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ABSTRACT

The “instant” shape of raindrop size distributions (measured during 1 min or less) usually differs from
the exponential, generally in the direction of monodispersity. Experimental results are presented for both
widespread and thunderstorm rain. It is shown that the measured shape depends significantly on the sample
size, and that adding many “instant™ distributions from different conditions leads to an exponential dis-
tribution such as proposed by Marshall and Palmer. This transition is examined, as well as the sample size

needed for a well-defined shape.

1. Introduction

Many studies (e.g., Fujiwara 1965) in the past
have demonstrated that “instant” raindrop size
distributions (accumulated during 1 min or less) are
often far from exponential. The concentration N of
drops per unit volume and per diameter interval may
easily deviate by an order of magnitude from the
exponential distribution of best fit. On the other hand,
the distribution formed by adding the number of
drops in each size range from many of these “instant”
distributions is in good agreement with an exponential
distribution as has already been shown by Marshall
and Palmer (1948).

In this work the above two rules are numerically
substantiated and the transition of the shape of
distributions measured during short and long periods is
explored. With this in mind, the shape was parameter-
ized according to the method described in the next
section. Averaging shape factors, instead of the drops
in the individual classes, leads to the average shape
of “instant” samples as described in Section 3. By
varying the timelength of the samples the influence
of its duration on the shape is examined in Section 4.
As a result we find that the sample size is an important
factor when describing shapes of drop size distributions.

Because there are different ways of increasing the
sample size, e.g., by a longer sampling interval or by
increasing the area of the measuring device, the
influence of various ways of averaging is investigated
in Section 5. )

2. Measuring the shape

The shape of raindrop distributions may quantita-
tively be described by means of related factors as
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shown by Joss and Gori (1976). These factors indicate
the curvature of the distributions when plotted in
log number versus linear diameter. Drop size regions
in which the curvature is described may be chosen by
selecting the integrals on which the specific shape
factor is based. For example, in order to determine
S(Zo), the curvature over the region of the drops
which contributes most to the optical extinction
coefficient ¢ and the radar reflectivity Z [as defined by
Egs. (1) and (2)], we first calculate the diameters
D(s) and D(Z) defined by (3) and (4). In the case of
an exponential distribution these diameters belong
to the drops of maximum contribution to ¢ and Z,
respectively ;!

o(mm? m~%) = (r/4) / i N(D)D%D 1)
o ,

Z({mm® m™¥) = / ) N(D)D%D 2)

D(s)(mm)= / °° N(D)D*D / / ) ND)DiD (3)

D(Z)(mm) = /o " N(D)DUaD / / : N(D)D4D. (4)

The shape factor S(Zo) is defined by Eq. (5a), but
since D(Z) is equal to 3D(o) in the distribution N = N,
Xexp(—AD), independently of N, and A, (5a) may be

! See Appendix A.
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simplified to (5b):
D(Z)—D(o)
lD(Z)+D(<f)
D(Z)—D(a)
‘D(Z)—}-D(a)
D(Z)—D(o)
D(2)+D(o)

observed

S(Zo)=

(5a)

exponential

S(Zo)= 2| (5b)

observed
Following Joss and Gori (1976) we note the following:

S(Zs) =~ 0 means that a monodisperse distribution
is a suitable approximation of the drop
size region which mainly contributes to
the radar reflectivity factor Z and to the
surface o per unit volume.

S(Zo) < 1 indicates that the drops responsible for
the main contribution to Z and ¢ are
closer together in diameter than in the
exponential distribution.

S(Zo) = 1 represents an exponential distribution of

drops contributing to Z and .

S(Zo) > 1 shows that the drops responsible for the °

main contribution to Z and ¢ are further
apart in diameter than in an exponential
distribution.

Because of limitations of the instrument [in these
experiments the RD-69 disdrometer (Joss and Wald-
vogel, 1967) was used], the measured distribution is
truncated both below 0.3 mm and above 5.5 mm
diameters. A truly exponential distribution in nature
and recorded within the above boundaries will result
in a shape factor somewhat smaller than unity. This
deviation from unity depends on upper and lower
limits of the measuring range and on A of the expo-
nential distribution. For example, for 5> A > 1 the
shape factor S(Zs) of the above truncated exponential
distribution would be 0.7 < §(Zs) < 0.9. Apart from
S(Za), which reflects the average shape of the distribu-
tion, S(Wea), S(R*W) and S(ZR*) were calculated to
give more detail about the shape. Here W stands for
the liquid water content defined by (6) and the quantity
R* is closely related to the rain intensity defined by (7):

W[mm? m~3]=(x/6) [ ) N(D)D3D (6)

R*[mm* m—5]= / i N(D)DD. )

3. The shape of observed distributions

Since the shapes of “instant” distributions differ
from those distributions accumulated during long
intervals, examples of the shape characteristic of
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Fic. 1. Average “instant” shape (C) of 512 1-min distributions
together with the single accumulated distribution (A) during
the same 512 min, the best-fit-exponential distribution (B) and
the Marshall-Palmer (M-P) distribution calculated for the same
rain intensity (also see Table 1).

different sampling periods and different rain intensities
will be presented in this section.

Widespread rain was recorded on 23 June 1974
during 512 min at the Osservatorio Ticinese (370 MSL),
Locarno, Switzerland, with the RD-69 disdrometer.
If all the drops in each drop class of this rain are added
the resulting distribution is shown by the points A
in Fig. 1. Parameters of this distribution are given in
Table 1. These results are in excellent agreement with
the exponential distribution B of the fit given by
N = 2080 exp(—2.55D), but differ from the Marshall-
Palmer (M-P) distribution ¢ where N, is set to 8000
m™ mm~! and A = 4.1R°2 (observed rain intensity
R=2.9 mm h. The following procedure was used to
derive the average ‘“instant” shape C in Fig. 1:

® Parameters of 512 individual 1 min samples were
calculated.

® The average of each parameter was calculated.

® The retransformation of the average parameters
to a distribution N(D) was calculated (see
Appendix B).

The results presented in Fig. 1 and Table 1 confirm,

for a case of continuous widespread rain, the two rules

stated in the Introduction:

1) The shape of a sample accumulated during a long
period (in this case 8.5 h) is very close to exponential
as shown by the agreement of parameters of A and B
in Table 1.
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TaBLE 1. Basic and derived parameters pertinent to drop size distributions, specifically including the diameters of maximum contribution and sha;

As the distributions are truncated by the instrument below 0.3 and above 5.5 mm, the shape factors of a true ex
to be inserted in Eq. (15) of Appendix B to obtain the drop concentration N (D). M-P is Marshall-Palmer.

Derived parameters

Basic parameters

DW DR*

Type

Ny C X,

S(We) S(R*W) S(ZR*) S(Zo) A

DZ

Do

g

Curve

0.88
0.87

0.92 0.93
0.97

0.90

0.75
0.71

1.59 2.31

0.90 1.22

2088
2102

2.9
2.9

153
153

188
189

A
B

Frc. 1
Widespread rain

Observed (512 min)
Retransformed

2080 0.00 0.0

2.55

1.58 2.33

092 1.22

0.55

0.52
0.51

0.56

0.48
0.50

0.98 122 146 1.82
1.74

0.99 1.22

1288
1191

2.9
2.9

153
160

188
198

Observed (1 min)
Retransformed

3.20 10100 0.25 5.5

0.55

0.53
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8 3 l@ 8 F16. 2. Average “instant” shape of distributions having 1, 10
e ©eeo and 100 mm h™ rain intensity together with the exponential
distributions given by Marshall and Palmer (1948) for the
PO, corresponding intensity (also see Table 1).
5 29X
(=7 (=Nl
2) The typical shape of a short period (“instant”
B 39¥ sample), here taken as the average shape of 512 1 min
coTmee samples representing exactly the same data as above,
2 X229 deviates markedly from exponential. This can be seen
- oaas by the disagreement of shape parameters of C with
] 388 ¢, A and B in Table 1.
- NN
N N These findings are not peculiar to widespread rain,
S =52 as shown by Fig. 2 for a thunderstorm recorded on
14 July 1974 at the Osservatorio Ticinese (some data
Q 888 of this storm have previously been presented in Joss
PO and Gori (1976). A total of 256 1-niin samples covering
el == . —1
NAQ weak rain as well as peaks of over 100 mm h~! were
© analyzed using multiple-polynominal regression tech-
A == . —1
- 3¢9 niques. The average shapes at 1, 10 and 100 mm h
o o wm are plotted in Fig. 2, after retransformation as described
T 2% in Appendix B. The related parameters may be found
. in Table 1 which also contains the corresponding M-P
v QO . . . .
2 L2 distributions for comparison. For both these data and
NN . . .
for those from the earlier case of widespread rain, we
find the following main results:
P . .
® 1) At all rain intensities the average shape of the
“instant” distribution deviates from exponential toward
monodispersity. In other words, there are markedly
less small and large drops than predicted by the M-P
distribution or by the best-fit exponential distribution.
2) This deviation is more pronounced at low rainfall
rates than at large ones.
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4. Duration of sample and shape of distribution

In order to examine how the shape of a distribution
depends on the length of time during which the distribu-
tion was accumulated, we analyzed the 512 1 min
samples of the widespread rain which were discussed in
the previous section. Those data were analyzed for
ten different intervals; that is, the average shape
factor S(Zo) of 512 1 min samples was first calculated,
then the average of 256 2 min samples was calculated,
etc., until at least the single-shape factor of the total
512 min sample was determined. This way exactly
the same data were analyzed each time, the only
difference being the length of time during which the
drops were accumulated. The results in Fig. 3 indicate
that the shape is indeed influenced by the sample
size; the instantaneous shape is between monodisperse
and exponential, and changes to a shape which is very
close to exponential when all the drops of a whole
rainfall are accumulated in a single distribution.
The shape factor of the true exponential best-fit
distribution (truncated at the drop size limits of the
instrument), yields a S(Z¢)=0.87 for B, which differs
insignificantly from S(Z¢)=0.88 for the measured
distribution A. Whether longer storms would lead to
correspondingly higher shape factors is yet to be
answered. None of the shorter storms exceeded the
shape factor of the corresponding exponential distribu-
tion. All yielded, the same trend (monodisperse toward
exponential), however.

This result is not a characteristic of the widespread
rain alone, as demonstrated by the results of similar
analyses for 256 min of thunderstorm data, also given
in Fig. 3.

5. Ways of averaging

In Section 4 we discussed the influence of increasing
sample size by adding drops of samples contiguous in
time. This is equivalent to increasing the sampling
duration and we will call it Case a. In order to examine
how else the sample size influences the shape, three
other ways of increasing the sample size are considered
as follows:

Case b. Samples of similar rain intensity are combined
(influence of rain intensity variations minimized).

Case c. Samples taken at random are combined
(influence of the autocorrelation in the time domain
minimized).

Case d. Samples taken at the same time and location
but on different instruments are combined (influence
of sample size only), all other possible variations
minimized).

The same data as in Case a, but differently arranged,
were used in Cases b and c. In Case d additional data
(more disdrometers) were used in order to ascertain
that findings described here were not due to insufficient
sample sizes. Limited sample sizes will introduce

JURG JOSS AND ENRICO G. GORI

SAMPLES AVERAGED

256 128 64 32 16 8 4 2 1(R)
512 256 128 64 32 16 8 4 2 1
8
S(z0)
[—] 8
7
6}
[ 'y L iy F s A re n )

16 32 64 128 256 512

SAMPLING PERIOD [min]

F16. 3. Variation of the average shape S(Z¢) as a function of
the sampling period for 512 min widespread rain and 256 min of
thunderstorm rain. As the distributions are truncated by the
instrument below 0.3 and above 5.5 mm, the shape factors of a
true exponential distribution is less than 1.

fluctuations in numbers of drops of different classes
and might falsely indicate a significant tendency toward
monodisperse distributions.

Case b: Contiguous samples of rain intensity

The 512 1 min samples of the widespread rain were
arranged in increasing order of rain intensity. The first
sample represented the weakest rain, the last one the
heaviest. These data were again analyzed in ten
different ways (as in Section 4), but here the number
of samples contiguous in rain intensity, where drops
were added, was increased each time by a factor of 2.
The parameters of these distributions were calculated
and averaged ten times, each time yielding a single
value in Fig. 4. Case a of Fig. 3 is repeated for
comparison.

The starting and ending values of both curves,
corresponding to sampling periods of 1 min and of
512 min, must coincide because the arrangement of
samples has no importance for these cases. As an
example, point P of Fig. 4 indicates an average shape
factor S(Zo)=0.65 for 128 distributions, each one
consisting of four 1 min samples of similar rain intensity.
The first distribution contains the 4 min of weakest
intensity, the 128th consists of the four heaviest. Only
a small fraction of the total rain intensity change is
spanned by any of the four distributions which were
added together.

If the shape depended on rain intensity alone, .the
dotted curve would be nearly parallel to the abscissa
for small sampling periods, since adding drops and
dividing by 4 in each class would have little influence
on the shape. As the contrary is true and the curve
for samples contiguous in rain intensity rises more
rapidly than for samples contiguous in time, we must
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SAMPLES AVERAGED

S12 256 128 6'4 3'2 16 8 4 2 1
9
S(zo)
—18
N
B
C 1 1 " 1 1 N N 1 ]

1 2 4 8 16 32 64 128 256 512
. . SAMPLING PERIOD [min]

‘F16. 4. Variation of the average shape S(Z¢) as a function of
the number of minutes added (sampling period) for 512 min of
widespread rain of 23 June 1974: “time,” samples arranged as
recorded ; “rain intensity,” same 512 1-min samples rearranged in
sequence of increasing rain intensity before analyses; “random,”
same 512 1-min samples rearranged at random before analyses.
As the distributions are truncated by the instrument below 0.3
and above 5.5 mm, the shape factors of a true exponential distribu-
tion is less than 1.

conclude that the shape varies less between samples
successive in time than at a specific rain intensity. This
is true for small numbers of contiguous samples.
When adding between 8 and 16 contiguous samples
the two curves cross while for larger numbers of
contiguous samples S(Zo) increases less when the
samples added are contiguous in rain intensity. The
character of the two curves suggest that, at any fixed
rain intensity, the average shape will never' reach
exponentiality [S(Zo)~0.7] and that true exponential
distributions are obtained when adding many 1 min
samples of different rain intensity. -

Case C: Sémples taken at random

In both cases analyzed so far, the added samples—
contiguous either in time or in intensity—were not
mutually independent. To answer the question of
how the shape would change without this correlation,
a pseudo-random series was constructed by taking
the samples in the following order: 1, 33, 65, ..., 481;
2, 34, 66, ..., 482; 3, 35, 67, ..., 512. Assuming
that after 32 min the storm had decorrelated, as shown
by the rain intensity autocorrelation coefficient r=0.27,
the arrangement obtained in this way was equivalent to
selecting samples at random but was much easier to
handle on a small computer. Once this random series
was obtained, the analyses were carried out exactly
as in- the previous cases and the results plotted in
Fig. 4. At small sampling periods this curve shows
the steepest increase of the shape factor, indicating,
as expected, that individual samples added were less
well-correlated, since the tangent at the origin provides
some measure of the decorrelation between the samples
added.

OF APPLIED METEOROLOGY
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Case d: Samples taken at same time and location

In all cases described, increases of sampling periods
were accompanied by proportional increases of total
drop numbers and were therefore statistically better
defined samples. Thus the question arises, whether this
effect influenced the results previously discussed and if
so, how well the shapes of 1 min samples are defined.
To answer this question, four disdrometers, having
surfaces of 50 cm? were mounted within 1 m of each
other during widespread rain. The data from each
disdrometer were then analyzed as in Section 4.
Results corresponding to the heavy line in Fig. 3 were
obtained from all four instruments and the values
obtained coincided within 19}, indicating that the
instruments measured the same data. Drops pertaining
to each minute and to the four instruments were then
added, thus simulating data of a ““200 cm? disdrometer.”
Those data were then analyzed according to the method

" of Section 4.

For a 1 min sampling period S(Zos) of the 200 cm?-
disdrometer was ‘but 3.59, larger than that of the
four 50 cm? disdrometers analyzed individually.
This difference was reduced to 1.8%, for a 2 min
sampling period ‘and was not detectable for larger
sampling periods. These results show that limited
sample sizes in fact impose a tendency toward mono-
dispersity, but the effect of the order of 3.59; on
S(Zs) for a sample size of 0.3 m? s7* is small and hence
the shape is considered to be well defined.

COMPARISON OF RESULTS

Table 2 shows the percentage increase I of the shape
factor S(Zs) when the sample size (product of area
F and exposure time T) is increased four times using
the four different ways previously discussed. In each
case the sample size and with it the total number of
drops analyzed is increased from 0.3 to 1.2 m? s,
thus reducing the fractional standard deviations given
in Table 3 of Appendix A by a factor of 2. Table 2,
however, does not show the fractional standard devia-
tion, but the bias produced by the change of sample size.
The samples taken at random (Case c) demonstrate
that there are strong changes during the storm between
distributions, which when added, result in a pronounced
tendency from the curved shape of “instant” distribu-
tions toward exponential ones. Distributions of similar

TaBLE 2. Percentage change of the shape factor S(Zo¢) for an
increase of sample size of a factor of 4 for four different ways of
contiguity.

Case Contiguous in F (m? T (s) I (%)
a Time 0.005 60 to 240 10.3
b Rain intensity 0.005 60 to 240 17.4
[ Random 0.005 60 to 240  37.8
d Space 0.005 to 0.02 60 3.5
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rain intensity (Case b) show less correlation than do
successive distributions in time (Case a), thus indicating
greater similarity within a precipitation cell than
between adjacent cells. The agreement between dis-
tributions recorded simultaneously 1 m apart (Case d)
shows that if a small bias of ~3.59%, is acceptable, a
sample size of only 0.3 m? s is sufficient to define the
shape of a distribution.

6. Conclusions

1) “Instant” distributions, i.e., distributions accu-
mulated during -1 min or less, deviate strongly from
exponential distributions in the direction toward
monodispersity. This is the case for widespread as well
as for thunderstorm rain. This result bears directly
on cloud models in which the dispersity of the raindrop
distribution enters as an important factor, since
collection and breakup rate are proportional to the
difference in fall velocity between particles. For the
narrower ‘“instant” distributions these rates are
reduced as compared to the exponential one.

2) Exponential distributions are found when adding
many ‘instant” distributions from different conditions.
Therefore, the approximation of real distributions by
exponential ones will be adequate in all applications
where an average over time or space is relevant, such
as in radar where the average over a large pulse volume
is taken, or in applications involving attenuation, where
the average distribution over a path is relevant.

3) The tendency of the shape from the typical
“instant” shape to the exponential one of the sum-
distribution is more pronounced, if the correlation
coefficient of individual distributions is small.

4) When comparing two sum-distributions, the first
made up from a given number of “instant” distributions
recorded together (same time — same raincell) and
the second one made up of the same number of “instant”’
distributions with similar rain intensity (in general
from different raincells) we find the following results:

® When up to 8 samples are added, the sum-distribu-
tion, containing the samples recorded at the
same time, is less exponential. This points up
the short-time continuity of the shape within
raincells.

® When more than 16 samples are added, the sum-
distribution containing the samples with similar
rain intensity, is less exponential. This indicates
the existence of a typical shape for a given rain
intensity.

5) The shape of raindrop distributions can be
adequately defined by the proposed shape factors.
An alternative method which has been used in the
past is to fit an exponential to the data by least-squares
regression and examine the size of the residual. The
use of the shape factors proposed here has the following

JURG JOSS AND ENRICO G. GORI

advantages over the exponential method:

® A measure of the amount of curvature is obtained
rather than simply a statistical measure of the
departure from a straight line.

e With only simple calculations the data are already
weighted in the particular region of interest
Without weighting, the least-squares fit would
give undue significance to the extreme ends of
the diameter range.

In comparison to the B(x) values proposed by Atlas
and Ulbrich (1974), the main advantage of the shape
factors proposed here lies in the simplicity of their
interpretation in terms of curvature (in relation to
the exponential distribution). S(Wes), S(RW) and
S(ZR) indicate the curvature in the regions of the
distribution where the contribution to the indicated
integral quantities is maximum and S(Zo) represents
the average curvature of the whole distribution.
Another advantage lies in the fact that the proposed
shape factors may be calculated from maximum-
contribution diameters or mean diameters which have
a considerably smaller fractional standard deviation
(see Appendix 1) than median diameters which play
an important role in the definition of the B(n) values.

6) As demonstrated by four disdrometers set up
side by side, the shape of a distribution having a sample
size of 0.3 m? s is well defined.

7) If the shapes of distributions are compared, the
bias introduced by different sampling periods and
sample sizes should be recognized.

8) It is expected that the average “instant” shape
and its change with increasing sampling period contain
information about the precipitation process such as
cellular structure, turbulence, drop sorting and collision
and breakup of drops.

APPENDIX A

Mean, Median and Maximum
Contribution Diameters

For calculating the shape factors, Joss and Gori
(1976) used the median diameters, defined for o and
Z as

DM(s)
DM(o): a/2=(1r/4)/ N(D)D%*D, 9)
0
DM(Z)

DM(2): Z/2= / N(D)D%aD. (10)

0

In discussing the results with P. L. Smith, he proposed
that, instead of using the medians as Joss and Gori
(1976) did, mean diameters computed from equations
similar to (3) and (4) (Smith et al., 1976) should be
used. For the present work this suggestion was modified
by introducing the modal or maximum contribution
diameters as defined by Egs. (3) and (4). As P. L. Smith
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TaBLE 3. Fractional standard deviation (%) or coefficient of variation V' =2S,/X of parameters, based on mean (mea), median (med) and
maximum (max) contribution diameters (estimated using samples with size of 0.3 m? s).

D, Dw Dr Dy S(We) S(RW) S(ZR) S(Zq) T w R Z
V mea 5.4 6.7 8.0 10.6 15.8 19.2 22.5 17.3
V med 7.1 7.8 8.5 10.6 23.3 37.6 34.6 20.5 9.0 12.5 16.3 32.5
V max 41 54 6.7 9.3 13.5 15.8 19.4 13.5

(1977, private communication) has pointed out, we
have now used all of the common measures of central
tendency :

Atlas (1953) median volume diameter Dy
Smith et al. (1976) mean D,
Joss and Gori (1978) mode D,,.

When comparing the various properties of these three
measures it is important to note that the shape factors
as defined in Eq. (5) may be calculated with any one
of the three and that the conclusions of this work are
not affected by the choice. The main advantage in
using the maximum contribution or the mean diameter
instead of the median diameters lies in the smaller
fractional standard deviation (or coefficient of variation
V), as demonstrated by the results in Table 3. These
results are calculated from data recorded simultaneously
with four disdrometers spaced 1 m apart during 512
min of widespread rain.

Because V for any derived parameter is proportional
to the inverse square root of the sample size, we may
estimate the sample size needed to obtain a given V.
This sample size is the smallest for the maximum
contribution parameters and largest for the median
parameters. On the average less than half the sample
size is needed when using maximum contribution
diameters as compared to median diameters. This is
partly due to the fact that maximum contribution
diameters are smaller than median or mean diameters
and drops with smaller diameters are more numerous
and their concentration is therefore statistically better
defined ; i.e.,

D mea> D med> D max. (11)

In Table 3 the order of V for all diameters and shape
factors is

V med>V mea> V max. (12)

The reason for the reversed order in (12) as compared
to (11) lies in the fact that fluctuations in drop con-
centration around the median diameter significantly
increase the fractional standard deviation V med,
especially for the shape parameters (derived from #wo
diameters).

When comparing maximum and mean parameters
the following twe points may be mentioned:

1) Mean diameters are identical to maximum
contribution diameters for the next higher moment,
e.g., D(o) mea=D(W) max and S(Weo) mea=S(R*W)

max. This is strictly true only for exponential distribu-
tions. While moments one to six must be calculated for
the maximum contribution diameters used in this
paper, moments two to seven would be needed for the
corresponding mean parameters.

2) Maximum contribution diameters as defined by
equations similar to (3) indicate the true location of
the maximum contribution for exponential distributions
only, whereas mean diameters are defined independent
of the distribution. At first glance this may seem a
strong point in favor of mean parameters; in reality
it is not, because the contributing region of real distribu-
tions is much wider than the differences between the
real maximum contribution diameter and the one
defined by (3), for non-exponential distributions.

Concluding, we find only a small difference between
mean and maximum contribution diameters. Both are
better than using median diameters and less work to
calculate. We chose the latter ones, because better use
is made of the information contained in the distribu-
tions; the value of the data is reduced more by the
errors resulting from limited sample size for large drops
(weighted heavily in the seventh moment) than from
inaccuracies in measuring small drops (important in
the first moment). ;

APPENDIX B
Retransformation of the Distribution

In order to know the average shape of the “instant”
distribution, we need a mathematical expression
specifying the drop concentration N (D). Calculating
the basic parameters for this expression should yield
values (referred to as ‘‘retransformed” in the last
column of Table 1), which are as close as possible to
the ones obtained when averaging the basic parameters
of the observed “instant” distributions (referred to as
“observed 1 min” in the last column of Table 1).

Because of the exponential nature of most rain drop
size distributions, N (D) can be written

N (D)= N, exp(—AD). (13)
The easiest way to approximate the measured instant
distribution is to let Nj depend on D. The variations of
Ny as a function of D is controlled by the two dimen-
sionless parameters X, and ¢, i.e.,

No=No/[14c(Xo—AD)?]. (14)
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Inserting (14) into (13) yields

N(D)=Noexp(—AD)/[1+c(Xo—AD)].  (15)

Note that N, is a constant as originally proposed by
Marshall and Palmer (1948). Here, however, it no
longer has the meaning of the intercept. Ng, on the
other hand, is the intercept at D=0 of the tangent
to the point at the diameter D of the distribution. As
compared to the exponential distribution, Eq. (15)
reduces the drop concentration for the very small and
the very large drops, just as observed in nature. X,
and A determine the diameter D, at which the curvature
of the distribution is maximum, i.e.,

D c= X 0/ A; (16)
and the parameter ¢ determines the amount of curva-
ture.

In order to perform the retransformation, N, was
tentatively set to 10000 m—® mm™, and X,, ¢ and A
were varied. All the basic parameters of Table 1 for
many sets of A, Xo and ¢ were calculated. Then the
set with values closest to the measured average “‘shape
factors” and the measured ‘“‘maximum contribution
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diameters” was selected. Finally, the true N, was
found by using the measured ‘“integral parameters”
making use of the fact that changing N of a distribution
only changes the integral parameters proportionally

.and leaves the shape, and with it the maximum con-

tribution diameters, unchanged.
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