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ABSTRACT: The National Oceanic and Atmospheric Administration has developed a very high-resolution streamflow
forecast using National Water Model (NWM) for 2.7 million stream locations in the United States. However, considerable
challenges exist for quantifying uncertainty at ungauged locations and forecast reliability. A data science approach is pre-
sented to address the challenge. The long-range daily streamflow forecasts are analyzed from December 2018 to August
2021 for Alabama and Georgia. The forecast is evaluated at 389 observed USGS stream gauging locations using standard
deterministic metrics. Next, the forecast errors are grouped using watersheds’ biophysical characteristics, including drain-
age area, land use, soil type, and topographic index. The NWM forecasts are more skillful for larger and forested water-
sheds than smaller and urban watersheds. The NWM forecast considerably overestimates the streamflow in the urban
watersheds. The classification and regression tree analysis confirm the dependency of the forecast errors on the biophysical
characteristics. A densely connected neural network model consisting of six layers [deep learning (DL)] is developed using
biophysical characteristics, NWM forecast as inputs, and the forecast errors as outputs. The DL model successfully learns
location invariant transferrable knowledge from the domain trained in the gauged locations and applies the learned model
to estimate forecast errors at the ungauged locations. A temporal and spatial split of the gauged data shows that the
probability of capturing the observations in the forecast range improved significantly in the hybrid NWM-DL model
(82% 6 3%) than in the NWM-only forecast (21% 6 1%). A trade-off between overly constrained NWM forecast and
increased forecast uncertainty range in the DL model is noted.

SIGNIFICANCE STATEMENT: A hybrid biophysical–artificial intelligence (physics–AI) model is developed from
the first principle to estimate streamflow forecast errors at ungauged locations, improving the forecast’s reliability. The
first principle refers to identifying the need for the hybrid physics–AI model, determining physically interpretable and
machine identifiable model inputs, followed by the deep learning (DL) model development and its evaluations, and fi-
nally, a biophysical interpretation of the hybrid model. A very high-resolution National Water Model (NWM) forecast,
developed by the National Oceanic and Atmospheric Administration, serves as the biophysical component of the hy-
brid model. Out of 2.7 million daily forecasts, less than 1% of the forecasts can be verified using the traditional hydro-
logical method of comparing the forecast with the observations, motivating the need for the AI technique to improve
forecast reliability at millions of ungauged locations. An exploratory analysis followed by the classification and regres-
sion tree analysis successfully determines the dependency of the forecast errors on the biophysical attributes, which
along with the NWM forecast, are used for the DL model development. The hybrid model is evaluated in a subtropical
humid climate of Alabama and Georgia in the United States. Long-term streamflow forecasts from zero-day lead to
30-day lead forecasts are archived and analyzed for 979 days (December 2018–August 2021) and 389 USGS gauging
stations. The forecast reliability is assessed as the probability of capturing the observations in its ensemble range. As a
result, the forecast reliability increased from 21% (61%) in the NWM only forecasts to 82% (63%) in the hybrid
physics–AI model.
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1. Introduction

a. Big picture

This study addresses a big-data challenge in near-term hy-
drological forecasting at its “tipping point” for technological
innovation. The National Water Model (NWM), developed
by the National Oceanic and Atmospheric Administration
(NOAA), provides 0–30 days streamflow forecast data for
2.7 million streams across the conterminous United States
(Gochis et al. 2018; Hooper et al. 2017). However, there are
only 10 330 gauging stations where observations are available
(Eberts et al. 2019). That means the traditional hydrological
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method of comparing the forecast with the observation for
uncertainty quantification is not applicable for 99.6% of the
forecasted sites. Further, it is humanly impossible to under-
stand the error structure and calibrate the model performance
across many sites using manual routines. Finally, the forecast
data are only available in real time (for two days only) and
then removed from the system because of high data volume.
Hence, a real-time forecast evaluation and adaptive model
calibration routine capability are required.

A long-term goal of this study is to develop an efficient com-
putational framework (Fig. 1) that provides a set of statistical
and real-time deep learning models for uncertainty quantifica-
tion in large-scale hydrological forecast data and analyses. The
deep learning method can provide scientific breakthroughs in
hydrological forecasting (Shen et al. 2018). Especially when
there is not enough training dataset with labels (observations)
due to the lack of expensive infrastructure to collect data, the
deep learning method can still provide high performance with
transfer learning. It has been widely used in the small-data set-
ting and can transfer knowledge of feature representation
(e.g., knowledge of data) or knowledge of parameters (e.g.,
knowledge of model; Li et al. 2021). In this work, the deep
learning model learns location invariant transferrable knowl-
edge from the domain trained in the gauged sites and applies

the learned model to improve hydrological forecasts at the un-
gauged sites. We hypothesize that the domain invariant prop-
erties can be related to biophysical attributes, for example,
topography, land use, soil types, and initial condition and cli-
mate forcing uncertainty in the forecast (Fig. 2). Hence a sys-
tematic evaluation of deep learning methods for hydrological
forecasting application can bring theoretical advances and
feedback to the hydrological model improvement (Fig. 1).

Processing of high-resolution NWM forecasts demands highly
intensive resources in terms of storage and computation. In addi-
tion to restricted storage, big-data computation for analysis takes
a long time due to slow input/output (I/O) operations. Further-
more, many I/O operations are required to train or validate
datasets for uncertainty quantification using deep learning.
Therefore, if the assessment and uncertainty quantification is
provided as a service proposed here, the conventional hydrologi-
cal applications are not affordable for an unknown number of
service requests since it is very hard to scale out (Dragoni et al.
2017). Furthermore, the conventional server-side applications
are a single executable artifact (i.e., monolith) whose modules
cannot be executed independently. This makes monolithic appli-
cations challenging to use in a container-based cloud computing
system (Dragoni et al. 2017). Here, a new analytics platform sup-
ported by container-based software-defined storage (CB-SDS)

FIG. 1. A hybrid physics–AI model for improving hydrological forecast. Data science workflow and connections
among different components are shown. A two-way workflow is shown here: Process-based climate and hydrological
modeling provide machine identifiable and physically interpretable quantity to the deep learning model, which in turn
provide an improved forecast, and its biophysical interpretation can develop a new scientific hypothesis. Each of these
components is described in detail in the subsequent figures and main text.
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can be helpful. The CB-SDS technology provides data storage
space to end users and end-point applications dynamically and
flexibly using containers while hiding the complexity of storage
resource management (Lee and Kumar 2016). The new analytics
platform will be described in part two of this work.

b. This study

Part one of this work describes a scientific basis and initial
results for a testbed region in the southeastern United States

(Fig. 3). We have downloaded and archived the NWM fore-
cast data for 1000 days from December 2018 to August 2021
(a total of 979 days). The forecast skills are assessed in the
humid subtropical climate at 389 gauged locations in Alabama
and Georgia. The three research objectives are 1) to evaluate
the NWM streamflow and soil moisture forecast; 2) to investi-
gate the relationship between watershed biophysical attrib-
utes and forecast errors; 3) to develop a deep learning model
for uncertainty quantification at ungauged basins.

FIG. 2. A general setup of deep neural network for learning error models at gauged watersheds.

FIG. 3. Study area}Alabama and western Georgia in the United States, USGS gauges, and local watershed bound-
aries. The figure shows the study area overlaid with HUC12 (local watersheds), HUC6 watershed boundaries
(regional watershed), and USGS stream gauging stations (gray dots). Two major river basins, the ACT and ACF, are
also shown.
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Prediction at ungauged basins has been studied in hydro-
logical science (Hrachowitz et al. 2013). The fundamental
concept is to transfer model parameters from a hydrologically
similar basin to the ungauged location, also known as the re-
gionalization approach (Wagener andWheater 2006). The ho-
mogeneity between gauged and ungauged basins is essential
in the regionalization approach. They include homogeneous
climate forcing, geology, landform, land use, and soil texture
(Sivapalan et al. 2003). Singh et al. (2014) used classification
and regression tree (CART) analysis to determine the relation-
ship between watershed characteristics and the performance of
the transfer model. They found that similarity in elevation, cli-
mate, and streamflow characteristics (base flow/runoff) was the
dominant control for the successful parameter transfer across
83 watersheds in the United States.

The application of machine learning (ML) to improve hydro-
logical and climate forecasts have increased. Frame et al. (2021)
have developed a postprocessing tool for NWM forecast using a
long-term short-term memory model, an ML technique. Kratzert
et al. (2019) found improvement in ML model performance with
the catchment attributes as the additional input parameters (in
addition to meteorological inputs). Barnes et al. (2019) have em-
ployed an artificial neural network (ANN) to extract climate
change signals from the model uncertainty and internal climate
variability. Mayer and Barnes (2021) have used the ANN to
identify teleconnection patterns that can potentially improve sub-
seasonal forecasts in the midlatitude regions. This study uses big-
data techniques to 1) understand the forecast error structure and
2) build a deep learning model to quantify uncertainty at unga-
uged watersheds. Thus, we utilize the strengths of both process-
based modeling (NWM) and big-data technology to improve
hydrological forecasting.

2. Data and method

The study involves archiving and preprocessing the NWM
forecasts, preparing explanatory variables representing the

biophysical characteristics, analyzing spatiotemporal char-
acteristics of the forecast errors at gauged locations, relat-
ing the forecast errors to the biophysical attributes, and
finally developing the deep learning model for ungauged
watersheds.

a. Study area

We developed a prototype test bed in Alabama and Georgia
(Fig. 3), representing the humid subtropical climate in the
southeastern United States. Alabama–Georgia has rainfall-
dominated hydrology with wet winter and dry fall seasons with
an annual average rainfall of 1407 mm (PRISM climate data).
Major land-cover types: forest and woodland (47.4%), agricul-
tural vegetation (7.2%), shrub and hay (19.2%), developed
land (8.6%), and open water (4.3%) [source: National Land
Cover Database (NLCD) 2016]. We have overlaid the study
area with a 12-digit Hydrologic Unit Code (HUC12), that is,
local subwatershed boundaries. The test bed consists of 441
active U.S. Geological Survey (USGS) gauging stations and
3592 HUC12 watersheds, that is, 12.2% of all HUC12 are
instrumented.

b. Datasets

Table 1 lists the datasets employed in this study.

1) NWM FORECAST

The NWM provides a high-resolution (1 km) streamflow
forecast at subcontinental scales (Gochis et al. 2013). Compo-
nents of NWM include the Noah land surface model with
multiparameterization (Noah-MP), subsurface and terrain
routing module, and gridded diffusive wave channel and res-
ervoir routing modules. Our earlier work (Duan and Kumar
2020) describes the model components (also see Gochis et al.
2013). Here, we describe the streamflow forecast attributes.

We have evaluated the long-range streamflow forecast
(0–30 days) from December 2018 to August 2021. Each day, a

TABLE 1. List of the datasets.

Dataset Source Remarks

Streamflow and soil moisture forecast NOAA NWM Forecast 979 days (December 2018–August 2021)a

Streamflow observations USGS 454 USGS gaugesb

Soil moisture observations SMAP-L2 9-km resolutionc

Biophysical characteristics
Drainage area USGS StreamStats 389 watershedsd

Land use NWM WRF processing system The NWM domain setup file was
downloaded from NWM shared FTP point.Soil type

Topographic index Elevation data
Distance from coastline Computed in ArcGIS It is the shortest distance from gauges to the

gulf coastline.
a The channel routing file “nwm.tHHz.long_range.channel_rt_M.fLLL.conus.nc” provides streamflow outputs; and land model output file
“nwm.tHHz.long_range.land_M.fLLL.conus.nc” provides soil moisture output. HH refers to the forecast initialization hour: 00, 06, 12, and
18; M refers to the ensemble member (1–4), and LLL refers to the forecast lead hours (0–720). We used the “COMID” attribute to join the
NWM reach ID with the corresponding USGS gauging station and using National Hydrographic Dataset flowlines.
b The 454 USGS gauges are shown in Fig. 3.
c The SMAP soil moisture is L2 half-orbit enhanced 5-cm soil moisture with 9-km resolution, available fromDescartes Lab.
d Quality-controlled watershed delineation where the difference between the StreamStats and USGS drainage area is less than 5%.
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16-member ensemble forecast is initializedwith the observationally
constrained initial condition of streamflow and soil moisture states
and forecasted for the next 30 forecast days using meteorological
forcing from Climate Forecast System, version 2, data (Saha et al.
2014). The NWM daily forecast is available at NOAA NCEP
central operations (https://www.nco.ncep.noaa.gov/pmb/products/
nwm/). However, because of high data volume, the forecast data
are only available in real time (for two days only) and then re-
moved from the NOAA FTP folder. So, we download the NWM
soilmoisture and streamflow forecast daily and archive data for the
research area (;10TBdata).

2) STREAMFLOW AND SOIL MOISTURE OBSERVATIONS

The observed streamflow is obtained from the USGS. Soil
moisture data are Soil Moisture Active Passive (SMAP) L2
half-orbit enhanced 5-cm soil moisture with 9-km resolution
(access provided by the Descartes Lab). It is derived from the
enhanced SMAP L1C_TB_E product (Chan et al. 2018). The
daily soil moisture data are averaged across all available im-
ages in one day.

3) BIOPHYSICAL CHARACTERISTICS

To compute basin-average biophysical attributes, we ob-
tained the watershed boundary shapefile from USGS Stream-
Stats (https://streamstats.usgs.gov/ss/). The watershed boundary
having a drainage area that matches with the USGS drainage
area (bias , 5%) is included in the analysis; 389 watershed
boundaries meet the criteria (out of 454 gauges). Most of the
watersheds along the coastal region were not delineated well.
The gridded land use (NLCD 2016; Homer et al. 2020) and soil
texture (CONUS-SOIL; Miller and White 1998) data are from
the Weather Research and Forecasting processing system and
clipped to the watershed boundaries to obtain the biophysical
characteristics.

c. Hydrograph characteristics

We used “base flow to total flow ratio” and “time to peak”
to evaluate hydrograph characteristics (Fig. 4). The baseflow

component is supplied by subsurface/groundwater drainage,
which is relatively more stable than the stormflow/surface
runoff component driven by rainfall events. We computed
base flow using the soil and water assessment tool baseflow fil-
ter program that uses a recursive digital filter to separate the
base flow from the daily streamflow record (Arnold et al.
1995; Arnold and Allen 1999). The baseflow filter program
comes as a stand-alone program with daily streamflow obser-
vation or forecast as inputs and base flow as outputs; we used
the base flow from the third-pass filter (see Fig. 4) (more de-
tails in supplemental text T1).

The “time to peak” is a critical parameter for flood fore-
casting, and it measures the time (in days) for an e-fold in-
crease in the streamflow after a rainfall event. We used a
method similar to the baseflow recession constant method
(Vogel and Kroll 1996) applied for the ascending limb of the
hydrograph, that is, (Qt 2 Qt21) . 0 with the following as-
sumptions dQ/dt 5 Qt 2 Qt21, Q 5 (Qt 1 Qt11)/2, error is
distributed normally in the log space. We used a continuous
ascending threshold of 2 days or greater (Fig. 4):

t2p 5 exp 2
1
m
∑
m

t51
ln

Qt 2 Qt21

(Qt 1 Qt11)/2

[ ]
, (1)

whereQt is observed or simulated streamflow on the tth day.

d. Evaluation metrics

The metrics to evaluate model performance are anomaly
correlation coefficient (ACC) [Eq. (2)], normalized root-
mean-square error (nRMSE) [Eq. (3)], and biases percentage
(PBIAS) [Eq. (4)];

ACC 5
(f 2 cf )(o 2 co)�����������������������������

(f 2 cf )2 3 (f 2 co)2
√ , (2)

where f is forecast, cf is forecast climatology, o is observation,
co is observation climatology, and overbar denotes the aver-
age quantity:

FIG. 4. The hydrograph characteristics: time-to-peak flow and the baseflow component of the
streamflow. Observed streamflow at USGS Gauge ID: 02397000, Coosa River (Mayo’s Bar)
near Rome is shown. Ascending limb $ two days were included in the time-to-peak calculation,
and base flow is the contribution of the subsurface flow to the streamflow (see text).
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nRMSE 5

��������������������������
1/n 3 ∑

n

i51
( fi 2 oi)2

√
co

: (3)

PBIAS [Eq. (4)] is a relative level of the streamflow over/
underestimating. The positive value indicates overestimating.

PBIAS 5 100 3

∑
N

i51
( fi 2 oi)

∑
N

i51
oi

: (4)

e. AI

This is a broader effort that automates intellectual tasks
normally performed by humans. A subset of artificial intelli-
gence (AI) is machine learning, which uses traditional meth-
ods such as mathematical statistics and rules to improve
model performance from data (Sarker 2021). In this work, we
used a CART to investigate the dependency of the forecast er-
rors on biophysical attributes. CART is a traditional machine

learning method that recursively partitions the data space into
two branches at each node using the Gini impurity criterion,
and the root node is recursively divided to have the highest im-
purity (Loh 2011). We used the CART R package “rpart”
(version 4.1–15), with four independent variables (land use,
soil texture, drainage area, topographic index), and nRMSE or
ACC as the dependent variables. The CART parameter is the
package default.

A subset of machine learning is deep learning (DL), which em-
phasizes learning successive layers of increasingly meaningful
representations (Sarker 2021). We developed a deep learning
model as a function of biophysical attributes and NWM forecast
(inputs) to predict forecast errors (outputs) at ungauged basins
where observations are unavailable. However, the biophysical
attributes and NWM forecast are available [Eq. (5) and Fig. 2]:

abs( fi 2 Oi) 5 W1 · · · Wm Wf

[ ] BP1

..

.

BPm

fi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
: (5)

FIG. 5. The NWM evaluation at 389 USGS gauges in the Southeast. The first row shows the ACC between the NWM forecast and ob-
servations at (a) 0-, (b) 15-, and (c) 29-day leads. (d)–(f) As in (a)–(c), but for the PBIAS between NWM and observation for the same
lead time.
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Here, W1, … , Wm, and Wf are the biophysical and the flow
coefficients obtained from the DL model and BP1, … , BPm,
and fi are the corresponding biophysical attributes, NWM
forecast at a given lead time, and the watershed, and m 5 13
corresponding to land use, soil texture classes for 10 different
depths, topographic index, and drainage area.

The computation process of the deep learning model goes
through several layers, as shown in Fig. 2. We used a densely
connected neural network consisting of six layers: one input
layer, four intermediate hidden layers, and one output layer
(Fig. 2). The first layer receives the NWM streamflow forecast
and biophysical attributes as input features and then extracts
more meaningful representations out of input. This extracting
process of representation progresses at the following four
intermediatory layers. Finally, the last layer computes the out-
put value: the absolute difference between NWM and ob-
served flow. The first and intermediate layers use rectified
linear unit (ReLU) that zeroes out negative values as their ac-
tivation function. The ReLU activation function provides the
model with a much richer hypothesis space that would benefit
from deep representations since it introduces nonlinearity
into the network (Nair and Hinton 2010). The difference be-
tween the network’s predicted output and the actual output is
continuously reduced by training the densely connected

neural network with the observation dataset consisting of ap-
proximately 150000 data samples.

We used the RMSprop optimizer, a gradient-based optimiza-
tion technique, and a stochastic technique for minibatch learning
(Tieleman and Hinton 2012). RMSprop deals with vanishing gra-
dients of very complex neural networks by using the average of
squared gradients to normalize the gradients; this means that the
learning rate changes over time. Finally, the network is compiled
with mean square error as the loss function and the mean abso-
lute error (MAE) as the model evaluation metric.

1) DL HYPERPARAMETERS

Our DL model sets the batch size as 1024 and the number of
epochs as 13 to achieve optimum model performance (Fig. S1
in the online supplemental material) and prevent overfitting.
We determined these hyperparameters after several trials to
achieve similar mean absolute error performance in the train-
ing and validation data. The validation MAE drops initially,
then if the validation MAE starts increasing and the difference
between validation MAE and training MAE is greater than the
training MAE, the overfitting starts (Chollet 2018). Further, we
selected 1024 as the batch size because our training data sam-
ples are large (;150 000; each day and each site forecast were
treated as individual data sample). Therefore, we determined

FIG. 6. Effects of biophysical attributes (drainage area and land use) on streamflow forecast skill using ACC and nRMSE metric.
(a),(b) Watershed grouped under small, medium, and large categories; their respective average AR and sample size (N) are shown in the
legend. The area unit is square miles. (c),(d) Watershed grouped under major land-use categories: forested, agriculture/cultivated crop,
and developed/urban watersheds. The bar is 95% uncertainty range with a normal distribution assumption.
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the optimal batch size from empirical experiments without any
memory issues and big degradation of generalization. A full
description of the model in the form of a Jupyter notebook is
appended in the supplemental materials.

2) DL MODEL EVALUATION

We evaluated the DL model performance using a two-part
analysis where part 1 divides the observations temporarily, and
part 2 divides it spatially. For temporal split analysis, the first half
of streamflow observations (11 December 2018–2 April 2020) is
treated as the gauged (labeled data), and the second half (3 April
2020–15 August 2021) as the ungauged (predicted data); and
therefore, assessing the DL model performance for ungauged
data. Additionally, we developed a separate DL model for each
lead day (0–29 lead days) that incorporates lead-time dependency,
that is, smaller forecast errors at the shorter lead time versus a
larger forecast error at a longer lead time.

For spatial split analysis}we split the data into 90% gauged
and 10% ungauged data for the entire period (11 December
2018–15 August 2021) and repeated the process 10 times to
sample all stations in model evaluations. We also investigated the
sensitivity of the DL model performance for various split levels,
for example, 65/35, 70/30, … , 95/5 (gauged/ungauged), and
found that the DL model is not sensitive to the spatial split level,
generally (not shown), and selected 90/10 as the optimal level.

3. Results

a. The NWM streamflow forecast skill and its
dependency on biophysical attributes

The NWM can provide potentially skillful forecasts showing
spatial and temporal dependency (Figs. 5 and 6). Generally,

shorter lead-time forecasts are more skillful than longer lead
times. Figure 5 compares the NWM forecast with USGS obser-
vations at 389 gauges and 0, 14, and 29 lead days using ACC and
percentage biases metric. The points are the corresponding wa-
tershed outlets, and their relative upstream/downstream position
does not necessarily represent the increasing drainage area, that
is, the two near points may have much different basin areas. As
expected, the forecast skill decreases with increasing lead time.
However, the ACC remains statistically significant for most
watersheds (300 out of 389) at a 30-day lead.

Spatial clustering in the forecast biases (Figs. 5d–f) sug-
gests the forecast skill’s dependency on biophysical attrib-
utes. There are two large biases (.100%) clusters: 1) in
the Apalachicola–Chattahoochee–Flint (ACF) northeast
basin boundary with a small drainage area, and 2) in the
Alabama–Coosa–Tallapoosa (ACT) basin central-west boundary.
The clusters represent the most prominent cities: Birmingham
(Alabama) and Atlanta (Georgia). There are also other large
biases forecasts scattered in the study area. Overall, 24% of
watersheds (93 out of 389 watersheds) show large biases,
which develop at 0 days and remain large throughout the
forecast period (Figs. 5d–f).

An exploratory analysis of the forecast skill confirms
its dependency on biophysical attributes. Figure 6 shows
the ACC and nRMSE for the watershed grouped as per
their drainage area (AR) and land-use types. A higher
ACC and smaller nRMSE show better skill in the forecast.
The NWM forecasts are less skillful for small watersheds
(AR: 25.5 mi2) than medium (AR: 164 mi2) and large (AR:
2305 mi2) watersheds. The NWM forecast performs poorly
for the urban/developed watersheds compared with the
agriculture and forested watersheds (Figs. 6c,d). This is a

FIG. 7. The NWM performance dependency on biophysical attributes classified using CART. The CART results for
the streamflow ACC of the 14-days lead forecast. The left branch is yes, and the right branch is no in each bifurcation.
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discouraging result for NWM forecast application in urban
flooding. The urban/developed watersheds show a signifi-
cantly smaller ACC (less than 0.2) and larger nRMSE
(.2.0) than forested or agricultural watersheds. However,
most watersheds (282 out of 389) are forested (major land-
cover types); hence the overall skill looks similar to the for-
ested watershed skill.

A generally higher nRMSE (.1) suggests considerable biases
in the NWM forecast (Figs. 6b,d), and most of these biases de-
velop at early lead (e.g., 0-day lead). For large and forested
watersheds, the nRMSE increases from ;1.1 at 0-day lead to
;1.5 at 10-day lead, then it remains relatively stable. The higher
forecast biases can be related to the biases in seasonal climate
forecast data (CFSv2) that provide climate forcing for the
NWM model forecast. Duan and Kumar (2020) used the ob-
served meteorological forcing to drive the NWM and found

smaller biases. Figures 6b and 6d emphasize the need for devel-
oping a biases correction methodology for the NWM forecast
(outside our scope of the study).

b. CART of forecast errors

The CART algorithm identifies land use (LU), soil texture
(ST) for the first layer (0–5 cm), drainage area (area), and to-
pographic index (TI) as major determinants for forecast skill
classification, that is, forecast skills are significantly different
between the partitioned groups (Fig. 7). Despite the large
forecast errors (e.g., Figs. 6b,d), the CART successfully identi-
fies the forecast skill’s biophysical dependency. This is an en-
couraging result and provides a scientific basis for AI/ML
applications. As expected from the exploratory analysis (Fig. 6),
the land-use type is the primary determinant, and forested and

FIG. 8. Time to peak in the NWM forecast. (a) Time to peak of NWM 16 ensemble mean and observation.
(b) Time to peak of NWM first ensemble member and observation. The color bar is forecast lead day from 0 to 29.
(c) The forecast time to peak minus observation for the lead zero-day forecast. (d) The forecast time to peak minus
observation for the lead 14-day forecast.
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agricultural watersheds show better performance than devel-
oped watersheds.

The CART results are generally not sensitive to the
lead-time dependency and evaluation metrics (nRMSE
and ACC). For example, land-use type remains a primary
determinant for classifying the forecast errors across both
nRMSE and ACC metrics and at all lead times (supple-
mental Figs. S2, S3). ACC is sensitive to temporal variabil-
ity but insensitive to the magnitude of forecast error
(Smith et al. 2019). The squared ACC is interpreted as the
potential forecast skill rather than the real skill, especially
compared with mean square error (Murphy and Epstein
1989). Factor sequence determining the tree classification
using the nRMSE metric is land use, topographic index,
and soil texture, whereas using the ACC metric is land use,
soil texture, area, and topographic index (supplemental
Figs. S2, S3).

c. Hydrograph characteristics

The water moves slower in the NWM ensemble mean fore-
cast (Fig. 8). For example, the median time to peak is 8.5 days
for the observations but 11.5–14.5 days for the NWM ensem-
ble mean forecast (Fig. 8a). The ensemble mean (16-member
ensemble average) forecast moves slower than the individual
ensemble forecast, which shows comparable performance for
longer-lead forecasts (Fig. 8b), suggesting biases in time to
peak can be related to initial condition effects that have a
more substantial influence on the shorter lead time (Duan
and Kumar 2020). The spatial clustering of time-to-peak
biases is also noted.

The NWM performs better for the base flow to total flow
ratio, as most stations (forested) show biases within 610%
(Fig. 9). The base flow to total flow ratio bias does not show
lead-time dependency. The NWM overestimates the base
flow to total flow ratio in the urban watershed by 20%–40%
(Fig. 9b), and it underestimates the ratio in the agricultural
watersheds by a smaller magnitude (;10%). Base flows are
also underestimated in the coastal watersheds (Fig. 9a and
supplemental Fig. S4).

d. Soil moisture forecast evaluation

A gridded evaluation of soil moisture forecast supports
biophysical and lead-time dependency of the hydrological
forecast (Figs. 10 and 11). We regridded NWM soil moisture
forecast (1 km) to the SMAP resolution (9 km) using the
area-average method (see supplemental text T2 for details).
Statistically significant ACC between NWM forecast and
SMAP data are found up to 30 days lead forecast; however,
it decreases with the increasing lead time. There is a consid-
erable drop in the ACC from 0th-day lead (0.65 for all) to
1st-day lead (0.45) soil moisture forecast; then it drops
smoothly to 0.28 at the 29th-day lead forecast (Fig. 11a).
The urban area has a smaller skill (see Atlanta and Birmingham’s
area marked with circles) than forested and agricultural
areas.

Despite a gradual drop in the ACC, the nRMSE did not in-
crease with the increasing lead time for the soil moisture

forecast (Fig. 11b). In fact, there is a gradual decrease in
nRMSE with increasing lead time. These results can be related
to the uncoupled model configuration, that is, the NWM soil
moisture does not feedback to the CFSv2 climate forecast
model. Because of the decreasing influence of the initial soil
moisture anomalies and the same climate forcing (CFSv2),
the nRMSE may decrease with increasing lead time, that is,
at the shorter lead time, there are two sources of uncertainty
(initial condition and climate forcing) that reduces to only
one source (climate forcing) at the longer lead time (Duan
and Kumar 2020).

The CART analysis for ACC shows the TI as the primary
determinant, followed by the soil texture type (Fig. 11c).
The grid cells having TI less than 5.5 show poorer ACC
than grid cells with higher TI, that is, the model perfor-
mance is better in the valley area than the ridge area where
TI is smaller. ACC decreases from clay to sand soil types.
Land-use type is the only determinant using nRMSE as the
evaluation criterion, with forest land-use type showing the
smallest nRMSE and developed area showing the largest
nRMSE (Fig. 11d).

FIG. 9. Base flow to streamflow (flow ratio) ratio in the NWM.
Evaluation of base flow to total flow ratio in the NWM forecast.
(a) Spatial distribution of the ratio biases for 14-days lead NWM
forecast and (b) the ratio biases grouped by land-use categories.
Their respective AR and sample size (N) is shown in the legend.
The area unit is a square mile.
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The hydrological forecast evaluations (streamflow and soil
moisture; sections 3a–3d) demonstrated the dependency of
the forecast errors on the biophysical attributes that are ma-
chine identifiable too (e.g., CART results), therefore provid-
ing a scientific basis for the AI/ML model development.

e. DL model performance

The DL model improves the forecast reliability by com-
bining the AI with the physically based NWM forecast.
The forecast reliability is measured as the probability of
capturing the observation in the forecast ensemble range
[Eq. (6)]:

P_Model 5
∑
i
xi

N
, (6)

where i 5 1, 2, … , N is the number of observations in the
evaluation period, and xi 5 1 if the observed streamflow is
within the forecast ensemble range, otherwise xi 5 0. The
DL forecast range is obtained by adding and subtracting
one absolute forecasted error [Eq. (5)] from the NWM

ensemble mean forecast. The NWM forecast range is ob-
tained from its 16-member ensemble forecast from maxi-
mum to minimum.

1) TEMPORAL SPLIT ANALYSIS

The DL-based forecast significantly improves the model’s
ability to capture observations. Figure 12a shows a 10-day
lead forecast during the first year of the model evaluation pe-
riod for the Coosa River (Mayo’s Bar) near Rome, Georgia.
The probability of capturing the observation improves from
0.25 in the NWM forecast to 0.83 in the DL forecast. Please note
that the model evaluation period (3 April 2020–15 August 2021)
is independent of the DL model calibration period (11 April
2018–2 April 2020); hence the evaluation period can be treated as
ungauged data.

Similarly, we assessed reliability for all 384 watersheds for
the entire evaluation period (3 April 2020–15 August 2021)
and 0–29 days lead forecasts. Figure 12b shows the forecast
reliability averaged across all watersheds as a function of
forecast lead time. The DL-based forecast reliability ranges

FIG. 10. Evaluation of the soil moisture forecast in the NWM and its comparison with SMAP soil moisture observation. (top) ACC;
(bottom) nRMSE.
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from 0.86 6 0.03 for the 0-day lead forecast to 0.79 6 0.03
for the 29-day lead forecast. The corresponding reliability
in the NWM forecast is 0.10 6 0.01 for the 0-day lead
forecast and 0.31 6 0.01 for the 29-day lead forecast. Thus,
the DL model increases the reliability of the forecast.
A slight increase in the NWM forecast’s reliability at a
longer lead time can be due to a larger ensemble spread
than the shorter lead time with a constrained forecast due
to initial condition effects. The DL model performance is
similar between calibration and evaluation periods (not
shown).

A comparison with the long-term monthly mean climatol-
ogy forecast (gray shading and dashed lines in Fig. 12a) shows
that the DL model shows an improved performance in captur-
ing the observations. The long-term monthly mean is obtained
from the USGS, and the corresponding MAE is calculated
from the daily observed values (December 2018–August
2021) as its average absolute departure from the long-term
monthly mean. As a result, the probability of capturing the ob-
servation in the climatology forecast is 0.74, which is less than
the DL forecast (0.83). Similarly, averaged across the 384 sites,

the probability of capturing the observations is (0.706 0.01) in
the climatological forecast, which is also less than the DL fore-
cast (0.826 0.03, Fig. 12b).

However, the forecast uncertainty range also increased in
the DL forecast, probably expected from its design [Eq. (5)],
that is, the DL model was designed to predict the forecast er-
rors. For example, the DL forecast range is comparable to or
slightly larger (smaller) than the climatology forecast ranges
for the low-flow (high flow) observations in Fig. 12a. The av-
erage ratio of the DL forecast range to the climatology fore-
cast range is 1.45 in Fig. 12a. The main advantage of the DL
model is its ability to predict forecast errors at ungauged
locations.

The DLmodel performance also shows the biophysical depen-
dency (Fig. 13). The DL model performance is generally the re-
verse of the NWM performance because the DL model is
trained to predict the error between the NWM forecast and the
observations [Eq. (5)]. For example, the DL model reliability is
7% higher for the developed watersheds (P_DL 5 0.87 6 0.06,
averaged across 0–29 lead days) compared to the predomi-
nantly forested and shrub watersheds (P_DL 5 0.80 6 0.03)

FIG. 11. The soil moisture forecast skill dependency on biophysical attributes. (a) The NWM soil moisture ACC is classified by land-use
categories. (b) The NWM soil moisture nRMSE is classified by land-use categories. (c) The CART results for the soil moisture ACC of
14-day lead forecast. (d) The CART results for the soil moisture nRMSE of 14-day lead forecast. The left branch is yes, and the right
branch is no in each bifurcation.
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(Fig. 13a). Similarly, the DL performs 6% better for the pre-
dominantly sandy watershed (ST , 2.5, P_DL 5 0.87 6 0.06),
than clay-loam watersheds (ST . 2.5, P_DL 5 0.81 6 0.04)
(Fig. 13b).

2) SPATIAL SPLIT ANALYSIS

The spatial split analysis shows comparatively similar DL
model performance as found in temporal split analysis (cf.
Figs. 12–14). Taking Coosa River near Rome, Georgia, as an
ungauged site, that is, this site was not included in the DL
model development as one of the 10% withheld sites. Then,
the DL model was developed using the remaining 90% sites,
and the model was used to predict forecast error for the
Coosa River. For the 10-day lead forecast from 3 April 2020
to 15 August 2021 (for comparison), the DL model captured
the observed streamflow 87% times (Fig. 14a), comparable to
or even slightly better than the temporal split analysis (83%).
Averaged across all 384 sites, the spatial split analysis showed
similar performance (82% 6 1%, Fig. 14b) to the temporal
split analysis (82%6 3%, Fig. 12b).

4. Conclusions and discussion

This study demonstrated the potential for improving hydro-
logical forecast by combining a physically based model with
artificial intelligence (AI) techniques. As a result, the forecast
reliability increased from 21% (61%) in the NWM only fore-
casts to 82% (63%) DL model forecast (Fig. 12b). It is im-
portant to note that the DL model is not independent, but the
DL model is built using the NWM forecast and observations,
that is, the proposed technique combines the strength of both
the physically based model and AI techniques. A more reli-
able NWM-DL forecast can potentially inform decision-
making.

The DL forecast range is larger than the NWM forecast
range (Fig. 12a). Our attempt to constrain the DL model’s
forecast range was unsuccessful. It is likely that most of the
forecast uncertainty is due to seasonal climate forecast data
(CFSv2), and the DL model was not designed, at least in this
study, to improve the seasonal climate forecast. For example,
Frame et al. (2021) improved the forecast skill using the DL
model and the observed climate forcing.

FIG. 12. DL model temporal split evaluation. (a) The model performance for the 10-day lead
forecast for the Coosa River (Mayo’s Bar) near Rome (USGS Gauge ID: 02397000) and the
period of 3 Apr 2020–2 Apr 2021; see text. (b) The probability of capturing the observed stream-
flow model performing over 30 lead days for all the 384 stations. Shading shows a 95% uncer-
tainty range.
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We used a simplistic measure of the forecast reliability, that
is, observations are contained in the forecast ensemble spread
[Eq. (6)]. The DL model provided a dynamic forecast error
that mostly contained observations (;82%). The main advan-
tage of the DL model is that it can be applied to ungauged
sites, as demonstrated in Fig. 14. Other probabilistic forecast
skill metrics not included here are the Brier score, continuous
ranked probability score, relative operating characteristics
score, and forecast convergence score (Brum and Schwanenberg
2022). Future studies may include one or more of these measures
in the DLmodel performance (e.g., Weyn et al. 2021).

We used the NWM forecast as one of the inputs to the DL
model (Fig. 2) instead of the individual climate variable, for
example, precipitation and temperature data. Kumar et al.
(2013) found that the crop suitability index that combines
climate, soil, land use, and topographic characteristics into a
single index is a better predictor of the cropland spatial distri-
bution in the United States than the individual driver varia-
bles. Similarly, the NWM combines the various climate inputs

in a biophysically constrained way to provide the flow, an in-
put to the DL model.

The big-data analytics identified three critical areas for
potential improvement in the NWM model: 1) effects of ur-
banization are not well captured in the NWM forecast;
2) underestimation of the base flow in the agricultural
watersheds that can be related to the irrigation effect;
3) tidal processes may affect base flow in the coastal water-
sheds (supplemental Fig. S4).

The conceptual framing of this study, for example, Fig. 1,
emphasizes a complementary contribution of the process-based
climate-hydrological model and AI techniques. The proposed
and demonstrated complementary contributions can apply to a
broad range of climate science problems. For example, the
AI/ML technique can heuristically search the ensemble mem-
bers from a very large sample, and the selected ensemble from
the process-based model can show the skillful decadal climate
forecast (e.g., Smith et al. 2020). Future improvements in the
DL methodology (Fig. 2) may include spatially distributed

FIG. 13. DL model captures the biophysical dependency of the forecast uncertainty. (a) The
probability of DL model prediction across two land-use categories: Developed watersheds
(N5 80) and forested and shrub watersheds (N5 280). (b) As in (a), but for soil texture catego-
ries: ST, 2.5 (N5 77), and ST. 2.5 (N5 303). Shading shows a 95% uncertainty range.
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biophysical attributes and an analysis correction-based additive
inflation method (Crawford et al. 2020).
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Data availability statement. The repository is available at
https://github.com/cwsauburn/NWM_DL. This repository con-
tains the following underlying data:
• raw_data folder: It contains all the raw data required to
train and validate the DL models.

• temporal_DLModels Folder: It contains trained DL models
for 0 to 30 forecast day lead data; these models were gener-
ated using the temporal split of the data.

• spatial_0–15 Folder: It contains trained DL models for 0 to
15 forecast day lead data; these models were generated us-
ing the spatial split of the data.

• spatial_15–30 Folder: It contains trained DL models for 15
to 30 forecast day lead data; these models were generated
using the spatial split of the data.

• data_setup_scripts: It contains the scripts to set up the input
data to train the DL model for 0 to 30 days of lead stream-
flow data.

FIG. 14. DL model spatial split evaluation. (a) The model performance for the 10-day lead
forecast for the Coosa River (Mayo’s Bar) near Rome (USGS Gauge ID: 02397000) and the
period of 3 Apr 2020–2 Apr 2021. (b) The probability of capturing the observed streamflow
model performing over 30 lead days for all the 384 stations. Shading shows a 95% uncer-
tainty range.
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• train&predict_scripts: This folder contains different ma-
chine learning scripts used to train the model and predict
the streamflow of ungauged sites for all the 30-day lead
data.

• temporal_graph_data_scripts: It contains the script for the
temporal graphs and the raw data used to generate these
graphs (Figs. 12 and 13).

• spatial_graph_data_scripts: It contains the script for the
spatial graphs and the spatial data used to generate these
graphs (Fig. 14).

Due to the large size of the raw NWM forecast data
(10 TB), it can be obtained on request by contacting the pa-
per’s authors (primary contact: szk0139@auburn.edu).
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