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ABSTRACT

Weather derivatives are considered a promising agricultural risk management tool. Station-based meteo-

rological indices typically provide the data underlying these instruments. However, the main shortcoming of

these weather derivatives is an imperfect correlation between the weather index and the yield of the insured

crop, called basis risk. This paper considers three available remotely sensed vegetation health (VH) indices,

namely, the vegetation condition index (VCI), the temperature condition index (TCI), and the vegetation

health index (VHI), as indices for weather derivatives in aGerman case study.We investigated the correlation

and period of highest correlation with winter wheat yield.Moreover, we analyzedwhether the use of remotely

sensedVH indices for weather derivatives can reduce basis risk and thus improve the performance of weather

derivatives. The two commonly used meteorological indices, precipitation and temperature sums, were

employed as benchmarks. Quantile regression and index value simulation were used for the design and

pricing of the weather derivatives. The analysis for the selected farms and corresponding counties in north-

eastern Germany revealed that, on average, the VHI resulted in the highest correlation with winter wheat

yield, and VHI-based weather derivatives were also superior in terms of the hedging effectiveness. The total

periods of the highest correlations ranged from the beginning of April to the end of July. VHI- andVCI-based

weather derivatives led to statistically significant reductions of basis risk, compared to the benchmarks. Our

results indicate that the VHI-based weather derivatives can be useful alternatives to meteorological indices,

especially in regions with sparser weather station networks.

1. Introduction

Weather is a main determinant of agricultural pro-

duction, yet it cannot be controlled. To reduce weather-

related production risks, farmers can utilize different

insurance products. Indemnity-based crop insurance,

such as multiperil crop insurance (MPCI), is commonly

used to insure farmers against damages caused by

drought, hail, or frost, for example. To do so, the in-

demnity payments depend on the extent of the actual

damage. However, indemnity-based insurance faces

various challenges like high administrative costs due to a

costly loss assessment to check farmers’ claims, as well as

adverse selection and moral hazard problems (Turvey

2001; Leblois and Quirion 2013). To overcome these

issues, weather index–based insurance, formally known

as weather derivatives, has been identified as a promis-

ing risk management tool in agriculture (e.g., Turvey

2001; Vedenov and Barnett 2004; Woodard and Garcia

2008b; Glauber 2013; Leblois and Quirion 2013). In

contrast to traditional crop insurance, the indemnity

payments of weather derivatives depend on the level of

an objectively measurable weather index. If the realized

value of the index falls below or exceeds a certain

threshold value, an indemnity is paid.

Common underlying indices for weather derivatives

are based on in situ weather measurements. The litera-

ture mainly refers to precipitation or temperature sums

over certain accumulation periods (e.g., Leblois and

Quirion 2013; Turvey 2001; Vedenov and Barnett 2004).

Other meteorological indices refer to water stress in-

dices that are based on measurements of evapotranspi-

ration and drought indices that determine air and soil

dryness based on temperature and precipitation data.

For an extensive review of these different indices, see

Leblois and Quirion (2013). So far, most applications

under practical conditions have used precipitation sum

indices (World Bank 2011). However, insurances based

on in situ weather measurements are especially limited

in developing countries due to the scarcity of weatherCorresponding author: Johannes Möllmann, jmoellm@gwdg.de
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station networks and the unavailability of long-term

continuous time series of weather data (Meroni et al.

2013). In particular, the performance of precipitation

index–based weather derivatives is affected by the dis-

tance to the next weather station due to the spatial

variability of precipitation. With an increasing distance

to the next weather station, the performance of pre-

cipitation index–based weather derivatives usually de-

creases (cf. e.g., Heimfarth and Musshoff 2011; Norton

et al. 2012; Gommes and Göbel 2013).
The most important criterion for choosing a reason-

able underlying index is a high correlation with the

returns of the insured crop, which is often approximated

by the crop yield. However, a basis risk remains, which is

defined as an imperfect correlation between the chosen

weather index and the actual crop yield on the farm.

Thus, the payoffs from the weather derivative do not

perfectly match the yield shortfall experienced by the

insured farmer (Barnett 2004; Jensen et al. 2016;Woodard

andGarcia 2008a). The basis risk can be broken down into

two components. First, there is usually a difference be-

tween the weather events at the farm site and the ref-

erence weather station, which is known as geographical

basis risk (Leblois et al. 2014; Norton et al. 2012;

Woodard and Garcia 2008a). Second, crop yield is not

only determined by the weather index, but also by other

weather and biological variables, collectively referred to

as design basis risk (Leblois et al. 2014).

Besides in situ measured weather data, remotely

sensed data can be used to derive underlying indices for

weather derivatives. A major advantage of remotely

sensed data is that the accuracy does not depend on the

density and distribution of weather stations. The data

are provided nearly in real time and are globally avail-

able (Quiring and Ganesh 2010). The use of remotely

sensed data for insurance purposes mainly focuses on

the use of the normalized difference vegetation index

(NDVI) with mixed results. The NDVI determines the

density and vigor of green biomass and is thus an in-

dicator for the health of the vegetation. Leblois and

Quirion (2013) state that the NDVI is highly adapted to

biomass assessment, while showing an inconsistent re-

lationship to crop yield. Thus, the NDVI is primarily used

as an index for forage insurance (Miranda and Farrin 2012;

Leblois and Quirion 2013; Lang 2013). On the contrary,

in a case study in Zimbabwe, Makaudze and Miranda

(2010) designed a weather derivative based on an NDVI

time series as well asmaize and cotton yields aggregated at

the county level. They found that anNDVI-based weather

derivative exhibits less basis risk for farmers than the

commonly used precipitation-based weather derivatives.

Turvey and McLaurin (2012) tested the applicability of

the NDVI as an underlying of weather derivatives.

Their findings revealed that the NDVI is not a suitable

index without site-specific calibrations.

To account for site-specific differences, Kogan

(1990) defined the so-called vegetation health (VH)

indices, including the vegetation condition index

(VCI), the temperature condition index (TCI), and

the vegetation health index (VHI). In recent years, VH

indices have been used in the agricultural context for

yield prediction and drought monitoring. The results of

various case studies have proven that the VCI and TCI

exhibit high correlations with crop yield for differ-

ent climatic conditions in countries like Kazakhstan

(Bokusheva et al. 2016), Poland (Dabrowska-Zielinska

et al. 2002), the midwestern United States (Kogan et al.

2012; Salazar et al. 2007), Russia (Kogan et al. 2016),

Argentina (Seiler et al. 1998), and South Africa

(Unganai and Kogan 1998). Since the VHI is a com-

posite index combining the VCI and the TCI, the cor-

relation between the VHI and crop yield has been found

to be even higher (Kogan et al. 2016). In a Russian case

study, Kogan et al. (2016) found that compared to the

other VH indices, the correlation between the VHI and

cereal yields was the strongest, with correlation co-

efficients as high as 0.80 explaining 64% of the cereal

yield variance. The use of VH indices for weather de-

rivatives potentially addresses both components of ba-

sis risk because the VH indices are provided in a

gridded format and directly describe the health of the

vegetation, unlike meteorological indices (Quiring and

Ganesh 2010).

Thus far, surprisingly little effort has been made to

examine the applicability of the VCI, the TCI, and

particularly the VHI as indices for weather derivatives.

To the best of the authors’ knowledge, the only study

considering the VCI and the TCI in this context is a

recent study by Bokusheva et al. (2016). They calculated

the VCI and TCI for five counties in Kazakhstan using

data with a spatial resolution of 16 km 3 16km. Based

on these county-level indices, they designed weather

derivatives for each county and the individual farms

located in these counties.

However, there have been no studies considering the

VHI for weather derivatives or comparing VH index–

based weather derivatives with weather derivatives based

on the commonly used precipitation and temperature in-

dices. Additionally, the potential of VH indices for ex-

plaining winter wheat yield variations in a study area with

farm parcels surrounded by adjacent forests and lakes,

diversified crop rotations, and temperate climate con-

ditions such as prevalent in northeastern Germany has

not been investigated to date. Moreover, differences

between the farm level and the county level with regard

to the correlations between VH indices and winter
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wheat yield, as well as the hedging effectiveness of

weather derivatives based on VH indices, have not yet

been analyzed. To fill these gaps, the objective of this

paper is twofold. First, we investigate the correlation of

the VH indices with winter wheat yield and determine

the period of highest correlation in northeasternGermany.

Second, we compareVH index–basedwithmeteorological

index–based weather derivatives as benchmarks in terms

of hedging effectiveness and basis risk. To do so, weather

derivatives based on all three VH indices as well as the

temperature and precipitation indices were designed

both at the farm and county levels using farm-level and

county-level yield data, respectively.

We usedNDVI and brightness temperature (BT) data

with a spatial resolution of 4 km3 4 km to calculate the

VCI, TCI, and VHI. To determine the relationship be-

tween crop yield and the respective index, we applied

quantile regression (QR). It has been proven that QR

outperforms ordinary least squares in terms of the rep-

resentation of the relationship between yield and index,

especially in the lower tails of the distribution (Conradt

et al. 2015). NortheasternGermany is well suited for this

study. On account of the prevailing weather conditions,

drought- and heat-related weather events occur fre-

quently, jeopardizing the yields of crops mainly grown

on sandy soils (Zebisch et al. 2005). Consequently, rev-

enues from arable farming as the major source of farm

income in northeasternGermany fluctuate substantially.

Moreover, a dense weather station network enables us

to design suitable meteorological benchmarks.

The paper is structured as follows. In section 2, we

provide a description of the study area, the data used,

and the applied methodology. Section 3 presents and

discusses the results. The conclusions can be found in

section 4.

2. Materials and methods

a. Study area and data

The study area was located in the northeastern German

federal states of Brandenburg, Mecklenburg-Western

Pomerania, Saxony, and Saxony-Anhalt (Fig. 1). In the

study region, winter wheat is planted around the calen-

dar weeks 40–44 (October) and harvested around the

calendar weeks 33–35 (August). The northeastern part

of Germany is characterized by low precipitation and

poor soil quality, in comparison to other parts of central

Europe. The prevalent soil types are sandy soils, but

clayey soils are also present. The mean annual precipi-

tation measured by the weather stations assigned to the

sample farms ranged from 499 to 638mm within the

study period 1995–2015. Across all stations in the study

area, the mean annual precipitation was 563mm, which is

considerably less than the average annual precipitation of

789mm in Germany (German National Meteorological

Service 2015a). The annual average temperature in

northeastern Germany is between 88 and 98C (German

National Meteorological Service 2015a). In general,

northeastern Germany is suited for winter wheat culti-

vation. However, the low soil water-holding capacity of

the sandy soils and the continental climate cause in-

terannual winter wheat yield variations due to heat and

drought events (Lüttger and Feike 2018). Additionally,

eastern Germany exhibits a high future vulnerability

to a further decrease in summer precipitation, an in-

crease in temperatures, and, consequently, increased

evaporation due to climate change (Zebisch et al. 2005;

Lüttger and Feike 2018). Despite these conditions,

farmers in Germany have rarely used weather de-

rivatives. The low demand for weather derivatives is

mainly due to the prevailing problem of basis risk (Smith

and Watts 2012).

Our analysis was based on a yield dataset from 11

farms and eight corresponding counties. The average

farm size in this sample was around 1000ha. We used a

winter wheat yield time series from 1995 to 2015. Farm-

level yield data were provided by an insurance office.

FIG. 1. Location of study farms and corresponding weather sta-

tions. Farms are indicated as numbered points and weather stations

as black points (source: https://maps.google.com/).
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Moreover, winter wheat yields for each county were

provided by the statistical offices of the specific county.

The winter wheat yield data are summarized in Table 1.

According to Gallagher (1986), we corrected the yield

data for technological progress using linear regressions.

Daily precipitation and temperature data from 1995 to

2015were provided by theGermanNationalMeteorological

Service (2015b). We selected nearby stations with com-

plete precipitation and temperature time series for each

farm (Fig. 1). Because of the dense network of weather

stations in Germany, the average distance between the

farms and theweather stations was around 12km, ranging

from only 4 to 29km. Averages of the data from three

weather stations per county were used to calculate pre-

cipitation indices for the corresponding counties. The

data from two weather stations per county were aver-

aged to calculate the county-level temperature indices.

In contrast to precipitation, which can be spatially het-

erogeneous, temperature varies less across geographic

areas (Norton et al. 2012).

For this study, we used the Advanced Very High

Resolution Radiometer (AVHRR) satellite dataset pro-

vided by the National Oceanic and Atmospheric Admin-

istration (NOAA/STAR 1981). Statistically smoothed

NDVI and BT 7-day composites with a resolution of

4 km 3 4 km for the period of 1995–2015 were taken

from this dataset. By means of pre- and postlaunch

calibration coefficients, the data were converted to re-

flectance. Since the NDVI and BT data for the year 2004

are incomplete, we skipped this year in our analysis of

VH, yield, and meteorological data.

The NDVI is a widely used vegetation index for

yield assessment, drought, and vegetation monitor-

ing (Kogan 1990; Mkhabela et al. 2005; Ren et al.

2008; Wan et al. 2004). The NDVI is calculated from

the visible (VIS) and near-infrared (NIR) spectral bands

observed by theAVHRRsensors according to the formula

NDVI5 (NIR2VIS)/ (VIS1NIR). Healthy vegetation

is characterized by little reflection of VIS and strong

reflection of NIR. The green leaf pigment chlorophyll

absorbs VIS for use in photosynthesis, while other leaf

structures reflect NIR. If vegetation is under stress (e.g.,

water stress), the NDVI becomes smaller due to a higher

reflectance of VIS and a lower reflectance of NIR. Thus,

higher NDVI values correspond to healthier vegetation.

The BT is a measurement of the land and vegetation

surface temperature. Because of reduced transpiration,

the temperature of the vegetation surface under water

stress is higher than for unstressed, healthy vegetation

(Kogan 1995; Kogan et al. 2016).

For the design of the weather derivatives, we employed

three so-called VH indices: 1) VCI, 2) TCI, and 3) VHI.

The VCI is derived from the normalization of NDVI

values based on themaximumandminimumNDVI values

for a specific region and is expressed as (Kogan et al.

2016; Unganai and Kogan 1998; Kogan 1990)

VCI
w
5 1003

NDVI
w
2NDVI

min

NDVI
max

2NDVI
min

, (1)

where NDVIw is the smoothed 7-day NDVI for week w,

and NDVImax and NDVImin are the absolute maximum

and minimum values calculated for each pixel over

the entire observation period 1995–2015. The VCI was

proposed as a means to separate the spatial variability of

the NDVI into the effect of weather and the effect of

geographical resources like soil type, vegetation type,

geographic region, and climate zone (Kogan 1990). The

principle of the VCI is based on the assumption that the

vegetation reaches a maximum biomass with optimal

weather conditions because such weather leads to an

efficient use of geographic resources. In contrast, if the

weather conditions are unfavorable due to water stress,

the plant’s ability to benefit from the geographic re-

sources is reduced. The calculation of the VCI includes

the minimum and maximum values over the whole

TABLE 1. Summary statistics of winter wheat yields of study farms and counties from 1995 to 2015 in dt (ha)21.

County Mean Min Max Std dev Farma Mean Min Max Std dev

a 79.31 65.60 92.50 6.72 1 66.13 50.33 83.04 9.75

b 62.33 39.30 80.90 8.19 2 68.07 42.70 86.94 11.53

c 60.57 39.10 77.60 10.01 3 64.79 40.24 87.46 12.75

d 72.07 43.40 92.20 11.52 4 63.91 37.00 88.00 13.21

e 57.99 40.80 73.00 8.76 5 35.11 20.50 56.91 9.27

6 65.09 38.00 79.00 11.72

7 58.83 40.00 73.00 10.55

f 75.86 61.20 90.00 7.65 8 73.22 60.00 87.82 8.91

9 77.38 61.00 100.00 9.58

g 69.84 50.80 87.50 7.94 10 72.70 48.40 93.50 9.65

h 56.31 35.10 78.40 10.60 11 52.61 29.44 76.37 12.33

a The farm number equals the number in Fig. 1.
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observation period in order to relate weekly measure-

ments to the worst and the best possible weather condi-

tions. In doing so, it is possible to quantify the potential of

the specific region given by its geographic resources. The

VCI has been found to better capture the precipitation

dynamics than theNDVI and still provides a description of

land cover as well as spatial and temporal vegetation

change. Producing values between 0 and 100, the VCI in-

dicates how far vegetation development is from the mini-

mum and maximum of the geographical potential in the

region of interest (Kogan 1995; Unganai and Kogan 1998).

The formula for the TCI is similar to the VCI, except

for a change to address the fact that a high BT reflects

unfavorable conditions due to high vegetation surface

temperatures, while a low BT indicates more favorable

conditions. Consequently, the TCI is calculated as fol-

lows (Kogan et al. 2016; Unganai and Kogan 1998):

TCI
w
5 100 3

BT
max

2BT
w

BT
max

2BT
min

, (2)

where BTw is the smoothed 7-day BT for week w, and

BTmax and BTmin are the absolute maximum and mini-

mum values calculated for each pixel over the entire

observation period. The values of the TCI also range

from 0 to 100. Corresponding to the VCI, values close to

0 indicate thermal vegetation stress, and values close to

100 indicate that the maximum benefit has been derived

from the given geographical resources of the specific

region (Kogan et al. 2016).

Combining both indices results in the weighted addi-

tive composite calledVHI, which is expressed as (Kogan

et al. 2016; Unganai and Kogan 1998)

VHI
w
5 a3VCI

w
1 (12 a)3TCI

w
, (3)

where a is the weighting coefficient quantifying the

contribution of VCI and TCI to the VHI. According to

Kogan et al. (2016), equal weights of VCI and TCI can

be assumed (a5 0:5) because the relative contribution

of moisture and temperature to vegetation health is

currently not known. The weekly values of the VH in-

dices for each farmwere derived by calculating the average

values for each index over all relevant pixels. For the

calculation of the farm-level indices, the values of four

pixels covering the cultivated areas were averaged.

County-level indices were obtained by averaging the

values of all pixels within the county borders. To only

consider pixels covering arable land,we used theGLC2000

land-cover map with a spatial resolution of 1km 3 1km

(Bartholomé and Belward 2005) and Google Earth im-

agery to mask out bare soil, lakes, and forest. However,

this procedure was limited because of the lower resolu-

tion (4km 3 4km) of the remotely sensed data.

b. Design and pricing of weather derivatives

We designed weather derivatives that were hypotheti-

cally offered to farmers over the counter. The meteoro-

logical weather derivatives were based on accumulation

indices, to which the literature often refers (Dalhaus and

Finger 2016; Turvey 2001; Vedenov and Barnett 2004).

The daily precipitation and temperature data were

converted to weekly data to get the same temporal

resolution as for the VH data. For the purpose of cre-

ating benchmarks, we designed the precipitation and

temperature indices so that the indexRt,i corresponds to

the precipitation sum, and the index Tt,i corresponds to

the temperature sum for year t and farm or county i

(Jewson and Brix 2005):

R
t,i
5 �

x

w51

Rt,i
w , (4)

T
t,i
5 �

x

w51

Tt,i
w , (5)

where Rt,i
w indicates the precipitation sum and Tt,i

w the

temperature sum for week w, in year t and for farm or

county i, while x indicates the length of the accumulation

period in weeks.

This approach is suitable for accumulated meteoro-

logical indices. Since the VH indices were derived by a

normalization technique resulting in values between

0 and 100, we used a slightly different approach by ap-

plying averages instead of sums. Thus, the indices VCIt,i,

TCIt,i, and VHIt,i correspond to average values of VCI,

TCI, and VHI (Jewson and Brix 2005):

VCI
t,i
5

1

x
�
x

w51

VCIt,iw , (6)

TCI
t,i
5

1

x
�
x

w51

TCIt,iw , (7)

VHI
t,i
5

1

x
�
x

w51

VHIt,iw , (8)

where VCIt,iw , TCI
t,i
w , and VHIt,iw indicate the respective

VH index for week w, in year t, and for farm or county i,

while x indicates the length of the accumulation period

in weeks. The accumulation periods were determined

for each farm and county individually by identifying the

period with the highest Spearman correlation coefficient

between the respective index and winter wheat yield.

Summary statistics of the indices can be found in Table A1

of the appendix.

The concept of weather derivatives builds on the as-

sumption that the relationship between crop yield and
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an index is represented by a function g(�), which can be

described by the following model:

y
i
5 g (I

t,i
)1 «

i
, (9)

where yi is the detrended winter wheat yield of farm or

county i, and It,i is one of the indices described in Eqs.

(4)–(8). The hedging effectiveness of weather de-

rivatives depends on how accurate the index It,i corre-

lates with the winter wheat yield. Since there are other

factors not captured by meteorological and VH indices,

there is a portion of the variance remaining that cannot

be explained by the underlying index. These factors are

captured by the error term «i. The error term «i, thus,

refers to the two dimensions of basis risk: the design and

the geographical basis risk.

The weather derivatives were designed as European1

put options in the case of the precipitation and the

VH index–based weather derivatives and as European

call options in the case of the temperature indices. The

payout of the put (call) option was triggered if the in-

dex fell below (exceeded) the strike-level Si threshold.

Therefore, the payout of the put option was defined as

PO
put
t,i 5max (Si 2 It,i, 0)3Vi, and the payout of the call

option was defined as POcall
t,i 5max (It,i 2 Si, 0)3Vi. The

term Vi denotes the tick size, which is the payment per

unit change in the difference between It,i and Si. Fol-

lowing Dalhaus and Finger (2016), Si and Vi were cal-

culated by rearranging Eq. (9) to

y
i
5 c

i
1b

i
I
i
1 «

i
, (10)

where yi is the yield, ci is a constant, biIi is the product

of a slope coefficient and the index, and «i is an error

term. The tick size Vi was determined by the estimation

of the slope coefficient bi, such that one unit change in

the index Ii triggered bi units change in the yield. In

contrast to the widespread method of defining the strike

level as the average of the historical index distribution,

we defined the strike level using the average winter

wheat yield, following Conradt et al. (2015). The ad-

vantage of this approach is that the calculation of the

strike level is based on the insured variable. The strike

level was calculated by inserting the average yield yi and

the estimates of bi and ci into Eq. (10) and solving for Ii:

Ii 5 (yi 2 ci)/bi (Dalhaus and Finger 2016).

For the estimation of bi and ci in Eq. (10), we applied

QR (Conradt et al. 2015; Dalhaus and Finger 2016). QR

was developed by Koenker and Bassett (1978) and al-

lows estimation of the independent variable’s effect on a

specified quantile of the dependent variable. For in-

surance purposes, this enables the indemnification of

low yield events and, thus, leads to better downside risk-

reduction properties of the insurance contract. That is

why the application of QR was more suitable in this

context than standard ordinary least squares. Another

advantage of QR is that it is robust to outliers and is not

affected by nonnormally distributed data. The applica-

tion of QR leads to the following estimation problem:

b̂ (t)5 argmin
b2R

"
t3 �

yi$Iibi

jy
i
2 I

i
3b

i
j1 (12 t)

3 �
yi,Iibi

jy
i
2 I

i
3b

i
j
#
. (11)

QR minimizes the sum of weighted absolute deviations,

where the weights are denoted by t 2 (0, 1). As we

were focused on the lower tail of the yield distribution,

we chose t5 0:3 according to Conradt et al. (2015).

In our analysis, we considered the farmer-paid pre-

mium Yi to be actuarially fair.2 For the calculation of

the fair premium, we applied the index value simula-

tion. Therefore, we approximated theoretical distri-

butions for the index variables and winter wheat yields.

The best fitting distributions were determined by chi-

square, Kolmogorov–Smirnov, and Anderson–Darling

tests. We only tested for distributions that do not allow

negative values.We derived 10 000 values for the indices

by randomly drawing values from the estimated distri-

butions. In each simulation run, the payouts PO
put
t,i and

POcall
t,i were calculated. The fair premium was equal to

the average payout of the weather derivative3 (Musshoff

et al. 2011).

1 European options differ from their American counterparts by

the fact that European options can only be exercised on the expi-

ration date. American options can be exercised at any time be-

tween purchase and expiration date (Little et al. 2015). In the

context of weather derivatives, European options are used (cf.

Vedenov and Barnett 2004; Woodard and Garcia 2008b; Leblois

and Quirion 2013; Dalhaus and Finger 2016).

2 By offering insurance policies to farmers, costs incur that are

related to delivery and management of the insurance contracts.

These so-called administration and operating costs amount to

about 35% of the fair premium for traditional yield crop insurance

(Wang et al. 1998). Because of the absence of damage assessment

and asymmetric information problems, weather derivatives are

assumed to be less costly. Hence, administration and operating

costs of 10%–20% of the fair premium are commonly added to the

price of weather derivatives (e.g., Buchholz and Musshoff 2014).

Since our analysis solely focuses on the risk-reduction properties of

weather derivatives based on VH indices in comparison to a

benchmark, we do not consider administration and operating costs.

In contrast to a demand analysis, the results of our study do not

depend on these costs.
3 The discount rate was assumed to be 0%.
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c. Risk measures and statistical test procedure

The revenue pt,i per hectare winter wheat for each

farm and county i and year t was given by the following

equation:

p
t,i
5 p3 y

t,i
1 z

i
3PO

t,i
2 z

i
3Y

i
, (12)

where zi $ 0 is the optimal number of insurance con-

tracts chosen by the farmer to maximize the hedging

effectiveness of the insurance contract, and p is the

winter wheat price (Breustedt et al. 2008; Miranda

1991). The winter wheat price was assumed to be EUR

160 per ton. To evaluate the hedging effectiveness of

each contract, we compared winter wheat revenues with

and without insurance contracts. The latter were based

on the indices presented in Eqs. (4)–(8). More specifi-

cally, we applied the expected shortfall (ES), a downside

risk measure (e.g., Bokusheva et al. 2016; Conradt et al.

2015). The ES is the average of the losses below a certain

quantile of the loss distribution and satisfies the five

properties of a coherent risk measure (Artzner et al.

1999). The ES was calculated as follows:

ES
a
5

1

12a

ð1
a

q
k
dk , (13)

where a denotes the confidence interval, and qk is the k

loss quantile. In accordance with the choice of t, we set

k5 0:3. We assigned the same weights of 1/(12 a) to all

loss quantiles, and all nontail quantiles exhibited a

weight of zero (Acerbi 2002; Dowd et al. 2008). The

hedging effectiveness was, thus, defined as the change of

the expected shortfall of the winter wheat revenue by

the use of an insurance contract. A higher hedging ef-

fectiveness corresponded to a lower basis risk due to a

reduction in the part of the winter wheat yield variability

that could not be explained by the considered index.

To test for significant differences between the hedging

effectiveness of the calculated indices presented in Eqs.

(4)–(8), we applied nonparametric Wilcoxon rank sum

tests. The Wilcoxon rank sum test examines the null

hypothesis that ranks of two groups are not significantly

different. In contrast to the t test, data are not required

to be normally distributed.

3. Results and discussion

To investigate in which period the VH indices revealed

the highest correlations with winter wheat yield, we

first studied the dynamics of the correlation coefficients

for each calendar week’s VCI, TCI, and VHI starting

from 1995 until 2015. Figure 2 shows the results for

two example farms and the corresponding counties.

Winter wheat yield correlated strongly with the VH

indices around the months May and June, in which the

growing phases of stem elongation, ear emergence, and

ripeness occur. This period can be seen as the most

critical in winter wheat production in the region under

investigation (Farooq et al. 2012).

The average start and end weeks of the periods with

the highest correlations between the considered indices

and winter wheat yield for all farms and counties are

shown in Fig. 3. Summary statistics for these periods can

be found in Table A2. The estimated periods ranged

from calendar week 14 (beginning of April) to calendar

week 30 (end of July). On average, the length of the

periods ranged from 7 to 10 weeks at the farm level and

from 6 to 11 weeks at the county level.

With respect to the average correlation coefficients,

we found the highest correlation between the VHI

and winter wheat yield, compared to the other indices4

(Fig. 4). This is in line with the findings of Kogan et al.

(2016), who also found the VHI to show the highest

correlation with the yield of cereals in a Russian case

study. On average, the correlation coefficient at the farm

level was 0.56, whereas at the county level, the correla-

tion coefficient was even higher (0.62 on average). Ex-

cept for one farm, all correlation coefficients between

the VHI and winter wheat yield were at least signifi-

cant at the 5% level. On average, the second highest

correlation coefficient at the farm level (0.49) was

achieved for the relationship between the VCI and

winter wheat yield. At the county level, the second

highest correlation coefficient (0.59 on average) was

found for the relationship between the temperature in-

dex and winter wheat yield. The lowest average corre-

lation coefficients were estimated between the TCI and

winter wheat yield, as well as the precipitation index

(PCPN) and winter wheat yield (Fig. 4). Except for the

VHI and the temperature index (TEMP), our estimates

show only marginal differences between the average

correlation coefficients at the farm and the county level

(Fig. 4).

Figure 5 reports the hedging effectiveness of the

weather derivatives based on the VH indices and the

benchmark indices precipitation and temperature.

The farm-level results showed an average hedging ef-

fectiveness of 16% for VHI-based, 12% for VCI-based,

and 9% for TCI-based weather derivatives. Among the

4 Because of the high correlations with winter wheat yield, the

VHI can be used as a predictor for crop yield (Kogan et al. 2016).

To assess themedianwinter wheat yield, theQRapproach could be

utilized to estimate the slope bi and intercept ci of Eq. (10).

Therefore, t needs to be set to 0.5. In doing so, the VHI could also

be used for winter wheat yield assessment in the study region.
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VH index–based weather derivatives, the VHI resulted in

the highest average hedging effectiveness, which was,

according to the Wilcoxon rank sum test, significantly

higher, compared to the TCI-based weather derivatives

(Table 2). At the county level, the average hedging ef-

fectiveness of the VHI-, VCI-, and TCI-based weather

derivatives amounted to 19%, 14%, and 10%, respec-

tively (Fig. 5). Among the VH index–based weather de-

rivatives, the VHI resulted in the highest average

hedging effectiveness, which was significantly higher,

compared to both VCI- and TCI-based weather deriva-

tives at the county level (Table 2).

By calculating the absolute difference in the average

hedging effectiveness between the weather derivatives,

the reduction of basis risk can be quantified. Accord-

ing to the Wilcoxon rank sum test, VHI- and VCI-based

weather derivatives achieved a significant average basis

risk reduction, compared to the precipitation bench-

mark at the farm and the county level. Using the VHI

as an index, the basis risk could be reduced by 7% at

the farm level and 12% at the county level. The use

of VCI-based weather derivatives resulted in a basis

risk reduction of 3% at the farm level and 5% at the

county level. Compared to the temperature bench-

mark, a significant basis risk reduction could only be

observed for VHI-based weather derivatives at the

farm level. This reduction amounted to 6% (Table 2,

Fig. 5).

FIG. 2. Dynamics of the Spearman correlation coefficient between winter wheat yield and the VHI, TCI, and VCI

for farms 1 and 4 and the corresponding counties a and d.
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The absolute differences in the hedging effectiveness

between the farm and county level are marginal, except

for the temperature index–based weather derivatives

(Fig. 5). The results reveal a significantly (p # 0.05)

higher average hedging effectiveness of temperature-

based weather derivatives at the county level. This is in

linewith the findings ofWoodard andGarcia (2008b), who

also found a higher performance of temperature index–

based weather derivatives at higher levels of spatial ag-

gregation. Because of the increase in the average hedging

effectiveness of the temperature benchmark, the basis risk

reduction of the VHI-based weather derivatives that we

observed at the farm level is no longer significant at the

county level (Table 2).

We found considerable variation in the correlation co-

efficients and correspondingly in the hedging effectiveness

among individual farms and counties, as indicated in the

boxplot diagrams (Figs. 4, 5). Correlation coefficients

and the hedging effectiveness for each farm and county

are documented in Tables A3–A6. To analyze these

variations in more detail, we utilized scatterplots (Fig. 6).

We focused on the comparison of weather derivatives

with a significantly different average hedging effec-

tiveness (Table 2).With regard to the benchmarks, the

VHI-based weather derivatives outperformed the pre-

cipitation index–based weather derivatives for 82% of

the study farms and the temperature index–basedweather

derivatives for 73% of the study farms. The VCI-based

weather derivatives outperformed the precipitation index–

based weather derivatives for 63% of the study farms.

At the county level, the VHI- and the VCI-based weather

derivatives outperformed the precipitation index–based

weather derivatives for 88% and 76% of the study

counties, respectively (Fig. 6).

FIG. 3. Timelines showing the average start and end weeks of the periods with the highest

correlation between the considered indices and winter wheat yields.

FIG. 4. Boxplots showing the Spearman correlation coefficients for the considered indices with winter wheat yield at

the (left) farm level and (right) county level; red diamonds report the means.
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We even observed considerable variation in the hedging

effectiveness within a single county. For example, farms

5, 6, and 7 are located in county e. While farm 5 is located

in the northwest, farms 6 and 7 are located in the south of

county e (Fig. 1). We estimated a higher hedging effec-

tiveness of VCI- and VHI-based weather derivatives for

farms 6 and 7, compared to farm 5, and a higher hedging

effectiveness for TCI-based weather derivatives for farm

5, compared to farms 6 and 7. The differences in the

hedging effectiveness among the farms in county f were

considerably lower. This might be related to the locations

of the farms within county f that were more concentrated,

compared to those in county e.

The differences between farms within a single county

and those between farms of different counties suggest

that the representation of vegetation conditions seems

to be related to location-specific factors like differing

soil types or topographies. While the differing soil types

might influence the crops’ response to the different VH

indices, the differing topographies cause issues in allo-

cating the pixels to the cultivated area of each farm.

Northeastern Germany is characterized by farm parcels

with adjacent forests and small lakes. Hence, because of

the spatial resolution of the remotely sensed data, it is

not always possible to completely isolate the area of

each farm that is cultivated with winter wheat. The

NDVI and BT values for some farms might therefore be

influenced by the adjacent forests and lakes as well as

other cultivated crops. This could also explain the rela-

tively low hedging effectiveness of the VH index–based

weather derivatives for some farms, compared to others.

A possible explanation for the variations in the per-

formance of the benchmarks relative to the VHI-based

weather derivatives might be related to the distance

between the weather station and the farm. For example,

the distance between farm 3 and its assigned weather

FIG. 5. Boxplots showing the hedging effectiveness in percent estimated by means of the ES at the (left) farm level

and (right) county level; red diamonds report the means.

TABLE 2. P values of the Wilcoxon rank sum test for the hedging effectiveness of weather derivatives based on different indices.

VCI TCI VHI Precipitation Temperature

Farms

VCI 1.0000 0.1580 0.1396 0.0527 0.5327

TCI 1.0000 0.0278 0.8696 0.3410

VHI 1.0000 0.0115 0.0386

Precipitation 1.0000 0.1228

Temperature 1.0000

Counties

VCI 1.0000 0.5995 0.0157 0.0587 0.1722

TCI 1.0000 0.0157 0.2936 0.1152

VHI 1.0000 0.0087 0.5995

Precipitation 1.0000 0.0117

Temperature 1.0000
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station was 4 km, considerably less than the average

distance of 12 km. Hence, for farm 3, the precipitation

index–based weather derivative resulted in a smaller

basis risk (higher hedging effectiveness), compared to

the VHI- and VCI-based weather derivatives (Fig. 6).

This corresponds with the findings in the literature that

the performance of precipitation index–based weather

derivatives strongly depends on the distance to the next

weather station (Heimfarth and Musshoff 2011; Norton

et al. 2012; Gommes and Göbel 2013).

4. Conclusions

Weather derivatives are a possible risk management

tool to hedge against drought-related risks in agriculture.

Nevertheless, the uptake of these insurance products

is still low mainly due to basis risk, which is often seen

as the major shortcoming of traditional weather de-

rivatives (Smith and Watts 2012; Woodard and Garcia

2008a). In this regard, remotely sensed VH indices

could contribute to reducing two dimensions of basis

risk commonly referred to as geographical and design

basis risk.

In our German case study, we investigated the use of

remotely sensed VH indices and their ability to enhance

the performance of weather derivatives. We com-

pared weather derivatives based on the VCI, the TCI,

and their weighted composite, the VHI, with weather

derivatives based on two benchmark indices: the com-

monly used precipitation sumand temperature sum indices.

FIG. 6. Scatterplots showing the relationship between the hedging effectiveness of weather derivatives based on the VH indices and the

meteorological benchmarks at the (left) farm level and (right) county level.
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TABLE A1. Summary statistics of the considered VH indices in percent and the two benchmark indices: the precipitation sum index

in mm and the temperature sum index in 8C.

County Mean Min Max Std dev Farm Mean Min Max Std dev

VCI

a 77.62 65.85 86.53 5.13 1 78.69 68.41 91.25 6.43

b 70.54 60.84 78.44 4.11 2 70.49 58.37 80.63 6.46

c 70.19 63.17 75.16 3.27 3 72.71 63.56 82.01 5.09

d 53.29 43.53 61.55 5.35 4 78.99 65.67 87.13 5.23

e 78.55 66.56 83.77 4.43 5 72.17 45.81 82.87 7.55

6 77.07 70.35 86.72 4.18

7 84.72 77.97 90.02 3.64

f 80.74 74.93 87.51 3.64 8 82.75 67.29 90.30 6.29

9 76.38 68.11 82.14 3.62

g 69.97 57.22 77.72 5.12 10 76.11 58.55 84.35 7.48

h 57.85 45.85 66.15 4.99 11 81.12 65.89 91.90 6.04

TCI

a 26.88 18.31 37.92 4.97 1 18.00 12.82 28.50 3.47

b 20.05 15.50 26.11 2.74 2 28.04 18.70 39.79 5.86

c 19.12 12.91 23.23 3.19 3 20.85 14.75 25.33 3.44

d 23.15 20.09 26.52 1.61 4 11.60 7.40 15.41 2.63

e 18.84 15.06 21.81 2.05 5 16.33 11.39 22.37 2.59

6 19.33 15.00 24.07 2.42

7 26.24 18.68 32.78 4.02

f 25.84 20.35 33.23 3.76 8 25.82 18.93 33.41 4.10

9 25.81 17.76 34.69 4.22

g 20.81 15.60 24.84 2.67 10 10.90 4.65 25.06 4.55

h 20.24 16.25 23.54 2.12 11 18.88 11.55 22.66 2.92

VHI

a 47.39 42.16 50.90 2.28 1 47.98 40.73 53.27 3.00

b 44.59 41.04 47.06 1.69 2 41.98 36.22 46.27 2.98

c 45.20 39.52 48.70 2.34 3 46.61 40.32 52.61 3.10

d 39.59 30.05 50.63 5.69 4 45.92 40.97 48.81 2.23

e 48.99 44.19 51.85 1.92 5 46.78 39.97 50.06 2.36

6 47.59 42.46 51.54 2.24

7 51.69 47.69 53.99 1.79

f 47.43 42.94 50.50 2.11 8 46.94 31.61 51.85 4.86

9 50.86 45.97 56.23 2.68

g 43.59 38.14 47.08 1.98 10 40.84 31.09 47.18 3.14

h 41.24 35.56 45.79 2.32 11 47.66 40.44 52.57 2.80

Precipitation

a 29.03 6.63 55.43 15.54 1 26.69 2.60 63.00 17.51

b 65.44 32.43 148.07 32.04 2 130.79 53.30 239.20 39.90

c 135.38 55.93 209.03 39.62 3 141.55 82.20 216.10 41.46

d 73.29 38.17 120.00 22.50 4 60.69 0.00 124.90 29.92

e 67.82 28.33 147.33 30.69 5 62.76 26.00 167.40 33.35

6 34.13 1.40 74.50 21.73

7 149.48 86.30 336.80 58.30

f 30.55 1.30 65.73 17.69 8 124.52 63.10 271.20 43.85

9 74.79 29.70 116.20 24.65

g 115.23 55.47 249.20 42.49 10 124.79 79.30 269.00 41.00

h 112.87 60.13 226.87 40.50 11 138.87 83.80 246.60 39.19

Temperature

a 15.96 13.99 17.24 0.86 1 15.51 13.56 16.86 0.90

b 14.88 13.25 16.18 0.78 2 15.13 11.47 16.70 1.20

c 16.44 14.18 17.63 0.91 3 16.29 13.86 17.55 0.95

d 14.67 12.90 15.87 0.77 4 14.93 13.26 16.07 0.76

e 17.24 15.12 19.52 1.24 5 15.45 13.86 16.92 0.78

6 17.43 15.30 18.99 0.91

7 17.21 15.26 18.32 0.87

f 15.46 14.03 17.45 0.97 8 15.62 14.21 17.58 0.88

9 15.62 14.21 17.58 0.88

g 16.00 14.15 17.55 0.87 10 16.93 15.11 18.85 0.83

h 15.48 13.59 18.02 1.16 11 13.57 12.11 15.47 0.95
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A correlation analysis between the considered indi-

ces and winter wheat yield revealed the highest av-

erage correlation for the relationship between the

VHI and winter wheat yield. We found the periods of

the highest correlation between the VH indices and

winter wheat yield ranging from the beginning of April

to the end of July. On average, the VHI-based weather

derivatives significantly outperformed both benchmarks

at the farm level and the precipitation benchmark at

the county level in terms of hedging effectiveness.

The VCI-based weather derivatives significantly out-

performed the precipitation benchmarks at the farm

and at the county levels, on average. Since a higher

hedging effectiveness corresponds to a reduced basis

risk, we can conclude that VHI- and VCI-based weather

derivatives can reduce basis risk, compared to the

commonly used meteorological index–based weather

derivatives. However, unlike traditional weather de-

rivatives based on meteorological indices, our results

show that weather derivatives based on VH indices

suffer from an additional source of basis risk, which is

directly related to the spatial resolution of the available

remotely sensed data and could be considered the basis

risk of spatial resolution.

Our analysis revealed that the VHI- and VCI-based

weather derivatives did not outperform the benchmark

indices for every farm and county. We found a high

variation in the hedging effectiveness among farms and

counties and even within a single county. These varia-

tions might be related to the following factors that in-

fluence the performance of the meteorological indices

relative to the VH indices. First, a decreasing distance

to the next weather station increases the performance

of precipitation index–based weather derivatives (cf.

e.g., Norton et al. 2012) relative to the VHI-based weather

derivatives. Second, location-specific factors like topogra-

phy, soil type, and neighboring farm parcels not cultivated

with winter wheat could influence the representation of

the vegetation conditions of winter wheat by the VH in-

dices. Remotely sensed data with a higher spatial resolu-

tion could particularly improve the performance of VH

indices for countries with diversified crop rotations, like

those in the European Union. According to a regulation

within the framework of the Common Agriculture Policy

of the European Union, farmers are required to diversify

crops (European Parliament 2013).

TABLE A2. Summary statistics of the periods (calendar weeks) with the highest correlation between the considered indices and winter

wheat yields.

VCI TCI VHI Precipitation Temperature

Farms/counties Start End Start End Start End Start End Start End

Mean Farms 20 28 17 24 18 28 17 25 19 28

Counties 17 28 18 25 18 27 17 23 20 27

Min Farms 14 26 14 17 14 21 14 17 14 26

Counties 14 26 14 17 17 21 14 17 18 26

Max Farms 27 30 27 30 22 30 22 30 22 29

Counties 19 30 21 30 19 30 22 26 22 29

Std dev Farms 4 2 4 6 3 3 3 5 2 1

Counties 2 2 3 5 1 4 4 4 2 1

TABLE A3. Spearman correlation coefficients between the

considered indices and winter wheat yield at the farm level.

Table uses Wilcoxon rank sum test with the H0 that correlation

equals zero: * p # 0.05, ** p # 0.01, *** p # 0.001.

Farm VCI TCI VHI Precipitation Temperature

1 0.42 0.39 0.48* 0.32 20.43

2 0.37 0.34 0.34 0.44* 20.56*

3 0.64** 0.55* 0.76*** 0.78*** 20.62***

4 0.37 0.69*** 0.65*** 0.39 20.29

5 0.39 0.59** 0.46* 0.41 20.48*

6 0.55* 0.43 0.61*** 0.42 20.56**

7 0.50* 0.32 0.63*** 0.38 20.42

8 0.49* 0.35 0.55* 0.39 20.40

9 0.49* 0.33 0.57** 0.45* 20.33

10 0.60** 0.44* 0.53* 0.27 20.48*

11 0.54 0.17 0.63*** 0.36 20.42

Mean 0.49 0.42 0.56 0.42 20.45

TABLE A4. Spearman correlation coefficients between the con-

sidered indices and winter wheat yield at the county level.

Table uses Wilcoxon rank sum test with the H0 that correlation

equals zero: * p # 0.05, ** p # 0.01, *** p # 0.001.

County VCI TCI VHI Precipitation Temperature

a 0.61*** 0.05 0.63*** 0.33 20.44*

b 0.42 0.52* 0.47* 0.36 20.69**

c 0.59** 0.55** 0.63*** 0.67*** 20.51*

d 0.47* 0.48* 0.58** 0.52* 20.52*

e 0.47 0.61*** 0.54** 0.36 20.66***

f 0.73*** 0.33 0.81*** 0.32 20.50*

g 0.46* 0.40 0.58** 0.44* 20.68***

h 0.44* 0.57** 0.70*** 0.41 20.70***

Mean 0.52 0.44 0.62 0.43 20.59
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A major benefit of remotely sensed VH indices is

that the NDVI and BT data from 1981 to the present

are globally available. In developing countries in par-

ticular, weather station data are often scarce, and the

lack of long-term datasets of specific index variables is

often considered a handicap preventing the provision

of weather derivatives to farmers (Meroni et al. 2013).

Hence, the performance of VH index weather de-

rivatives might be even higher for countries with sparse

networks of weather stations.

This study confirms the potential of weather de-

rivatives based on remotely sensed VH indices, es-

pecially the VHI, to outperform the commonly used

precipitation and temperature sum indices. Along

these lines, additional research is needed to quan-

tify the extent to which the design basis risk and the

geographical basis risk can be reduced by the use

of VH index–based weather derivatives. Moreover,

the performance of remotely sensed index–based

weather derivatives could be further improved. First,

the critical periods for winter wheat yield could be

determined using NDVI or BT data to account for

annual variations in the beginning and end of vege-

tation periods (cf. Rojas et al. 2011). Second, the

availability of remotely sensed data of higher spatial

resolution would be desirable. Third, the applicabil-

ity of alternative indices like the fraction of photo-

synthetically active radiation (FAPAR) for weather

derivatives, as suggested by Meroni et al. (2013),

could be investigated in future studies. Finally, the

use of mixed indices could be considered (cf. Pelka

and Mußhoff 2013). For example, Kogan et al. (2016)

used the VH indices from several weeks to explain

crop yield variations. However, one should keep in

mind that increasing the complexity of the weather

derivative reduces market acceptance (Odening and

Shen 2014).

APPENDIX

Details on Indices, Periods, Correlations, and
Hedging Effectiveness

The appendix contains Tables A1–A6.
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by means of the ES.
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Mean 0.14 0.10 0.19 0.09 0.17
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