later. For now

we note that the parameterizations depend only on the

perturbations and on the gradients of the background

fields, which are constants; hence, A and Ki, as well as

their associated fluxes, do not vary with x.

In the rotated frame, the equations become

v9
t

5 Cf y9
z

1 Sb9
z

1 nv9
z,z

� C2(Ac9
z,z

)
z,z

, (13)

y9
t

5 V
x
c9

z
1 fCc9

z
1 ny9

z,z
1 C[V

z
1 Cy9

z
)]

z
, (14)

b9
it

5 B
i,x

c9
z

1 k
i
b9

i,z,z
1 C[K

i
(B

i,z
1 Cb9

i,z
)]

z
, and

(15)

v9 5 �c9
z,z

, (16)

where the primed variables are perturbations dependent

on z and t, and partial differentiation is indicated via

subscripts.

We next eliminate c9 by integrating (13) with respect to

z (there is no constant of integration since periodicity is

assumed). The vorticity v is equal to ~u9
z
, where ~u9 5 �c9

z

is the cross-front velocity parallel to the interleaving

layers (and perpendicular to y9). We write the result as

~u9
t

5 Cf y9 1 Sb9 � Fu
z , (17)

y9
t

5 �(V
x

1 Cf )~u9 � F y
z , and (18)

b9
it

5 �B
ix

~u9 � Fi
z, (19)

where

Fu 5 �n~u9
z

� C2A~u9
z
, (20)

Fy 5 �ny9
z

� C2Ay9
z

� CAV
z
, and (21)

Fi 5 �k
i
b9

i,z
� C2K

i
b9

i,z
� CK

i
B

i,z
. (22)

The coordinate rotation has removed the nonlinear ad-

vection terms, so that linearization is only necessary for

the parameterized mixing terms. These are now con-

tained within the fluxes Fu, and so on.

b. Parameterized fluxes

In this subsection we describe a simple format for incor-

porating parameterized small-scale fluxes into the line-

arized equations of motion. We then discuss explicit

parameterizations for double-diffusive and turbulent fluxes.

1) LINEARIZED FORMS

Here A is a vertical eddy viscosity that represents

the combined effects of double-diffusive instability and

shear-driven turbulence. We assume that the two eddy

viscosities add linearly. Following Walsh and Ruddick

(1995), we assume that the double-diffusive contribution
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is determined entirely by the density ratio Rr 5 2bTz/bSz.

The turbulent eddy viscosity has been taken as constant

in previous studies (e.g., Zhurbas and Oh 2001; Smyth

2007). Our goal here is to improve that representation

by expressing the turbulent part as a function of the

gradient Richardson number Ri 5 bz/juzj2. Accordingly,

we write

A 5 Ad(R
r
) 1 At(Ri), (23)

in which the superscripts d and t indicate the double-

diffusive and turbulent parts, respectively.

Like the other variables, A can be written as the sum

of a background part and a perturbation:

A 5 A 1 A9. (24)

The background part is given by

A 5 Ad(R
r
) 1 At(Ri), (25)

where R
r

5 �B
Tz

/B
Sz

and Ri 5 B
z
/V2

z. The pertur-

bation is

A9 5
dAd

dR
r

R9
r

1
dAt

dRi
Ri9. (26)

The derivatives in (26) are evaluated for the background

values R
r

5 R
r

and Ri 5 Ri. The perturbations can be

expanded as

R9
r

5 CR
r

b9
Tz

B
Tz

�
b9

Sz

B
Sz

� �
and (27)

Ri9 5 CRi
b9

Sz
1 b9

Tz

B
z

� 2
y9

z

V
z

 !
, (28)

and are fluctuations in the density ratio and the Richardson

number due to the perturbations. Combining (26)–(28),

we have

A9 5
C

B
z

2
f

s
r

Ri
dAt

dRi
y9

z
1

dAd

dR
r

R
r
(R

r
� 1) 1

dAt

dRi
Ri

" #
b9

Sz

(

1
dAd

dR
r

(R
r

� 1) 1
dAt

dRi
Ri

" #
b9

Tz

)
, (29)

where sr 5 2Bx/Bz is the isopycnal slope.

The representation for A developed in (23)–(29) car-

ries over trivially to the eddy diffusivities; one simply

replaces all occurrences of A with Ki. The linearization is

completed by substituting the results into (20)–(22) and

discarding the products of perturbations. The results can

be written as

Fu 5 �K
UU

~u9
z
, (30)

Fy 5 �CAV
z

� K
VV

y9
z

� s
r

f �1K
VS

b9
Sz

� s
r

f �1K
VT

b9
Tz

, (31)

FS 5 �CK
S
B

Sz
� fs�1

r K
SV

y9
z

� K
SS

b9
Sz

� K
ST

b9
Tz

, and (32)

FT 5 �CK
T

B
Tz

� fs�1
r K

TV
y9

z

� K
TS

b9
Sz

� K
TT

b9
Tz

. (33)

The initial terms on the right-hand sides of (31)–(33) are

constants and therefore vanish when substituted into

(17)–(19). The remaining terms involve effective diffu-

sivities, which are given by:

K
UU

5 n 1 C2(A
d

1 A
t
),

K
VV

5 n 1 C2 A
d

1 A
t � 2Ri

dAt

dRi

� �
,

K
VS

5 �C2 (R
r

� 1)R
r

dAd

dR
r

1 Ri
dAt

dRi

" #
,

K
VT

5 �C2 (R
r

� 1)
dAd

dR
r

1 Ri
dAt

dRi

" #
,

K
SV

5 �2C2 Ri

R
r

� 1

dKt
S

dRi
,

K
SS

5 k
S

1 C2 K
d

S 1 K
t

S � R
r

dKd
S

dR
r

� Ri

R
r

� 1

dKt
S

dRi

 !
,

K
ST

5 �C2 dKd
S

dR
r

1
Ri

R
r

� 1

dKt
S

dRi

 !
,

K
TV

5 2C2
RiR

r

R
r

� 1

dKt
T

dRi
,

K
TS

5 C2 �gK
d

S 1 R
r

d(gKd
S)

dR
r

1
RiR

r

R
r

� 1

dKt
T

dRi

" #
, and

K
TT

5 k
T

1 C2 K
t

T 1
d(gKd

S)

dR
r

1
RiR

r

R
r

� 1

dKt
T

dRi

" #
.

(34)

In the expressions for KTS and KTT, we have made the

substitution KT
d 5 gKS

d/Rr, where g is the flux ratio

(defined as minus the ratio of saline to thermal buoyancy

fluxes) for salt fingering (e.g., Stern 1967; Walsh and

Ruddick 1995).

The signs of the ‘‘diagonal’’ diffusivities KUU, KVV,

KSS, and KTT are of particular interest. On the basis of

common experience, we expect these to be positive, and
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hence to lead to the dissipation of fluctuation variance.

This is clearly the case with KUU; however, KVV contains

a derivative term that in principle can have either sign.

This term originates in the modification of the baroclinic

shear by fluctuations in the along-front velocity. These

fluctuations locally alter the Richardson number, an ef-

fect that shows up here in the effective eddy viscosity. In

the vast majority of cases, however, the eddy viscosity At

decreases with increasing Richardson number, so this

effect only makes KVV more positive.

The situation is less simple for the scalar diffusivities.

In KSS, the third term in the parentheses involves the

derivative of the saline diffusivity of salt sheets with

respect to R
r
, which is generally negative; hence, the

term is positive. The fourth term in parentheses can be

negative in diffusive convection (0 , R
r

, 1), or in

doubly stable stratification (R
r

, 0), but it is positive in

fingering-favorable stratification (R
r

. 1).

In the remainder of this paper, we assume R
r

. 1.

Therefore, only the thermal diffusivity KTT has a genu-

ine likelihood of being negative in fingering-favorable

stratification. The second term in the parentheses can be

negative because salt fingering becomes weaker with

increasing R
r
, and both g and KS

d tend to decrease. This

leads to a reverse diffusion of thermal gradients in

double-diffusive fluids and is thought to be the origin of

the ubiquitous thermohaline staircases (Radko 2003).

The third term offers an alternative mechanism for

reverse diffusion driven by turbulence. In either fingering-

favorable (R
r

. 1) or doubly stable stratification (R
r

, 0),

this term is negative, provided that the turbulent thermal

diffusivity decreases with increasing Ri, the usual situ-

ation. Situations in which KTT , 0 will arise repeatedly

in this study (see section 3a).

2) EXPLICIT FORMS FOR DOUBLE-DIFFUSIVE

FLUXES

Fluxes are conveniently parameterized using flux-

gradient laws. These require that diffusivities for mo-

mentum (A) and scalars (Ki) be parameterized in terms

of background flow properties. Walsh and Ruddick

(1995) employed a simple parameterization for the sa-

line diffusivity of salt fingers:

Kd
S 5 K

S0
R

�n
f

r . (35)

When nf 5 0, we have the constant diffusivity employed

in the earlier theories. To model dependence on back-

ground gradients, we use nf 5 2.1 and KS0 5 1.0 3

1024 m2 s21, which gives a good fit to the direct simu-

lations of Stern et al. (2001). This is also very close to

the parameterization used by Zhang et al. (1998) in the

oceanic range of Rr values and is within about a factor

of three of the observational estimates of St. Laurent

and Schmitt (1999).

Momentum diffusivity due to salt fingers is represented

in terms of a Schmidt number, Ad 5 ScdKS
d. Dependence

of the double-diffusive Schmidt number on background

gradients will be modeled using

Scd 5 0.08 ln
R

r

R
r

� 1

 !
, (36)

an empirical fit to the numerically determined proper-

ties of the fastest-growing linear mode (Smyth and

Kimura 2007).

The thermal buoyancy flux due to double diffusion is

proportional to the saline buoyancy flux via the flux ratio

g (Stern 1967), leading to KT
d 5 gKS

d/Rr. We use the

expression for the fastest-growing mode from the linear

theory of salt fingering (Stern 1975):

g 5 R
r

� [R
r
(R

r
� 1)]1/2. (37)

3) EXPLICIT FORMS FOR TURBULENT FLUXES

Turbulent fluxes of heat, salt, and momentum are

all defined using flux-gradient relations. Thermal fluxes

are defined in terms of a diffusivity, KT
t , that varies

from 1026 m2 s21 in the quietest parts of the ocean

through 1025 m2 s21, the value that typifies the thermo-

cline, to 1023 m2 s21 in hot spots such as tidal flow over

topography. Salt fluxes are also defined in terms of a

diffusivity. In mechanically driven turbulence, saline

diffusivity is often assumed to equal thermal diffusivity;

however, a significant body of research indicates that

this is not exactly true (Gargett 2003; Hebert and Ruddick

2003; Jackson and Rehmann 2003; Smyth et al. 2005): in

weak turbulence, the diffusivity ratio d 5 KS
t /KT

t tends to

be less than unity. Finally, momentum fluxes define an

eddy viscosity At. The turbulent Prandtl number is the

ratio of eddy viscosity to thermal diffusivity Prt 5 At/KT
t .

Here Prt varies from near unity in strong turbulence to

much greater values in weak turbulence.

In much of our work here, we will treat KT
t , d, and Prt

as independent parameters and vary them separately

over observed ranges. To refine the resulting picture,

though, we must recognize that these parameters are not

independent. To this end, we make use of the consid-

erable effort that has gone into parameterizing turbu-

lence in terms of the Richardson number Ri 5 N2/S2. If

we can express KT
t , d, and Prt as functions of Ri, then we

can eliminate Ri to give Prt 5 Prt(KT
t ) and d 5 d(KT

t ).

Parameterizing d is beyond our scope here, but we will

investigate the effects on interleaving instabilities when

Prt 5 Prt(KT
t ).
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A number of Ri-dependent parameterizations have

been proposed (Pacanowski and Philander 1981; Peters

et al. 1988; Large et al. 1994). All suffer the fundamental

limitation that Ri, as a dimensionless parameter, cannot

provide the length and velocity scales needed to predict

the magnitudes of the turbulent diffusivities; those must

be obtained empirically and may not be universal. Also,

because of its sensitivity to vertical resolution, Ri is dif-

ficult to measure in situ and is likely to be overestimated.

Nonetheless, there is little doubt that the balance be-

tween stratification and shear quantified by Ri is a domi-

nant factor controlling turbulent diffusivities. All models

agree that KT
t decreases with increasing Ri, approaching

a background value when Ri � O(1). Likewise, there is

general agreement that Prt ; O(1) for small Ri and in-

creases more or less linearly for Ri � O(1).

The example we will use here follows Peters et al.

(1988), who conducted microstructure measurements in

and around the Pacific Equatorial Undercurrent. There,

the mean state is characterized by Ri ranging from O(1)

or less on the flanks of the undercurrent to O(102) in the

core of the current and in deeper regions. Peters et al.

(1988) were able to fit the resulting range of thermal

diffusivities with

Kt
T 5 k

b
1 k

0
(1 1 5Ri)�2.5, (38)

where kb 5 1 3 1026 m2 s21 is the background diffu-

sivity and k0 5 5 3 1024 m2 s21. This expression obtains

for Ri . 1.5; a stronger dependence is found for smaller

Ri. For the eddy viscosity, Peters et al. (1988) found

At 5 n
b

1 n
0
(1 1 5Ri)�1.5, (39)

where nb 5 2 3 1025 m2 s21 and n0 5 5 3 1024 m2 s21.

The background turbulent Prandtl number (in the limit

Ri / ‘) is 20. At smaller Ri, the ratio of the Ri-dependent

terms gives

Pr t 5 1 1 5Ri. (40)

Similar linear dependence on Ri has been found in-

dependently in studies of sheared, stratified turbulence

in the atmosphere (e.g., Esau and Grachev 2007) and in

theoretical, laboratory, and observational studies of strat-

ified turbulence (summarized in Galperin et al. (2007)).

More generally, (39) and (38) combine to give

At 5 n
b

1 n
0

Kt
T � k

b

k
0

� �3/5

, (41)

from which Prt follows immediately.

The quantities Ri dAt/dRi, Ri dKt
T /dRi and Ri dKt

S/dRi

appearing in (34) can be obtained as functions of KT
t in

similar fashion. Note that all of these quantities are in-

variant under a rescaling of Ri. The results needed here are

therefore independent of the tendency of observational

measurements to overestimate Ri, at least insofar as that

overestimation is uniform.

c. The normal mode perturbation equations

Solutions are sought in the normal mode form

~u9(x, z, t) 5 u
0

exp(imz 1 st). (42)

Only the real part is physically relevant. The exponential

growth rate s is in general complex, while m is a real

cross-intrusion wavenumber and u0 is a complex constant.

Substituting (42) and similar expressions for y9, b9S, and

b9T into the linearized Eqs. (17)–(19) with (30)–(34)

yields an algebraic eigenvalue problem

sy 5 Ay, (43)

where

y 5 (u
0

y
0

b
S0

b
T0

)T and

A 5

�m2K
UU

Cf S S

�(Cf 1 V
x
) �m2K

VV
�m2s

r
f �1K

VS
�m2s

r
f �1K

VT

�B
Sx

�m2fs�1
r K

SV
�m2K

SS
�m2K

ST

�B
Tx

�m2fs�1
r K

TV
�m2K

TS
�m2K

TT

2
6666664

3
7777775

.

Parameterized diffusivities such as KUU are given

explicitly in section 2b(1). In what follows, we will ex-

plore analytical solutions of (43) for the stability

boundary jAj 5 0 as well as numerical solutions for the

fastest-growing mode.

d. The energetics of interleaving

The various classes of interleaving motions discussed

here all originate as layered buoyancy variance, created

by buoyancy flux convergences of different kinds. Here
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we describe a general energy budget that allows us to

quantify the various flux convergence processes that lead

to interleaving. The energy of interleaving can be parti-

tioned into kinetic and potential reservoirs. These reser-

voirs exchange energy, both with each other and with

several external reservoirs.

d Potential energy stored in the background salinity gra-

dient drives salt sheets and resulting buoyancy fluxes.

These can vary with changes in the temperature and

salinity gradients brought on by interleaving.
d The background (thermal wind) shear can work with

Reynolds stresses to exchange kinetic energy with the

perturbations.
d Molecular viscosity–dissipation provides a link to in-

ternal energy associated with molecular motions.
d Ambient turbulence generates effective viscosity and

diffusivity that fluctuate in response to interleaving.

The kinetic energy of interleaving motions is defined

as hKi 5 1/2h~u92 1 y92i, where the angle brackets denote

a wavelength average. The rotated Eqs. (17), (18), (20),

and (21) can be combined to form the evolution equation

hKi
t
5 K

1
1 K

2
1 K

3
1 K

4
1 K

5
, (44)

where

K
1

5 Sh~u9b9i, (45)

K
2

5 �V
x
h~u9y9i, (46)

K
3

5 �nh~u92
z 1 y92

z i, (47)

K
4

5 �C2Ah~u92
z 1 y92

z i, and (48)

K
5

5 CV
z
hA

z
y9i. (49)

The terms K1, K2, and K3 represent changes in kinetic

energy due to buoyancy fluxes, shear production, and

molecular dissipation, respectively. Term K4, like K3, is

negative definite and describes the conversion of in-

terleaving kinetic energy to turbulent kinetic energy.

Term K5 results from the cross-intrusion viscosity gra-

dient, which works with the thermal wind shear to pro-

duce accumulations of along-front velocity and hence

create or destroy perturbation kinetic energy.

The viscosity gradient Az appearing in K5 is the sum of

contributions from turbulent and double-diffusive pro-

cesses, each of which has components driven by buoy-

ancy and velocity perturbations. Using (27) and (28), we

write

K
5

5 K
5a

1 K
5b

1 K
5c

1 K
5d

, (50)

where

K
5a

5 �m2C2V
z

dA
d

dR
r

R
r

hb9
T

y9i
B

Tz

, (51)

K
5b

5 m2C2V
z

dA
d

dR
r

R
r

hb9
S
y9i

B
Sz

, (52)

K
5c

5 �m2C2V
z

dA
t

dRi
Ri

hb9y9i
B

z

, and (53)

K
5d

5 2m2C2 dA
t

dRi
Rihy92i. (54)

The first two terms, K5a and K5b, represent convergences

due to gradients in Rr, and hence in double-diffusive

viscosity, caused by thermal and saline buoyancy fluc-

tuations, respectively. The latter two terms result from

changes in At(Ri) due to buoyancy and along-front ve-

locity fluctuations. These processes contribute to the

ultraviolet instability described by (72).

We will see that the buoyancy flux term K1 in (44) and

(46) is the main source of kinetic energy for interleaving.

That flux may be described as the conversion to kinetic

energy of a potential energy proportional to the buoy-

ancy variance

hPi 5
s

s � s
r

1

B
z

hb92i
2

. (55)

If the interleaving slope lies outside the baroclinic wedge,

that is, hPi . 0, then interleaving motions must do work

against gravity to generate buoyancy variance. Within

the baroclinic wedge, hPi , 0, that is, the growth of buoy-

ancy variance reduces the total potential energy of the

fluid.

The sign of the potential energy is irrelevant for our

discussion, and we avoid that complication by using an

equation for the buoyancy variance based on (19), (22),

and the flux parameterizations described in section 2b:

1

2
b92

� �
t

5 B
1

1 B
2

1 B
3

1 B
4

1 B
5

1 B
6
, (56)

where

B
1

5 �B
x
h~u9b9i, (57)

B
2

5 �C2(1 � g)K
d

Shb9
z
b9

Sz
i, (58)

B
3

5 �k
T

hb9
z
b9

Tz
i � k

S
hb9

z
b9

Sz
i, (59)

B
4

5 �C2K
t

Thb9
z
b9

Tz
i � C2K

t

Shb9
z
b9

Sz
i, (60)
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B
5

5 Ch(B
Tz

Kt
Tz 1 B

Sz
Kt

Sz)b9i, and (61)

B
6

5 ChB
Sz

[(1 � g)Kd
S]

z
b9i. (62)

The term B1 represents the advection of the background

buoyancy gradient Bx by interleaving motions. When

multiplied by the factor s/(s 2 sr)Bz [cf. (55)], it becomes

the negative of K1, the buoyancy flux term in (44), in-

dicating that it represents a transfer between the kinetic

and potential energy reservoirs.

The remaining terms are all diffusive in nature but

represent very different physical processes.

d Term B2 represents the growth of buoyancy variance

due to salt sheets and hence the classical model of

thermohaline interleaving (Stern 1967). Term B2 is

positive when net buoyancy and saline buoyancy per-

turbations are negatively correlated (i.e., when warm,

salty layers have positive buoyancy and vice versa).
d Term B3 is the sum of two expressions representing the

molecular diffusion of buoyancy variance. If kS 5 kT,

then B3 is negative definite and represents simple dis-

sipation. In saltwater, however, kS 6¼ kT and B3 can be

positive. In that case B3 represents interleaving driven

by molecular diffusion, as in laboratory experiments

(e.g., Holyer et al. 1987). Note that, if one of hb9
z
b9

Sz
i and

hb9
z
b9

Tz
i is negative, then the other must be positive.

Given this and the fact that kS , kT in seawater, we see

that B3 can be positive only if B2 is negative, and vice

versa; that is, molecular diffusion drives interleaving

with slope opposite to that driven by salt sheets.
d Term B4 describes the analogous diffusion processes

driven by turbulence. It is negative definite if KT
t 5 KS

t ,

but it can be positive otherwise and is then the origin

of interleaving driven by differential diffusion (Hebert

1999; Merryfield 2002). It is commonly observed that

KS
t # KT

t in ocean turbulence (e.g., Gargett 2003;

Smyth et al. 2005); therefore, B4 can only be positive if

B2 is negative and vice versa. Differential diffusion

therefore opposes salt sheets in the creation of in-

terleaving just as does molecular diffusion.
d Term B5 describes the creation of buoyancy fluctua-

tions by gradients in the turbulent diffusivities. This

term merits particular attention as it is the source of a

new interleaving instability to be described in section 6e.

Using (28), we can expand B5 into components driven

by velocity and buoyancy perturbations:

B
5

5 B
5a

1 B
5b

, (63)

where

B
5a

5 2C2Ri B
Tz

dKt
T

dRi
1 B

Sz

dKt
S

dRi

� �hb9
z
y9

z
i

V
z

(64)

and

B
5b

5 �C2Ri B
Tz

dKt
T

dRi
1 B

Sz

dKt
S

dRi

� �hb9
z
b9

z
i

B
z

.

(65)

Note that B5b can be positive definite, particularly if

KT
t 5 KS

t or if either BSz or BTz is zero and the other is

positive (simple stratification). This term drives the

layering instability described by Posmentier (1977) and

is discussed in section 3a.
d Term B6 describes the effect of fluctuating diffusivities

due to double diffusion. This term is responsible for

the double-diffusive layering modes discussed by Walsh

and Ruddick (2000), Radko (2003), and later in sec-

tion 3a. Using (27), B6 is easily expanded, just as we

have done for B5. We will not do this explicitly as the

expansion is not needed here.

For plotting convenience in the present application,

the kinetic energy Eq. (44) is normalized by hKi, so that

the left-hand side is just the real growth rate:

s
r
5 Buoy 1 Shr 1 DissK 1 ConvK

tB

1 ConvK
tV

1 ConvK
d
. (66)

The mnemonic symbols for the partial growth rates on

the right-hand side are defined as

Buoy 5 K
1
/hKi

Shr 5 K
2
/hKi

DissK 5 (K
3

1 K
4
)/hKi

ConvK
tB

5 K
5c

/hKi
ConvK

tV
5 K

5d
/hKi

ConvK
d

5 (K
5a

1 K
5b

)/hKi. (67)

Similarly, (56) is normalized by the buoyancy variance

to give

s
r
5 Adv 1 SS 1 DissB 1 ConvB

tB

1 ConvB
tV

1 ConvB
d
, (68)

where

Adv 5
B

1

1

2
b92

� � SS 5
B

2

1

2
b92

� � DissB 5
(B

3
1 B

4
)

1

2
b92

� �

ConvB
tV

5
B

5a

1

2
b92

� � ConvB
tB

5
B

5b

1

2
b92

� �

ConvB
d

5
B

6

1

2
b92

� � . (69)
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3. Special solutions

Before using (43) to investigate the role of turbulence

in thermohaline interleaving, we briefly review two spe-

cial classes of solutions that represent distinct processes.

A third nonthermohaline mechanism for interleaving is

described in section 6e.

a. Ultraviolet modes

We begin by examining a class of solutions to (43)

that exhibit ultraviolet (UV) catastrophe and can result

in the formation of steppy profiles (e.g., Phillips 1972;

Posmentier 1977) because of the flux convergence mech-

anism B5 (65).

In ordinary diffusion, perturbations decay because

an increase in buoyancy gradient causes an increase in

downgradient buoyancy flux, and the resulting conver-

gences and divergences smooth the perturbations. How-

ever, when the diffusivity decreases sufficiently rapidly

with increasing Richardson number, an increase in gra-

dient leads to an increase in Richardson number and

to a decrease in flux, causing perturbations to grow.

Posmentier (1977) showed how this amounts to a diffu-

sion equation for bz with a negative diffusivity, leading

directly to a positive growth rate proportional to m2. In

the foregoing analyses, this mechanism is evident in the

observations that the buoyancy flux convergence B5 can

be positive and the effective thermal diffusivity KTT can

be negative.

Ruddick et al. (1989) verified the existence of this in-

stability for stratified turbulence produced by vertically

oriented stirring rods, demonstrating that layers form

and then subsequently merge by a similar convergence

mechanism at low stirring intensities but are not formed

at higher stirring intensities. Estimates of the flux-

versus-stirring-intensity relationship were consistent

with the Philips–Posmentier theory.

This UV catastrophe mechanism also occurs in double

diffusion, beginning with Huppert’s (1971) discovery that

layers in a double-diffusive staircase will merge if the flux

ratio is a decreasing function of density ratio. A similar

mechanism leads to layer merging in finite-amplitude

thermohaline staircases (Walsh and Ruddick 2000).

Consideration of the flux-gradient relationship [e.g., (37)]

in a purely vertical salt fingering gradient leads to a sim-

ilar instability: perturbations cause increases (decreases)

in salinity gradient, leading to decreases (increases) in

density ratio. Since the buoyancy flux is proportional to

(1 2 g) times the salt flux, the resulting buoyancy flux

convergences cause density perturbations to grow, lead-

ing to the formation of thermohaline staircases Radko

(2003). The common thread in these instabilities is the

convergence of diffusive fluxes: perturbations lead to

alterations in flux that cause perturbations to grow. In

cases of continuous gradients, it is possible to derive a

governing equation for perturbations with an effec-

tively negative diffusivity (71), leading to the s ; m2 UV

catastrophe. In both the turbulent and double-diffusive

cases, layer formation is followed by layer merging un-

der a closely related mechanism, and similar behavior is

expected for the more general class of UV instabilities

described later.

In the limit of large wavenumber, (43) has solutions

only if s } m2. Setting s 5 s0m
2 and taking the limit

m2 / ‘, we find

(s
0

1 K
UU

)ks
0
I 1 Gk 5 0, (70)

where I is the 3 3 3 identity matrix, double bars indicate

the determinant and

G 5

s
0

1 K
VV

s
r

f �1K
VS

s
r

f �1K
VT

fs�1
r K

SV
s

0
1 K

SS
K

ST

fs�1
r K

TV
K

TS
s

0
1 K

TT

2
664

3
775.

Any real, positive solution for s0 represents a UV in-

stability. Given that KUU . 0, the condition for such an

instability to exist is

kGk , 0. (71)

For example, we may assume that all mixing pa-

rameters are constant except for g, which has deriva-

tive g9 , 0 with respect to Rr. In that case, the problem

simplifies considerably, and s0 has values 2KUU, 2KSS,

and 2KTT. Here KUU and KSS are positive definite, but

KTT is not [see section 2b(1)]. The corresponding ei-

genvalue is positive [(71) is satisfied] if KTT , 0, that is,

if kT/C2 1 KT
t , 2g9KS

d. Conversely, if the combination

of molecular and turbulent thermal diffusivity is enough

to overcome the effect of g9 , 0, then the instability is

suppressed. With the parameterizations described in

section 2b(3) and UV instability requires that Rr , 1.39,

a condition that is not typical in frontal zones, though it

is by no means unheard of. At lower levels of ambient

turbulence, the condition on Rr is less restrictive: when

KT
t 5 1026 m2 s21, diffusive instability requires only

that Rr , 2.08, a common circumstance. The growth rate

is a maximum with respect to interleaving slope s when

s 5 0, so the gravitational force that drives interleaving is

irrelevant. This instability was first described by Walsh

and Ruddick (2000). Because it is independent of the

processes that drive interleaving, the instability applies

equally to baroclinic and barotropic cases. The same

instability has been identified by Radko (2003) as the

mechanism for the formation of thermohaline staircases.
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Turbulent diffusivities can also drive UV modes. For

example, suppose that turbulent diffusivities are domi-

nant and double diffusive and molecular diffusivities can

be neglected. Suppose further that there is no differen-

tial diffusion, that is, KS
t 5 KT

t . One then finds solutions

with s0 . 0, provided that

Prt 1
PrtRi

Kt
T

dKt
T

dRi
� 2

Ri

Kt
T

dAt

dRi
� 4

Ri2

Kt2
T

dKt
T

dRi

dAt

dRi
, 0.

(72)

The Peters et al. (1988) turbulence parameterization de-

scribed in section 2b(3) satisfies (72) for Ri , 3.185, or for

KT
t . 1.4 3 1026 m2 s21.1

b. McIntyre intrusions

McIntyre (1970) described a particular interleaving

instability caused directly by molecular diffusivity. This

mechanism can also be driven by turbulent diffusivity

and was explored as a possible explanation for in-

terleaving on Meddy Sharon (Ruddick 1992). Here we

revisit the relevant theory to derive estimates of the

space and time scales applicable in the present context.

In (34), we omit the double diffusive and molecular

terms, leaving only the turbulent terms, and in those we

set all derivatives with respect to Ri to zero. For sim-

plicity we make the small angle approximation C ’ 1.

The eigenvalue problem (43) now has the characteristic

equation

(s 1 k2)2[s 1 (k2/Prt)] 1 G(s 1 k2)

1 J[s 1 (k2/Prt)] 5 0, (73)

where k2 5 m2At, G 5 f 2(1 1 Vx/f ) and J 5 SBx.

In the laminar case k2 5 0 [denoted as the ‘‘classical’’

case by McIntyre (1970)], (73) becomes

s3 1 (G 1 J)s 50. (74)

Positive roots represent inertial instability. There are no

positive roots provided that G 1 J $ 0. This is equivalent

to the condition RiM $ 1, where RiM is the geostrophic

Richardson number modified to include the effect of

cross-front shear:

RiM 5
f 2

B
z
s2

r

1 1
V

x

f

� �
. (75)

Henceforth, we assume that the condition RiM $ 1 is

satisfied.

When k2 is nonzero but small in (73), the trivial root of

(74), s 5 0, becomes nonzero and potentially positive.

The new solution is

s 5�G 1 J/Prt

G 1 J
k2 1 O(k6), (76)

which is positive (for G 1 J . 0) provided that the nu-

merator is negative, or

RiM ,
(Prt 1 1)2

4Prt , (77)

as was shown by McIntyre (1970).

Note that the McIntyre mode is an example of a mode

that is destabilized by diffusion. In the laminar limit k 5 0,

the mode is in geostrophic equilibrium and thus has zero

growth rate. The effect of turbulent diffusion depends on

the Prandtl number: if velocity and buoyancy fluctuations

diffuse at the same rate, the mode remains near geo-

strophic equilibrium as it decays. In contrast, if velocity

and buoyancy perturbations decay at different rates (i.e.,

if the turbulent Prandtl number is different from unity),

then the geostrophic balance is upset and the mode has

the potential to grow. Later, we will see that thermo-

haline intrusions in the presence of turbulence exhibit

a similar property.

For fixed k2, we can identify the intrusion slope s 5

S/C that maximizes the growth rate:

s 5 s
r
fRiM � [RiM(RiM � 1)]1/2g. (78)

This preferred slope varies monotonically from sr to

zero as RiM increases from 1 to ‘; that is, the instability

is confined to the baroclinic wedge.

To estimate the value of k2 that maximizes s, we must

account for the O(k6) terms in (76). The resulting pre-

ferred length scale is given by

m4 5
k4

At2
5

8

3

B
z

At2

s3

s
r

(RiM � 1)2

RiM
, (79)

and the maximum growth rate is

s 5�2

3

G 1 J/Prt

G 1 J
k2. (80)

All quantities are evaluated using the preferred values

for s and k2 given in (78) and (79), respectively. Com-

bining (79) with (80) shows that the growth rate is in-

dependent of the strength of the turbulence. When RiM

1 This characteristic is not unusual. The parameterization used in

the K-profile parameterization (KPP) code (Large et al. 1994) for

turbulence below the mixed layer satisfies (72) for Ri , 0.8, and the

recent parameterization of Zaron and Moum (2009) does the same

for Ri . 0.15.
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is O(1) (but not ,1) and turbulent fluxes are dominant,

the McIntyre instability can drive intrusions. Later in

this paper, we will give evidence that this mechanism is

active on the Faroe Front.

4. Overview of results

To motivate the analyses to follow, we now look briefly

at some aspects of the effect of ambient turbulence on

interleaving, using the lower flank of Meddy Sharon as

our example and (43) as our model. These results will be

examined further and generalized to other oceanic re-

gimes in later sections of the paper.

We begin by examining the growth rate of the fastest-

growing mode (maximized with respect to the modal

parameters m and s) as a function of isopycnal and iso-

haline slopes. Diffusivities are made uniform by setting

the differentiated quantities in (34) to zero. We likewise

set Vx to zero; all other parameter values are charac-

teristic of Meddy Sharon (see Table 1). In the first in-

stance (Fig. 1a), neither molecular diffusion nor ambient

turbulence is present. The fastest-growing mode is sta-

tionary, as is true for all modes reported here. The growth

rate is nonnegative throughout the range of isopycnal

and isohaline slopes shown, though it drops to zero on

the lines sSm 5 6sr(Rr 2 1)/(1 2 g) as predicted by May

and Kelley (1997). There are two symmetrical regimes of

instability. The upper (lower) regime is unstable to in-

terleaving with positive (negative) layer slope. The ob-

served slopes (bullet) are within the unstable regime, so

that interleaving instability is predicted.

The addition of molecular viscosity and diffusion

(Fig. 1b) restricts the region of instability, raising mini-

mum isohaline slope for any given sr. As in the inviscid

case, the observed slopes are within the region of in-

stability; that is, the front is unstable to thermohaline

interleaving. We now add weak turbulent diffusion, with

thermal diffusivity 1.7 3 1026 m2 s21, 0.1 times the saline

diffusivity of salt sheets. The turbulent Prandtl number

Prt is set to unity. The minimum isohaline slope needed

for instability increases beyond the observed slope

(Fig. 1c). With these assumptions, the front is expected

to be stable.

Raising Prt to 20 reduces the minimum isohaline slope,

so that the observed value is once again in the unstable

range and instability is predicted (Fig. 1d). The growth

rate is too small to account for observations, but if the

slopes were steeper by, say, a factor of two (smaller bul-

let), the growth rate would be substantial. It is plausible

that, since interleaving began, it has acted to reduce the

slopes, leading to the observed regime where predicted

growth is very slow. That possibility will be explored

further in section 6b.

5. Critical isohaline slope for interleaving
instability

The results of the previous subsection suggest that

observations of interleaving on the lower flank of Meddy

Sharon can be explained in terms of linear instability

theory, and that turbulence, while important, needs not

quench the instability entirely in realistic conditions. These

preliminary results pertain only to this particular pa-

rameter set, however. In this section, we will explore

a simplified theory that reveals the effects of turbulence

in terms of continuous functions of the environmental

flow parameters. We will thereby see that the results

suggested earlier can be expected to pertain to a wide

range of oceanic parameter regimes.

We begin by assuming that interleaving is represented

by stationary modes, that is, modes that do not propa-

gate. The stability boundary is therefore obtained by

setting s to zero in (43), hence the determinant kAk must

vanish (this boundary is not plotted on Fig. 1, but it lies

very close to the lowest plotted contour, s 5 1029 3 s21).

The condition kAk 5 0 can be written as

K
UU

(R
r

� 1)

C2B
z

m4 5 F(s) 5 A
2
s2 1 A

1
s 1 A

0
, (81)

(recall s 5 S/C is the slope of the interleaving layers).

The quantities A0, A1, and A2 are defined later. In the

fingering-favorable regime of interest here, Rr . 1, so

the left-hand side is positive definite.

Before proceeding we must attend to a minor detail:

the theory to be developed below requires that A0, A1,

and A2 be independent of the interleaving slope s. That

requirement would be met except that the effective dif-

fusivities defined in (34) contain slope dependence in

the factor C2. That dependence can be removed in two

TABLE 1. Observed environmental and interleaving parameter

values pertaining to the lower flank of Meddy Sharon (May and

Kelley 2002; Ruddick 1992) and to the Faroe Front (Hallock 1985).

Among the three crossings of the Faroe Front, only sr and sS were

measured separately; the others were assumed equal to the mean

state given in column 3.

Parameter

Meddy

Sharon

Faroe Front

mean Crossing 5 Crossing 2

103 3 sS 27 3.0 6.8 19.0

103 3 sr 3.6 2.4 5.4 17.2

Rr 1.9 2.9 ) )
Bz (s22) 7.4 3 1026 2 3 1025 ) )
F (s21) 7.7 3 1025 1.3 3 1024 ) )
2p/m (m) 25 6 5 25–100 ) )
r 2 6 1 1.8 6 0.5 ) )
s 3 103 5.7 6 2.5 Unknown ) )

696 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 40

Unauthenticated | Downloaded 01/28/23 04:23 AM UTC



ways. First, we can make the small-angle approxima-

tion jsj � 1, in which case we replace C2 by 1 in (34). If

we needed to consider large slopes, we could do so at

the cost of neglecting the molecular terms n, kS, and kT

in (34). With that approximation, C2 becomes a com-

mon factor by which (81) can be divided twice. This

changes the C2 in the denominator of the left-hand side

to C 6, a change that has no effect on the discussion to

follow. Hereafter, we assume that A0, A1, and A2 are in-

dependent of s.

In (81), the parabola F(s) opens downward from a

vertex at s 5 s0 provided that A2 , 0. In that case there

is, at most, a finite range of slopes in which instability is

possible. In the opposite case A2 . 0, instability is always

possible for sufficiently large jsj. Because interleaving

requires finite s, the case A2 , 0 is of primary interest

here. In that case, as long as F(s0) . 0, there exists a

region of the m–s plane in which (81) is satisfied, whereas

for F(s0) , 0, no such region exists. The condition for

instability is therefore F(s0) . 0. This condition can be

solved to find sSm, the minimum value of the isohaline

slope needed to drive instability.

The maximum value of F(s) is F0 5 F(s0) 5 A0 2

A1
2/4A2, so that the stability boundary may be writ-

ten as

A2
1 � 4A

0
A

2
5 0. (82)

With the previous assumption A2 , 0, nontrivial solu-

tions require that A0 , 0 as well.

In what follows, we focus on the case in which all

mixing parameters are uniform; furthermore, we assume

that molecular diffusivities are negligible. Both of these

assumptions can be relaxed. To simplify the notation, we

introduce the nondimensional ratio j 5 KT
t /KS

d (follow-

ing Kuzmina and Zhurbas 2000) and ~f 5 f /
ffiffiffiffiffiffi
Bz

p
. We

also use the nondimensional quantities d, Prt, and Scd,

defined previously in section 2b(3).

With the neglect of molecular terms, the effective

diffusivities in (34) are proportional to C2:

FIG. 1. Common logarithm of the growth rate of the fastest-growing interleaving mode as

a function of isohaline and isopycnal slopes. Vertical gradients are characteristic of the lower

flank of Meddy Sharon: N2 5 7.4 3 1026 s22, Rr 5 1.9 as is the Coriolis parameter f 5 7.7 3

1025 s21. Diffusivities due to double diffusion are represented by KS
d 5 2.6 3 1025 m2 s21,

Scd 5 1, and g 5 0.59. Diffusvities are (a) double diffusive only; (b) double diffusive and

molecular: n 5 1026 m2 s21, kT 5 1.4 3 1027 m2 s21, kS 5 1.4 3 1029 m2 s21; (c) double

diffusive, molecular, and turbulent: KT
t 5 2.6 3 1026 m2 s21, d 5 1, Prt 5 1; and (d) same as

(c) except Prt 5 20. All diffusivities are spatially uniform. Large filled circles indicate the

isopycnal and isohaline slopes characteristic of the lower flank of Meddy Sharon. For the

smaller filled circle in (d), the slopes are doubled.
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K
UU

5 K
VV

5 (Scd 1 Prtj)Kd
SC2

K
SS

5 (1 1 dj)Kd
SC2

K
TS

5�gKd
SC2

K
TT

5 jKd
SC2

K
VS

5 K
VT

5 K
SV

5 K
TV

5 K
ST

5 0, (83)

so we divide that factor out of (81) as discussed earlier.

The theory is now valid for arbitrary s.

We next give explicit expressions for the coefficients

A0, A1, and A2. We begin by noting that A1 is a linear

function of sS, that is, A1 5 A10 1 A11sS, while A0 and A2

are independent of sS. Now,

A
0

5�
(R

r
� 1)( ~f

2
1 s

V
s
r
)

Kd
S(Scd 1 Prtj)

,

A
10

5
s
r
(R

r
� 1)

Kd
S

Scd 1 Prtj 1 j

j(Scd 1 Prtj)
,

A
11

5
1 � g � (1 � d)j

Kd
Sj(1 1 dj)

, and

A
2

5 �
R

r
� g 1 (R

r
d � 1)j

Kd
Sj(1 1 dj)

. (84)

The condition (82) describing the stability boundary

can now be written as a quadratic equation for sS, whose

solution is

s
Sm

5�S
1
s
r

6 S
2
( ~f

2
1 s

V
s
r
)1/2, (85)

where

S
1

5 (R
r

� 1)
1 1 dj

1 � g � j(1 � d)

Scd 1 Prtj 1 j

Scd 1 Prtj
and

S
2

5
2

1 � g � j(1 � d)
(R

r
� 1)

(1 1 dj)j

Scd 1 Prtj

�

3 [R
r

� g 1 j(R
r
d � 1)]

�1/2

.

Equation (85) is the central result of this section. We will

apply it to several important special cases, but first we

establish some rules for its proper interpretation. For

definiteness we specify the plus sign in (85); this is

equivalent to assuming, without loss of generality, that

the maximizing slope s0 5 2A1/2A2 is positive. Note that,

when sV 5 0 and all other parameters in (85) are fixed, sSm

is a linear function of sr. This linear dependence is evident

in the examples shown in Fig. 1.

The isohaline slope specified by (85) is the minimum

needed to drive instability, provided that

›F
0

›s
S

				
s

S
5sSm

5 s
0
A

11
. 0. (86)

With the choice of the plus sign in (85), this condition is

equivalent to A11 . 0, or

A
11

5
1 � g � (1 � d)j

Kd
Sj(1 � d)

. 0. (87)

Note that 1 2 g and KS
d are positive in fingering-favorable

stratification. In the absence of turbulence, A11 is positive

and instability requires the isohaline slope to be larger

than the critical value sSm given by (85). When j 6¼ 0, the

result depends crucially on d. If d . 1, we once again have

A11 . 0 for arbitrarily strong turbulence. If d , 1, then

A11 . 0, provided that turbulence is not too strong, more

precisely j , (1 2 g)/(1 2 d). If j exceeds this limit, then

A11 , 0. In this case, instability occurs when the isohaline

slope is smaller than sSm.

Reality of the solution (85) requires that Rr 2 g 1

j(Rrd 2 1) . 0. Since Rr 2 g . 0 in fingering-favorable

stratification and j $ 0, we require that either

R
r
d � 1 . 0 or (88)

R
r
d � 1 , 0 and j #

R
r

� g

1 � R
r
d

. (89)

The former condition is expected to be most common.

For the latter, Rrd , 1 requires that both Rr and d be at

the low end of their observed ranges, that is, very strong

double diffusion and very weak turbulence. The ac-

companying upper limit on j is consistent with this sce-

nario. Reality also requires that

~f
2

1 s
V

s
r

. 0, (90)

which is equivalent to the previous assumption A0 , 0.

a. Barotropic nonrotating fronts

Results from several previous studies can be recovered

as limiting cases of (85). Consider the barotropic non-

rotating case: s
r

5 ~f 5 0. In this case, sSm 5 0 regardless

of the values of the mixing parameters; that is, any

positive isohaline slope is sufficient to drive instability.

This is equivalent to the finding that instability persists

in the presence of arbitrarily strong ambient turbulence

(Walsh and Ruddick 2000).

b. Effects of weak turbulence

We now look at the case where interleaving is driven

mainly by double diffusion but is slightly modified by

turbulence. Assuming that j � 1 and expanding, we find

that
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s
Sm

5 �s
r

R
r

� 1

1 � g
1 a

0
j1/2 � s

r
a

1

R
r

� 1

1 � g
j

1 a
0
a

2
j3/2 1 O(j2), (91)

where

a
0

5 2
~f

2
1 s

V
s

r

Scd

R
r

� 1

1 � g

R
r

� g

1 � g

0
@

1
A

1/2

,

a
1

5
1

Scd
1

1 � dg

1 � g
, and

a
2

5
1 � d

1 � g
1

1

2
d 1

1 � R
r
d

R
r

� d
� Prt

Scd

 !
.

The first term on the right-hand side of (91) gives the

minimum isohaline slope for instability in the absence of

turbulent (and molecular) diffusivities. This result is

implicit in condition (36) of May and Kelley’s (1997)

analysis of nonturbulent baroclinic fronts.

The second term on the right-hand side is the lowest-

order dependence on ambient turbulence. Note first that

the turbulence parameters Prt and d do not affect sSm at

this order; that is, the first effect of turbulence on the

stability boundary is via the diffusion of temperature

anomalies. In fact, the derivative ›sSm/›j is singular as

j / 0, so the stability boundary is highly sensitive to the

presence of turbulent thermal diffusivity (e.g., Fig. 1c).

Because this second term is positive (since a0 . 0), the

effect of increasing j is to increase sSm.

The effect is shown schematically in Fig. 2a, arrow 1.

For this illustration, we have assumed that sV is small

enough that ~f
2 � sVs

r
(or equivalently, jVx/f j � 1),

so that the stability boundary is a straight line on the

sS–sr plane. In the absence of turbulence, the stability

boundary passes through the origin. The lowest-order

effect of turbulence is to induce a positive y intercept.

This shows that the effect of turbulent thermal diffu-

sion is to damp interleaving modes near the stability

boundary, reducing the range of isohaline slopes for

which interleaving can grow. This result is a general-

ization of that shown explicitly in Fig. 1 for the special

case of Meddy Sharon. The effect of turbulence on the

stability boundary is highly sensitive to the double-

diffusive Scd and is amplified in the present results

because we take Scd � 1.

This tendency for ambient turbulence to oppose

double-diffusive interleaving is consistent with the re-

sults of Zhurbas and Oh (2001). Discarding the two

higher-order terms, (91) can be solved to estimate the

marginal value jmar above which instability is quenched

for a given sS:

j
mar

5
Scd

4RiM

s
S

s
r

1 � g

R
r

� 1
1 1

 !2
R

r
� 1

R
r

� g
. (92)

This may be compared with the corresponding Eq. (12)

of Zhurbas and Oh (2001), where sr was set to zero. If we

assume j � 1 in the Zhurbas and Oh result and take the

limit sr / 0 in (92), then the results agree. While serv-

ing to illustrate the relationship between the present

results and those of Zhurbas and Oh (2001), (92) is of

limited practical use because the right-hand side is typ-

ically not �1 as was assumed.

We now go beyond previous studies by looking at the

effects of the other two turbulence parameters, Prt and d,

which quantify the effects of momentum and salt diffu-

sion (respectively) relative to thermal diffusion. To as-

sess the role of Prt, we differentiate the O(j3/2) term of

(91) to obtain

›s
Sm

›Prt 5�
a

0

2Scd
j3/2. (93)

Since a0 . 0, the right-hand side is negative and the

effect of increasing Prt in weak turbulence is therefore to

expand the region of instability [Fig. 2a, arrow 2; also

Fig. 1d].

Note that to increase Prt with j fixed is to increase the

turbulent viscosity, so this is an example of a mode de-

stabilized by diffusive effects similar to the McIntyre mode

(section 3a). The dynamic is more complicated: modes on

the stability boundary are maintained by a modified geo-

strophic balance involving double-diffusive fluxes as well

as the Coriolis and gravitational forces. The action of

turbulent diffusion is the same, though; by diffusing mo-

mentum faster than buoyancy, it upsets the equilibrium

and allows the mode to grow. Later we will see that tur-

bulence also has important effects on the fastest-growing

mode, including destabilization by turbulent viscosity. As

FIG. 2. (a) Schematic showing the lowest-order effects on the

stability boundary due to the imposition of weak turbulent thermal

diffusivity (arrow 1) and an increase in the turbulent Prandtl

number (arrow 2). Shading indicates instability. (b) Differential

diffusion (reduction of d below unity) increases the (negative)

slope of the stability boundary.
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with j, the effect of Prt on the stability boundary is am-

plified when Scd is small and when RiM is large.

Next, we examine the effect of the diffusivity ratio d

on the stability boundary in the weak turbulence limit:

›s
Sm

›d
5

R
r

� 1

1 � g

g

1 � g
s

r
j. (94)

Recall that differential diffusion usually involves a re-

duction in d from unity. Since the derivative has a posi-

tive factor multiplying sr, the O(j) effect of a reduction

in d is to increase the negative slope of the stability

boundary, as shown schematically on Fig. 2b. Recall that

s is assumed to be positive, so when sS . 0, the in-

terleaving slope is consistent with generation by salt

sheets. The effect of differential diffusion is then to

stabilize interleaving near the stability boundary. Con-

versely, if sS , 0, then the interleaving slope is consistent

with differential diffusion, and modes near the stability

boundary are correspondingly destabilized.

An indirect effect of turbulence occurs via the cross-

front shear Vx. In the presence of turbulence (and only

then!), nonzero cross-front shear alters the stability bound-

ary. At lowest order in j, the effect depends on the sign

of sV. Cross-front shear acts to enlarge the regime of

instability if sV has a sign opposite to sr. Because the

product sVs
r
/~f

2
is equal to Vx/f, instability is enhanced

if Vx/f , 0, that is, if the cross-front shear acts to reduce

the absolute (relative plus planetary) vertical vorticity.

Conversely, the regime of instability is restricted if Vx

is such as to increase absolute vorticity. This result is

reminiscent of the stabilization of columnar vortices

by increases in absolute vorticity (e.g., Smyth and

McWilliams 1998).

c. Effects of strong turbulence

Another interesting case is that of interleaving driven

primarily by turbulence, accessed via the limit j / ‘.

To begin with, we will assume d 5 1 and j is � 1. In this

case,

s
Sm

5 j
2

Prt1/2

R
r

� 1

1 � g
( ~f

2
1 s

V
s
r
)1/2 � s

r

Prt 1 1

2Prt1/2


 �
. (95)

For the graphical description (Fig. 3), we again assume

that ~f
2 � sVs

r
, so that sSm is a linear function of sr with

negative slope. Its x intercept (shown by a circle) is given

by sSm 5 0 and s
r

5 s
r
, where

s
r
[

2Prt1/2

Prt 1 1
( ~f

2
1 s

V
s

r
)1/2. (96)

The region of instability is the half plane above this line.

As j / ‘, the line rotates clockwise about its x intercept

until it becomes vertical (arrow 1 in Fig. 3a). Instability

exists only to the right of the line, or when

s
r
. s

r
. (97)

This condition describes the McIntyre (1970) instability,

since (97) is equivalent to (77) (note that ~f
2

1 sVs
r

5

s2
rRiM). In section 6c, we will see an example of an ob-

served front where the McIntyre instability may be im-

portant. Conversely, the effect of salt sheets, expressed as

finite j, is to rotate the line counterclockwise away from

the vertical. The McIntyre (1970) instability is therefore

enhanced by salt sheets when its tilt is consistent with that

of salt sheet–driven interleaving (s0 . 0 0 sS . 0).

The effect of increasing Prt is to reduce s
r
, so that the

region of instability expands (arrow 2 in Fig. 3a). Be-

cause of the factor Prt1/2 in the denominator of (95),

increasing Prt above unity also slows the rate at which

the line approaches the vertical as j / ‘. When sV is not

small, (96) and (97) remain true, but the ‘‘line’’ we have

referred to acquires a nonzero curvature. This compli-

cates the graphical interpretation but does not alter the

essential results.

Suppose now that the ambient turbulence exhibits dif-

ferential diffusion with d , 1. In this case, ›F0/›sSjsS5sSm
,

0 [recall (86, 87) and the accompanying discussion], so

that sSm now represents a maximum isohaline slope be-

low which the mean state is unstable. That maximum

slope is given by

FIG. 3. (a) Schematic for the ‘‘strong turbulence’’ limit, showing

the tilting of the stability boundary as j / ‘ (arrow 1) and the

expansion of the unstable region as the turbulent Prandtl number is

increased above unity (arrow 2). (b) Differential diffusion tilts the

stability boundary to the right (arrow 1). Tilting is increased when

Prt . 1 (arrow 2). Circles indicate the critical isopycnal slope s
r
.
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1 s
V

s
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)1/2

R
r

� 1/d

R
r
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� s
r
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5. (98)

The maximum isohaline slope is now independent of

j, but it depends crucially on d, especially when the latter

is close to unity. We will consider the limit of weak

differential diffusion, defined as d / 12. In this case,

s
Sm

5� 2

1 � d

R
r

� 1

Prt1/2 ( ~f
2

1 s
V

s
r
)1/2 �s

r

Prt 1 1

2Prt1/2


 �
. (99)

Note the similarity to (95). In this case, sSm is a linear

function of sr with positive slope, and instability is found

for values below this line (Fig. 3b). The x intercept is the

same as in the previous case: s
r

5 s
r
. Weak differential

diffusion (d , 1) modifies the McIntyre instability, such

that the stability boundary rotates clockwise from the

vertical. Instability is then favored [i.e. the condition

(97) is relaxed] when sS , 0; that is, the slopes are con-

sistent with interleaving due to differential diffusion.

The rotation of the stability boundary away from the

vertical due to differential diffusion is enhanced when

Prt . 1 because of the factor Prt1/2 in the denominator of

(99) (arrow 2 in Fig. 3b). Increasing Prt also reduces s
r
,

as in the d 5 1 case (Fig. 3a in arrow 2). Conversely, in

the regime of interleaving due to salt sheets sS . 0,

modes near the stability boundary are stabilized by

differential diffusion.

Recall that the cross-front velocity affects the stability

boundary only in the presence of turbulence. As in the

weak turbulence limit, the regime of instability in the

presence of strong turbulence is expanded (contracted)

when Vx/f , 0 (.0).

d. Effects of molecular diffusion

The theory for interleaving driven by the molecular

diffusion was explored by Holyer (1983). In the small

angle limit C2 / 1, the molecular diffusivities n, kT, and

kS appear simply as constants added to the corresponding

turbulent diffusivities At, KT
t , and KS

t . The effects on the

critical isohaline slope are therefore identical to those of

turbulence with constant diffusivity as described earlier.

Most importantly, weak molecular diffusivity reduces the

region of instability by diffusing temperature anomalies,

as does weak turbulence. Turbulence is more likely to

play a significant role in interleaving—first, because its

diffusivities are generally stronger, and second, because

its Prandtl number is higher, so that significant momen-

tum can be diffused without diffusing away the thermal

anomalies that drive the instability.

e. Summary

Both the weak and strong turbulence regimes reveal

the following effects of turbulence on thermohaline in-

terleaving:

d Adding turbulent diffusivity j reduces the regime of

instability, except when baroclinicity is strong enough

to support the McIntyre (1970) mechanism.
d Increasing Prt expands the region of instability. This

leads to the counterintuitive conclusion that an increase

in eddy viscosity destabilizes interleaving modes, as long

as it is not accompanied by an increase in thermal dif-

fusivity. The explanation appears to lie in the ability of

different diffusivities to upset balances (e.g., thermal

wind) that otherwise restrain growth.
d Differential diffusion acts in opposition to salt sheets,

driving interleaving with opposite slope. It therefore

expands (contracts) the regime of instability where

ssS , 0 (.0).

The first two of these effects are evident in the illustra-

tive examples discussed in section 4.

This section has focused on modes close to stability

boundaries. Such modes typically grow too slowly to be

important and are quickly overtaken by the fastest-

growing mode. Nevertheless, changes in the stability

boundary are often reflected in changes in the fastest-

growing mode. In a stratified shear layer, for example,

increasing stratification both dampens the fastest-growing

mode and contracts the range of wavenumbers over

which instability is possible (Hazel 1972). Since analyt-

ical results for the fastest-growing mode are not avail-

able, we have used changes in the stability boundary as

a first indication of its behavior. In the following section,

we will examine the fastest-growing mode directly via

numerical solutions for specific cases, and we will see

several examples in which the relationships suggested in

the present section are in fact valid.

6. Effects of turbulence on the fastest-growing
mode: Comparison with observations from two
oceanic fronts

Here we test the ability of the theory described earlier

to predict interleaving across observed fronts. As input,

the theory requires values for the environmental pa-

rameters f, Bz, Rr, sS, and sr as well as the parameters

appearing in the mixing models. The front separating

Meddy Sharon from the surrounding ocean was surveyed

in detail (Armi et al. 1989), and the needed parameter

values have been summarized conveniently by May and

Kelley (2002). Those values are listed in the second col-

umn of Table 1. The Faroe Front was measured in five
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transects reported by Hallock (1985). Hallock published

sections of temperature and density for two individual

transects as well as the average of all five, and the needed

environmental parameters can therefore be estimated

(columns 3–5 of Table 1). These differ from the Meddy

Sharon case in that baroclinicity is more pronounced; the

isopycnal slope is nearly as steep as the isohaline slope.

Not surprisingly, the averaged section yields relatively

gentle slopes, whereas the individual transects exhibit

steeper slopes.

Measurable interleaving parameters that the theory

can predict include the following:

d the vertical scale of interleaving 2p/m,
d the amplitude ratio r 5 maxzjb9Tj/maxzjb9Sj, and
d the slope s.

The vertical scale and the amplitude ratio are easily

extracted from vertical profiles of temperature and sa-

linity. We note that the predicted vertical scale 2p/m

may be a lower bound if subharmonic instabilities are

present. Such modes are evident in simulations of in-

terleaving driven by diffusive convection (Simeonov and

Stern 2008); their role in fingering-driven interleaving is

not yet established. In the Faroe Front case, the ampli-

tude ratio was inferred from estimates of cross-front

heat and salt fluxes given in section 3d of Hallock (1985).

Observational estimation of s is more challenging and

has only been done for the Meddy Sharon case. In-

terleaving growth rates have not yet been measured, but

we can say that a valid theory should predict an e-folding

time 1/s that is not large compared to the time scale

on which the front evolves—a few weeks, perhaps. Thus,

an interleaving mode with growth rate 1027 s21, or

(116 days)21, would certainly be disrupted by changes in

the mean state before attaining large amplitude, whereas

a growth rate of 1026 s21, or (12 days)21, might be ex-

pected to result in a measurable interleaving signal.

For these examples, we choose uniform values for the

double-diffusive and turbulent diffusivity parameters;

that is, the derivatives of the diffusivities appearing in

(34) are set to zero. Values of KS
d, Scd, and g are obtained

as in section 2b(2). We do not use the turbulence pa-

rameterization described in section 2b(3); instead, the

turbulence parameters KT
t and Prt are varied indepen-

dently while d is fixed at unity.

a. Effects of KT
t , Prt: The Meddy Sharon case

We look first at the Meddy Sharon parameter set

(column 2 of Table 1, KS
d 5 2.5 3 1025 m2 s21, Scd 5

0.060, and g 5 0.59). For this case only, we set n 5 kT 5

kS 5 0, as the instability is too weak to withstand even

molecular mixing. We examine a sequence of cases in

which the turbulent diffusivity KT
t is increased continuously

from zero (Fig. 4). The effect of increasing KT
t from zero

is a monotonic decrease in growth rate (Fig. 4a), con-

firming the stabilizing tendency of ambient turbulence

predicted in section 5b. Increasing KT
t also increases the

vertical scale (Fig. 4b).

The turbulent Prandtl number clearly has a major

effect on these results. For Prt 5 1 (Fig. 4a, dotted), in-

stability is quenched for submolecular values of KT
t .

Increasing Prt to 20 (solid), we find that interleaving is

possible for KT
t as large as 1.5 3 1026 m2 s21, a small but

not uncommon value (Gregg 1998). Thus, the fastest-

growing mode is destabilized by increasing turbulent

viscosity, as was found previously for modes near the

stability boundary (section 5b). There now exists a sub-

stantial range of KT
t in which growth is possible, and the

vertical scale is considerably closer to the observed

value, 25 6 5 m, than it is in the absence of turbulence.

The amplitude ratio r is of particular interest because,

for baroclinic interleaving in the absence of turbulence,

the theoretical value is an order of magnitude larger

than the observed value (Smyth 2007). This discrepancy

is greater still in the present calculations. In the limit of

weak turbulence (Fig. 4c, small values of KT
t ) r ’ 190,

whereas the Meddy Sharon observations give r ’ 2 [the

discrepancy with Smyth (2007) is due to our use of the

lower value of Scd]. With the inclusion of turbulence,

however, the predicted amplitude ratio decreases dra-

matically. At KT
t 5 1026 m2 s21, a value characteristic of

weak ocean turbulence, the predicted value of r has

decreased to 5, a dramatic improvement. Here s agrees

well with the observational estimate regardless of the

presence of turbulence (Fig. 4d). These results suggest

that inclusion of the effects of ambient turbulence, with

the high Prandtl number accounted for, may add signif-

icantly to the realism of the classical (e.g., Stern 1967)

model of interleaving.

b. Effects of the front width: The Meddy Sharon case

Even with Prt 5 20, a level of turbulent diffusivity

sufficient to yield a realistic vertical scale yields a growth

rate that is too small to account plausibly for observa-

tions. For example, KT
t 5 1026 m2 s21 gives 2p/m ;

15 m, which is reasonable, but s ; 1028 s21; that is, the

e-folding time for growth is several years. This is clearly

too slow to account for the growth of intrusions on

Meddy Sharon. Likewise, increasing KT
t to yield a re-

alistic value of r causes the growth rate to drop to im-

plausible levels.

Suppose, however, that the lateral temperature and

salinity gradients were actually sharper than the ob-

served values, as would have been true early in the life

of the Meddy when interleaving first began to grow.

Would it then have been possible for the present linear
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instability to create interleaving layers with the observed

scale and a reasonable growth rate? To explore this

possibility, we compute the fastest-growing mode for

a sequence of cases in which the cross-front gradients of

temperature and salinity (and therefore density) were

increased by a factor F. For this experiment, the turbu-

lent Prandtl number was set to 20 and the diffusivity was

set to the common value 1025 m2 s21 (Gregg 1998). The

molecular viscosity and diffusivities were set to their

usual values.

With F 5 1 there is no instability (Fig. 5a), as we would

expect based on the previous subsection. Only a 20%

increase in gradients is needed, however, to produce

a nonzero growth rate. With the sharpening factor F 5

1.7, the growth rate reaches 1026 s21, a reasonable value

to account for growth on the evolutionary time scale

of a Meddy. The predicted vertical scale is now 14 m

(Fig. 5b), a dramatic improvement over the nonturbulent

case, though still smaller than the observational estimate

25 6 5 m. The remaining discrepancy could be partly

explained by the tendency of F to decrease as inter-

leaving grows and diffuses the horizontal gradients. As F

is decreased below 1.7, the growth rate decreases but the

vertical scale increases into the observed range. A re-

lated possibility is that the interleaving layers observed

on Meddy Sharon had undergone a subharmonic in-

stability, as suggested by Ruddick and Hebert’s (1988)

observation of a secondary spectral peak with vertical

scale near 12 m. In that case the present linear theory

would account very well for the observed vertical scale.

With F 5 1.7, r 5 1.6, and s 5 8 3 1023, both of which are

within the observational range. We conclude that, in-

sofar as a 70% decrease in mean gradients over the

lifetime of interleaving layers is plausible, the hypothesis

that mean gradients associated with observed in-

terleaving layers underestimate the gradients that drove

the instability is consistent with observations.

c. Effects of KT
t and Prt: The Faroe Front case

We turn next to the Faroe Front observations of

Hallock (1985). This front is distinguished from the

Meddy Sharon front by a relatively large value of Rr,

hence weaker double-diffusive processes, and by an

isopycnal slope nearly as steep as the isohaline slope,

hence a strong influence from baroclinicity. Note that

the ratio sr/sS is approximately equal in all transects

(Table 1). This observation is consistent with the hy-

pothesis explored in the previous subsection, namely,

that the vertical property gradients were constant while

horizontal gradients changed together in response to

FIG. 4. (a) Growth rate, (b) vertical scale, (c) amplitude ratio, and (d) slope for the fastest-

growing mode of thermohaline interleaving as a function of the diffusivity and the Prandtl

number characteristic of ambient turbulence. Other parameter values are from observations of

the lower flank of Meddy Sharon. Vertical lines on (a) indicate the molecular thermal diffu-

sivity and 1026 m2 s21, a value characteristic of weak ocean turbulence (e.g., Peters et al. 1988).
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changes in the width of the front resulting from cross-

front mixing and large-scale strain. For this analysis, we

choose crossing 2, the case in which the isopycnal and

isohaline slopes were steepest. Double-diffusive mixing

parameters have the values KS
d 5 1.07 3 1025 m2 s21,

Scd 5 0.034, and g 5 0.55. As with the Meddy

Sharon case, we assume d 5 1 and vary KT
t and Prt

independently.

When Prt is set to unity, the predicted growth rate

drops to zero for even submolecular values of KT
t (Fig. 6a,

dotted curve). With Prt 5 20 (solid curve), the result

is dramatically different. The growth rate increases with

increasing KT
t , reaching a maximum at KT

t 5 1026 m2 s21,

and then declining slightly. This appears to be a manifes-

tation of the McIntyre (1970) instability (cf. section 3b).

The geostrophic Richardson number ~f
2
/s2

r is about 3 while

the critical Richardson number for Prt 5 20 is 5.5, so the

McIntyre condition for instability is satisfied provided

that the isotach slope sV is less than 0.043. Quantitative

correspondence with the McIntyre instability is demon-

strated by comparison with the dashed curves in Fig. 6,

which show the predictions of (80), (79), and (78). The

vertical scale increases in proportion to Kt1/2

T as predicted.

The interleaving slope is insensitive to KT
t as in the case of

Meddy Sharon and as predicted in the theory. Corre-

spondence with the theory is excellent except at low

values of KT
t , where turbulence is not the dominant

mechanism, and at high values, where the expansion pa-

rameter k2 is not �1 as assumed.

As in the Meddy Sharon case, the amplitude ratio r

takes extreme values when turbulence is weak but de-

creases to values consistent with observations at higher

KT
t . To match the observed range of vertical scale

would require KT
t to lie in the range 4.6 3 1025 2 8 3

1024 m2 s21. These are very reasonable values for an

energetic frontal zone. For this range of KT
t , we predict

r 5 2.8, a value within error of observations and in

dramatic contrast with the nonturbulent value 800.

For this comparison, we have chosen Hallock’s (1985)

crossing 2, the case in which the frontal gradients were

steepest. For this case, instability is predicted even in the

presence of strong ambient turbulence, and there is no

need to invoke magnified slopes as in the Meddy Sharon

case. Had we chosen crossing 5 or the five-transect av-

erage, instability would only have been predicted for

much smaller values of KT
t . We could have achieved the

same result as for crossing 2 by setting the magnification

factor F to 3.0 or 6.7, respectively.

We conclude that the McIntyre mode as described in

section 3b accounts very well for the interleaving ob-

served on the Faroe Front by Hallock (1985).

d. Energetics of the thermohaline and McIntyre
modes

Here we look at interleaving modes from the previous

observational examples in light of the energy budget de-

veloped in section 2d. In weak turbulence, the modes

found on Meddy Sharon exhibit energetics typical of

FIG. 5. As in Fig. 4, but as a function of the factor by which isosurface slopes are increased.

Other parameter values are from observations of the lower flank of Meddy Sharon.
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classical thermohaline interleaving (Fig. 7, left side).

Kinetic energy growth (Fig. 7a) is driven by a strong

buoyancy flux that is counterbalanced by almost equally

strong viscous dissipation [these contributions are shown

by plusses and circles, respectively, and are defined in

(46), (48), and (67)]. Shear production is small (though

the larger terms are so closely balanced that a small

change in shear production could have a significant ef-

fect.) The source of the buoyancy flux that drives the

motion is potential energy stored in buoyancy fluctua-

tions (Fig. 7b). This buoyancy variance is generated en-

tirely by salt sheets (asterisks). A small portion of the

resulting potential energy is transferred to kinetic energy

(plusses). At higher turbulence levels, dissipation (cir-

cles) also becomes significant, depleting the buoyancy

variance more rapidly than does the transfer to kinetic

energy for KT
t . 1.5 3 1028 m2 s21. As KT

t exceeds

1026 m2 s21, all terms vanish as the mode is stabilized.

We turn next to the energy budgets for the Faroe

Front case discussed in section 6c (Fig. 8). A striking

difference from the previous case is that both the

buoyancy flux term in the kinetic energy equation and

the advection term in the buoyancy variance equation

(plusses in Figs. 8a,b) are positive. This is because the

interleaving slopes lie within the baroclinic wedge and

the modes therefore have negative potential energy. As

in sloping (or ordinary) convection, gravity feeds both

the potential and kinetic energy perturbations.

The energetics are simplest in the limit of strong tur-

bulence (right-hand side of Fig. 8), where the buoyant

inputs of both kinetic and potential energy are nearly

balanced by turbulent dissipation (circles). The McIntyre

mode is therefore energetically similar to sloping con-

vection or baroclinic interleaving. There is also a weak

transfer of kinetic energy from the interleaving motions

to the mean flow (asterisks on Fig. 8a).

Looking leftward into regimes of weaker turbulence,

we see that salt sheets begin to make a contribution to

the buoyancy variance. Even in the near-absence of

turbulence, though, that contribution is less than one-

third of the gravitational component.

e. Effects of d

Differential diffusion appears to have a damping ef-

fect on the interleaving structures examined here. For

Meddy Sharon, assuming KT
t 5 1026 m2 s21 and Prt 5

20, the growth rate at d 5 0.7 is reduced by 25% from the

growth rate at d 5 1. In each case, the effect is to damp

the fastest-growing mode, contrary to the expansion

of the stability boundary predicted in section 5. This re-

sult is not unexpected: differential diffusion acts oppo-

sitely to salt fingering, in that it transports thermal

FIG. 6. As in Fig. 4, but as a function of the diffusivity and the Prandtl number characteristic

of ambient turbulence. Other parameter values are from observations of the Faroe Front.

Dashed curves are parameter values predicted by the McIntyre (1970) theory.

APRIL 2010 S M Y T H A N D R U D D I C K 705

Unauthenticated | Downloaded 01/28/23 04:23 AM UTC



buoyancy more effectively than saline buoyancy. Acting

alone, differential diffusion promotes interleaving with

slope opposite to that due to salt fingering (sections 2d,

5). We are therefore not surprised to find that in-

terleaving driven mainly by salt fingering is weakened by

differential diffusion.

In the case of the Faroe Front, the effect of differential

diffusion is slight. Assuming KT
t 5 1025 m2 s21 and

Prt 5 20, the growth rate at d 5 0.7 is reduced by 3%

from the growth rate at d 5 1. We conclude that dif-

ferential diffusion does not play a role in driving in-

terleaving in these particular regions of parameter space,

though it may well be important elsewhere (Hebert 1999;

Merryfield 2002).

f. Effects of fluctuations in A and
KT

t : Turbulence-driven interleaving

We return now to the Meddy Sharon parameter set

and investigate properties of the fastest-growing in-

stability with turbulence parameters related as in section

2b(3). We begin with a ‘‘control’’ calculation (small dots

in Fig. 9), in which turbulent diffusivities are spatially

uniform as before. Once again, the instability is

quenched when the turbulent thermal diffusivity is just

under 2 3 1026 m2 s21 (the background value kb 5

1026 m2 s21 has been subtracted for graphical clarity).

Next, we allow the turbulent diffusivities to vary in

response to the perturbations [though the salt sheet

diffusivities remain uniform; see Walsh and Ruddick

(1995) for an analysis of fluctuations in Rr]. As shown by

the large bullets in Fig. 9, the fluctuations make very

little difference in the limit of weak turbulence, but even

less turbulence is required to quench the instability than

in the case of uniform diffusivities. The growth rate

drops to zero at KT
t 5 1.07 3 1026 m2 s21 in contrast

to KT
t 5 1.5 3 1026 m2 s21 in the case of uniform dif-

fusivities. The effects of increasing turbulence on other

mode parameters are similar to those seen previously:

the vertical scale increases rapidly, the amplitude ratio

decreases, and the tilt angle remains approximately

constant.

When KT
t exceeds 1.8 3 1026 m2 s21, an unexpected

result is evident. A new mode appears whose properties

are distinctly different from the interleaving seen in

weaker turbulence. In particular, its growth rate is an

order of magnitude greater. Evidently this mode depends

on the fluctuations in turbulent diffusivity, as it does not

appear when those fluctuations are suppressed (small

bullets on Fig. 9). Unlike other modes that depend on

diffusivity fluctuations (section 3a), the new mode does

not exhibit UV catastrophe; it has a well-defined verti-

cal scale, in this case about 5 m. Its amplitude ratio is

FIG. 7. Budgets for the (a) perturbation kinetic energy and (b) buoyancy variance normalized

to give partial growth rates, plotted vs turbulent thermal diffusivities. Parameter values are for

Meddy Sharon with Prt 5 20, corresponding to the thick curves in Fig. 4. Terms are as indicated

in the legend and defined in section 2d.
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generally �1, indicating that buoyancy fluctuations are

almost entirely due to temperature. At KT
t 5 1.5 3

1026 m2 s21, the salinity amplitude passes through zero.

The intrusion slope s is negative. This mode therefore

cannot draw energy from salt stratification or baro-

clinicity. For KT
t . 3 3 1025 m2 s21 (not shown), the

intrusion slope becomes much steeper than the back-

ground isosurfaces, and the amplitude ratio decreases to

FIG. 8. As in Fig. 7, but for the Faroe Front.

FIG. 9. As in Fig. 4, but as a function of the turbulent thermal diffusivity. Small (large)

symbols indicate calculations where fluctuations in KT
t and At due to interleaving were sup-

pressed (retained). The background diffusivity is subtracted for graphical clarity.
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the limiting value Rr. To learn more about the growth of

this mode, we next examine the kinetic energy budget.

Figure 10 shows the kinetic energy budget for the case

of fluctuating turbulent diffusivities (large symbols in

Fig. 9). For KT
t , 1.07 3 1026 m2 s21, we have ther-

mohaline interleaving modified by weak turbulence.

The motion is driven mainly by buoyancy (plusses) and

opposed by the effective viscosity due to double diffu-

sion and turbulence (circles). The new mode driven by

turbulent diffusivity fluctuations is evident in the range

KT
t . 1.08 3 1026 m2 s21. Again, the motion is driven by

buoyancy and opposed by viscosity. Fluctuations in

turbulent viscosity due to perturbations in along-front

velocity (stars) and buoyancy (squares) add a significant

retarding effect.

While the new mode is driven by buoyancy fluctua-

tions just like thermohaline interleaving, the origin of

those buoyancy fluctuations is very different. In the

thermohaline regime (Fig. 11, KT
t , 1.07 3 1026 m2 s21),

the buoyancy variance production is driven by the salt

sheet term, just as in the weak turbulence limit of Fig. 7;

in the turbulent regime (KT
t 5 1.08 3 1026 m2 s21), that

term is negative. Instead, buoyancy variance is created

by flux convergences due to varying turbulent diffusiv-

ities, as described by (65). Convergences are due to both

along-front velocity perturbations (B5a, stars) and buoy-

ancy perturbations (B5b, squares). The former are domi-

nant for KT
t . 4 3 1026 m2/s. Besides, being dissipated

(circles), the resulting buoyancy variance drives the strong

buoyancy flux whose accelerating effect on the intrusions

is evident in Fig. 10.

At this stage we know enough about the physics of

the new mode of instability seen in Fig. 9 to suggest

a mechanism for its growth. Figure 12a is an end-on view

of the mean along-front current, with lines indicating the

tilt of the isopycnals across the front. Suppose that this

mean state is now perturbed by cross-front interleav-

ing motions tilted opposite to the isopycnals (Fig. 12b).

The Coriolis effect will turn these motions to the right

(we assume the Northern Hemisphere for definiteness),

generating the along-front velocity perturbation shown

in Fig. 12c. The latter perturbation alternately increases

and decreases the thermal wind shear, generating fluc-

tuations in the Richardson number via (28) and hence

in the turbulent diffusivity (Fig. 12d). That diffusivity

works on the mean buoyancy profile to create a fluctuat-

ing downward buoyancy flux (Fig. 12e) whose conver-

gences and divergences generate buoyancy fluctuations

(Fig. 12f), which in turn alternately rise and sink under

the action of gravity. Because the interleaving slope is

FIG. 10. The perturbation kinetic energy budget normalized to give partial growth rates,

plotted vs turbulent thermal diffusivity. Terms are as indicated in the legend and defined in

section 2d. The background diffusivity is subtracted for graphical clarity.
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negative, this buoyancy forcing reinforces the along-

intrusion velocity perturbation that we postulated orig-

inally, creating a positive feedback loop and hence

exponential growth. Note that, if s were positive (like the

isopycnal slope), then the buoyancy fluctuations shown in

(Fig. 12f) would act against the interleaving motions and

cause the mode to decay.

A striking characteristic of this instability is its tilt,

which is opposite to that of both thermohaline and baro-

clinic interleaving. This follows from the fact that the

buoyancy perturbations are driven primarily by fluctu-

ations in the turbulent flux and are as a result opposite

in sign to those driven by the advection of background

buoyancy along the intrusions. In interleaving driven by

salt sheets and/or baroclinicity, the reverse is true. The

mechanism is independent of the double-diffusive pro-

cess and could therefore occur in any sufficiently tur-

bulent front regardless of the value of Rr. The essential

prerequisite for the instability is that the decrease in

turbulent diffusivity with increasing Richardson number

be sufficiently rapid.

The mechanistic picture sketched in Fig. 12 is analo-

gous to Stern’s (1967) theory of thermohaline in-

terleaving, in that it retains only those processes most

essential for the growth of the mode while neglecting

other processes that shape the mode’s properties. For

example, like the Stern model, this description neglects

momentum transport between interleaving layers and

therefore does not explain the preferred length scale

evident in Fig. 9. A more complete analysis of this and

other modes of turbulence-driven interleaving will be

pursued separately; for our present purposes, this

mechanism plausibly explains the striking tendency of

the new mode to tilt opposite to both the isohaline and

isopycnal surfaces.

The properties of the turbulence-driven mode are

sensitive to the choice of turbulence parameterization.

The dynamics admits many different positive feedbacks

like that shown in Fig. 12, and plausible changes in pa-

rameter values can cause a different mode to become

dominant. The instability described here is intended as

an example of the rich and largely unexplored class of

interleaving mechanisms that result from inhomogeneous

turbulence on a baroclinic front.

7. Conclusions

We have explored stationary, normal mode instabilities

of a broad, baroclinic front where both double-diffusive

and turbulent fluxes are important. We have looked at

numerical solutions for particular cases that are relevant

to oceanic interleaving regimes, and have also developed

a simplified theory that allows us to extend the results

continuously across parameter space. Our main conclu-

sions are as follows:

FIG. 11. As in Fig. 10, but for the buoyancy variance budget.

APRIL 2010 S M Y T H A N D R U D D I C K 709

Unauthenticated | Downloaded 01/28/23 04:23 AM UTC



d When ambient turbulence has a Prandtl number

greater than unity, turbulent momentum fluxes can

compensate for the reduced Schmidt number of salt

fingering. In this case, ambient turbulence determines

the vertical scale of interleaving.
d An increased turbulent Prandtl number not only in-

duces a preference for the observed large vertical

scales, but also increases the growth rate by upsetting

the thermal wind like balance of forces that otherwise

preserves the equilibrium.
d When turbulence is not accounted for, the thermal–

saline amplitude ratio r is 1–2 orders of magnitude

larger than observed. Inclusion of turbulence with

a high Prandtl number brings r into the observed

range.
d In the interleaving structures observed on Meddy

Sharon, the property gradients are insufficient to pre-

dict interleaving growth, even when improved turbu-

lence models are used. We suggest that this is due to

the effectiveness of interleaving in erasing those prop-

erty gradients. As is often true with instabilities, the

observation of a finite-amplitude disturbance indicates

that the adjustment back to a stable state is underway

or even complete, so that measurements of mean

gradients underestimate the gradients that drove the

instability originally.

d The Faroe Front is an example of a baroclinic front

where interleaving is likely due to the McIntyre (1970)

instability.
d We have identified a new mode of interleaving in-

stability driven by the sensitivity of turbulence to

fluctuations in the Richardson number. This mode can

in theory grow on any baroclinic front, provided tur-

bulence is strong enough, and ‘‘strong enough’’ means

only, in this case, that KT
t 5 1.8 3 1026 m2 s21, a value

smaller than the typical value for the thermocline.

The mechanism involves the reverse diffusion process

described in section 3a, acting in concert with the

Coriolis acceleration. It exhibits a well-defined verti-

cal scale and a tilt angle opposite to (and stronger

than) that predicted for interleaving driven by salt

sheets or baroclinicity. Further theoretical study is

needed to establish measureable characteristics of this

mode that could facilitate observational verification.

The layering instabilities of Phillips (1972) and

Posmentier (1977) have been studied extensively, but

their interaction with other mechanisms in a frontal

environment creates a rich physics we have barely be-

gun to explore. The mechanism described in Fig. 12 is

only one of many possible new instabilities.

Shcherbina et al. (2009) have drawn a useful distinc-

tion between ‘‘active’’ and ‘‘passive’’ mechanisms for

interleaving. In the former, the interleaving motions

organize the local property gradients so as to amplify

their own growth; in the latter, interleaving results from

passive advection by motions due to unrelated causes,

such as mesoscale turbulence. Active mechanisms have

included both flavors of double diffusion as well as dif-

ferential diffusion and inertial instability. To this list we

now add the new class of interleaving driven by turbu-

lence and suggest that it may explain some observations

that do not fit previous active mechanisms and would

otherwise be assumed to be passive.

Our focus here has been entirely on Rr . 1, that is,

fingering-favorable stratification. The turbulence-driven

mode described in section 6f may be even more impor-

tant in diffusive convection 0 , Rr , 1 or differential

diffusion (Rr , 0) regimes, where its interleaving slope

can match those of the interleaving mechanisms already

known. The resulting positive feedbacks could lead to

powerful new modes of interleaving instability.

Because of the crucial role ambient turbulence plays,

future theoretical studies of interleaving should repre-

sent ambient turbulence using models at least as realistic

as those used here. Instabilities driven directly by tur-

bulence are likely to be represented best by one-

dimensional, second-order closure models (e.g., Burchard

and Petersen 1999; Canuto et al. 2008). Extension to the

FIG. 12. Proposed mechanism for the low Ri mode shown in

Fig. 9. (a) Mean along-front (thermal wind) current. Lines indicate

the mean isopycnal slope. (b) Postulated along-intrusion velocity

perturbation. (c) Along-front velocity perturbation driven by the

Coriolis acceleration acting on (b). (d) Fluctuating turbulent dif-

fusivity caused by perturbations to the thermal wind shear [(a) 1

(c)]. (e) Downward buoyancy flux driven by fluctuating turbulent

diffusivity (d) acting on the mean vertical buoyancy gradient.

(f) Buoyancy perturbations driven by the convergences and di-

vergences of the flux (e), and consequent vertical motions.

(g) Along-intrusion motions consistent with the vertical motions

(f) and a negative intrusion slope. These amplify the postulated

perturbation shown in (b), creating a positive feedback loop.
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finite-amplitude regime, as in Walsh and Ruddick (1998)

and Mueller et al. (2007), is also essential. This theoretical

progress must be accompanied by new observational

work on baroclinic fronts. Observational strategies should

allow for estimation of small-scale diffusivities as well as

mean vertical and cross-front gradients of temperature,

salinity and alongfront velocity, vertical scales, tilt angles,

and amplitudes (including velocity).
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