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ABSTRACT

This study explores the feasibility of performing an objective analysis of instantaneous rain rate combining
satellite estimates (and eventually other types of observations) with those from a numerical prediction model
using the method of statistical interpolation. Results demonstrate that the quality of the short-term precipitation
forecasts serving as background field has reached a level that makes such an objective analysis possible.

The two main requirements to obtain an accurate analysis from available information are a realistic estimate
of background field and observation errors and knowledge of the horizontal correlation of these errors with
distance. The importance of specifying the errors for joint model-observation situations is emphasized; it is
especially important in situations where model and observations are in conflict. These aspects of the problem
are studied using collocated 6-h forecasts with satellite estimates derived from visible and infrared imagery, and
ground-truth rainfall data available over Japanese territory from the Global Precipitation Climatology Project.
Over 90 000 truth-model-satellite collocations are available at the common scale of 130 km X 130 km. An
alternative means of establishing the model error correlation with distance and azimuth direction from 6- and
18-h forecast differences valid at the same time yield results that are similar to those derived from collocations
with truth rainfall over large domains, but not locally; this result suggests a means of relaxing the assumption
of homogeneity and isotropy of model errors. The sensitivity of the rain rate analysis to different specifications
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of the satellite to model error ratios is shown with an example.

1. Introduction

In meteorology, the goal of objective analysis is to
combine observations with a background field, usually
a 6-h forecast, to produce an analysis on a regular grid.
The objective analysis method most widely used in nu-
merical weather prediction (NWP) centers is that of
“optimum” or “statistical interpolation” (SI; see, e.g.,
Rutherford 1972; Lorenc 1981). More recently, anal-
ysis procedures based on variational methods have been
adopted in a number of centers, aiming at an eventual
4D assimilation; their 3D version gives results that are
largely equivalent to the SI method. The interested
reader can appreciate the growing importance of data
assimilation in the recent literature (Daley 1991;
Courtier et al. 1993). The central problem in SI is the
specification of both background and observation er-
rors and their covariance since these determine their
relative weight. A good part of today’s research aims
at better estimating or predicting these errors locally,
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In this paper, we address the subject of objective
analysis of near-instantaneous rainfall rate using a uni-
variate SI methodology. This approach is usually cho-
sen in NWP centers to analyze humidity, while the
mass and wind fields are analyzed in a multivariate
manner (see, e.g., Shaw et al. 1987; Mitchell et al.
1990). Up to now, few researchers have attempted an
objective analysis of rainfall rate. Tanguay and Robert
(1990) used SI principles to analyze 24-h accumula-
tions from surface observations with a zero background
field. Recently, Bhargava and Danard {(1994) went
further by analyzing 24-h accumulations combined
with a background field produced by a mesoscale model
at 25-km resolution. Grassotti and Garand (1994;
hereafter GG94 ) showed that model instantaneous es-
timates can be combined with satellite estimates to get
an improved estimate, provided the model is used in
situations where it performs the best. This paper con-
tinues the work of GG94 but within the framework of
objective analysis. We are not aware of other publi-
cations combining models and observations of instan-
taneous rainfall. The main reason for this is certainly
the difficulty in obtaining good ground truth of rainfall
at a scale commensurate with that of the forecast
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model. In addition, the SI approach is suitable only if
the model achieves a level of accuracy comparable to
that of the observations and vice versa. The GG94 study
showed that this is indeed generally the case.

The error specification of rainfall is inherently dif-
ficult because it is a discontinuous field; errors are cer-
tainly higher statistically where rain is forecasted than
where it is not. In addition, significant rainfall varia-
tions are observed at scales smaller than the analysis
grid; that problem will be minimized by using, when-
ever possible, observations representative of the analysis
horizontal scale. The model will also suffer some phase
errors resulting in conflicting rain/no-rain situations
from model and observations. It therefore seems logical
to establish some error categories as well as joint model-
observation categories rather than to simply rely on
one overall estimate, independent of the synoptic sit-
uation, for the model and observation errors.

We start in section 2 by expressing the basic SI for-
mulation. The operational Canadian Meteorological
Center (CMC) spectral forecast model is used in col-
location with observed ground truth from the first al-
gorithm intercomparison project (AIP-1) of the Global
Precipitation Climatology Project (GPCP), which was
held over Japan. In addition, visible and infrared sat-
ellite estimates of rainfall based on the GG94 scheme
are also available in collocation with the truth dataset.
The scale of this combined model-satellite—truth rain-
fall dataset is 1.25° latitude X 1.25° longitude (130
km). The model and satellite errors are established as
a function of cloud type. In addition, the ratio of sat-
ellite-to-model errors is established for broad joint
model-satellite categories of rainfall estimates. The
correlation of the errors with distance for both model
and satellite estimates is also derived from the collo-
cated datasets. An alternative means of computing the
horizontal correlation of model errors using differences
of 6- and 18-h forecasts valid at the same time is also
explored. This section is presented with a view toward
the future, hinting at the possibility of predicting model
errors locally and relaxing the current assumption of
isotropy and homogeneity of the error. In section 3,
examples of rain analysis are shown, highlighting the
sensitivity to differing model and satellite errors. The
article concludes with a discussion on means to achieve
an operational implementation in the near future.

2. Data analysis

a. Statistical interpolation

In SI, the analysis A4 is a correction to the background
(or guess) field G, a short-term forecast, via the equa-
tion:

A=G+ > W f,

i=1,N

(1)

with f; = O, — G, where [ is the site of observations
O;, N is their number, G; is an interpolation of the
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background to the observation site, and W} is the weight
to be given to each proposed analysis increment f;.
Assuming observation and background errors are un-
correlated, the system of linear equations defining the
weights W; can be written in dimensional form in terms
of background (B) and observation (O) error covari-
ance matrices:

2 (By+O)W;=B,;, i=

J=LN

I,LN. (2a)

In nondimensional form expressed in terms of error
correlations, (2a) becomes

Opj 00; Opa .
2> i g, T oo =5 (W)= pa— 5 =
j=LN i O bi Obi

l’N’

(2b)

where u; = B o05)”" is the horizontal correlation
of background errors between sites i and j, and »;; is
the corresponding horizontal correlation of observation
errors; o¢; and oy, are, respectively, the observation and
background rms errors at site /, and a designates the
analysis gridpoint location. The customary assumption
of a uniform background error around the analysis grid
point further reduces the complexity of (2b) signifi-
cantly (o, = 04 = 03) and evidences the importance
of the variance ratio (oo/05)? in the determination of
the weights.

While the quality of the analysis will be directly de-
pendent on the quality of the background and obser-
vation estimates, the analysis will be optimum in a
least squares sense if the weights of (2) are used. It
should be noted that (2) implies that there is no sta-
tistical bias in the model or observation estimates, a
situation difficult to achieve in general and for precip-
itation especially. Care must be taken to recognize
sources of potential biases in precipitation data. Satellite
estimates, for example, need to be validated in different
regions and seasons (Arkin and Xie 1994).

In (2b), the horizontal correlations of errors are as-
sumed to be a function of distance alone and isotropic.
For humidity (Mitchell et al. 1990) and for precipi-
tation (as found in this study), the model and obser-
vation horizontal error correlations can be modeled by
the equation

- Dy Dy

off (1+ L)exp( L)’
where D is the distance and L is a length scale to be
determined by a fit to the data. Thousands of collo-
cations (model and truth) binned by distance are usu-
ally necessary to obtain a good fit. Previous studies
using surface observations of rainfall did not consider
the horizontal correlation of observation errors. This
is probably reasonable in that context, but for satellite
estimates originating from a single instrument, one
needs to account for this correlation (Garand 1994;
Sullivan et al. 1993).

(3)
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Equation (2) is general and can be used with any
ensemble of observations. However, for the purpose of
this study, we will consider only satellite estimates de-
rived from visible and infrared imagery. To minimize
the horizontal-scale representativeness error, an effort
was made to use both observations and forecast model
estimates at approximately the same horizontal scale
as the analysis grid.

b. Datasets

The collocated truth-model-satellite datasets used
in this study are as described in GG94. The same
ground-truth data were used by Adler et al. (1993),
Negri and Adler (1993), and other participants of AIP-
1 (Arkin and Xie 1994). The collocated datasets are
all at the scale of 1.25° latitude X 1.25° longitude. The
hourly verification rainfall data were available for June
1989 (715 h) and for the period 15 July-15 August
1989 (747 h). We used the same 63 1.25° areas as in
GG94 (see their Fig. 1), which implies over 45 000
observations in each month. The truth rainfall data are
a composite of radar and rain gauges, with ongoing
calibration of the former by the latter, as described in
Negri and Adler (1993). Over 13 000 rain gauges are
used together with 25 radars. This represents one of
the best truth rainfall dataset that exists at hourly scale
over such an extended domain. In this paper we con-
sider these 1-h accumulations as instantaneous esti-
mates.

TABLE la. Class statistics in June for the VIS~IR scheme. Listed
are the mean observed “truth” probability of precipitation POP, (%)
and rain rate RR,, the mean background (RR;) and satellite rain rate
(RR,), and the corresponding error standard deviation from truth
(mm h™'): ¢, and o,. Satellite-to-background rms error ratio are also
shown.

Class N POP, RR, RR, RR; o g, ooy
1 866 9.1 0.03 020 005 036 0.16 0.44
2 222 1.7 0.02 023 002 029 0.06 0.21
3 530 177 0.06 024 0.10 043 021 049
4 399 21.8 005 0.17 0.05 026 0.12 046
5 314 64 001 0.13 001 022 006 027
6 621 1.8 000 0.10 0.01 0.21 0.04 0.19
7 392 11.5 0.04 0.18 0.05 035 0.16 046
8 1203 66.3 064 0.55 0.65 100 101 1.0l
9 503 233 009 025 0.12 037 031 084

10 422 33 001 0.15 001 027 0.06 022
11 708 1.7 0.01 0.1t 001 027 009 033
12 313 176 0.08 0.21 0.12 045 030 0.67
13 621 478 0.25 031 028 050 044 0.88
14 367 49 0.01 0.11 001 0.19 004 0.21
15 1023 90.5 189 088 207 171 183 1.07
16 705 1.3 0.00 0.11 000 026 002 0.08
17 364 55 003 0.16 0.06 038 0.19 0.50
18 253 1.2 000 0.11 000 021 002 0.09
19 1080 379 026 040 031 074 0.64 0.86
20 461 696 054 044 059 066 075 1.13
21 5628 04 000 004 000 0.12 003 025
22 15  100. 347 1.09 400 200 126 0.63
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TABLE lb. Same as Table 1a but for the IR (night) scheme.

Class N POP, RR;, RR, RR; g, ooy
1 2069 564 1.13 062 143 158 179 1.13
2 637 74 002 007 003 021 0.12 057
3 81 310 0.12 0.3 0.11 026 029 1.1l
4 199 3.0 001 0.02 0.02 007 006 085
5 627 53 002 005 0.03 0.17 0.15 0.88
6 327 49 001 004 001 0.10 005 0.50
7 341 126 003 009 005 0.14 010 0.71
8 512 102 003 005 004 0.18 0.12 0.67
9 402 1.7 0.03 006 0.02 0.15 0.10 0.67

10 562 93 005 009 006 032 028 0.87
11 597 62 001 004 003 0.13 005 038
12 584 46 0.01 0.04 003 0.14 007 0.50
13 225 58 002 0.06 0.01 0.19 008 042
14 281 2.1 000 005 000 0.10 0.02 0.20
15 898 107 006 008 009 030 027 090
16 5402 373 041 037 048 0.78 096 1.23
17 1578 267 0.15 0.15 022 041 043 1.05
18 3743 279 0.17 021 025 046 0.53 1.15
19 304 59 004 006 004 021 023 1.09
20 679 13.1 004 006 004 020 0.17 0.85
21 7125 1.0 000 002 000 0.07 003 042
22 82 915 428 141 4.00 260 242

0.93

The model 6-h forecast rainfall rates were obtained
using the CMC spectral forecast model with 21 vertical
levels and 106 wavenumbers. Forecasts were then in-
terpolated to the 1.25° grid. Model estimates inbetween
the 6-h forecasts were interpolated in time to get values
at every hour. (This is not ideal, but the submission
of forecasts every hour in order to get true 6-h forecasts
at all hours is not practical.) The satellite estimates
used in this study are based on the method presented
in GG94. The last 15 days of June were used to develop
the technique, so that this month represents half-de-
pendent data, while the July-August data are fully in-
dependent data. The method is based on cloud clas-
sification and uses visible ( VIS) and infrared (IR) im-
agery leading to a VIS-IR scheme and to an IR alone
scheme for nighttime retrievals. The classification is
made from only three parameters: cloud fraction (CF),
cloud-top pressure (CTP), and cloud albedo (AL), the
latter being used only for the VIS scheme. Both schemes
(IR and VIS-IR ) have 20 classes, and a mean rain rate
is associated to each class. The two schemes are defined
in Tables 1 and 2 of GG94 in terms of AL, CF, CTP,
and rain rate means. For each scheme, there are two
additional classes: class 21 defines all fields with a cloud
fraction less than 30%—a zero rain rate is assigned in
that class; and class 22 defines all fields with a CTP
less than 170 mb—these very cold clouds (cumulo-
nimbus) are assigned a rain rate of 4 mm h™'. Both
the truth dataset and the model dataset only rarely will
have rainfall rates superior to 4 mm h™!. As one would
expect, the GG94 scheme reflects the fact that rain
rates tend to be higher with colder and more reflective
clouds.
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TABLE 2. Rain-rate error standard deviation (¢) and bias (BI) by joint model-satellite categories for June (J) and July/August (JA) infrared
(IR) and VIS-IR (VIR) schemes. The four categories of background (b) and satellite (s) estimates (mm h™*) are 1) RR, and RR; > 0.1; 2)
RR, > 0.3 and RR;, < 0.1; 3) RR, < 0.05 and RR;, > 0.3; 4) all other cases. Error ratio a,/0;, mean observed “truth” rainfall rate RR,, and

number of samples N are also listed.

Category Data N RR, BI, BI, oy o5 os/op
1 J-VIR 3687 0.85 —0.16 -0.01 1.24 1.16 0.93
2 J-VIR 888 0.35 -0.32 0.32 0.82 0.77 0.94
3 J-VIR 886 0.03 0.59 -0.12 0.39 0.13 0.33
4 J-VIR 11 549 0.01 0.04 0.01 0.18 0.11 0.61
1 J-IR 6649 0.82 -0.16 -0.17 1.26 1.30 1.03
2 J-IR 3105 0.09 -0.06 0.54 0.40 0.59 1.47
3 J-IR 1107 0.11 0.50 —0.09 0.48 0.34 0.71
4 J-IR 18 028 0.02 0.00 0.04 0.15 0.15 1.00
1 JA-VIR 1499 1.15 -0.20 —0.52 1.87 1.44 0.77
2 JA-VIR 409 1.13 —-1.11 —-0.42 1.75 1.59 0.91
3 JA-VIR 1980 0.08 0.67 —0.08 0.52 0.24 0.46
4 JA-VIR 13 878 0.06 0.03 -0.04 0.35 0.23 0.66
1 JA-IR 2683 0.78 —0.12 —0.15 1.71 1.36 0.79
2 JA-IR 1537 0.90 —0.89 —0.01 1.67 1.49 0.89
3 JA-IR 1417 0.18 0.65 -0.17 0.72 0.47 0.65
4 JA-IR 23658 0.07 —0.03 -0.03 0.31 0.29 0.94

¢. Model and satellite errors

As mentioned earlier, it is desirable to detail the
background and observation rainfall errors in order to
consider to some degree the weather situation. This is
in contrast to common NWP practice where the errors
related to meteorological variables may depend on lat-
itude and season but not on the actual synoptic situ-
ation. Here we use cloud classification as a means to
categorize the synoptic situation: model and satellite
errors are estimated in each class. Table 1 presents these
errors for VIS-IR and IR classifiers, along with the
observed probability of rainfall and the mean observed
and model rain rate associated with each class. Here,
RR; is the class rain rate inferred by the GG94 algo-
rithm. The number of samples is of the order of several
hundreds for most classes. While it is immediately ap-
parent that the absolute error increases with the average
value of the inferred rainfall (an expected result), this,
in itself, is not the primary reason for defining error
categories. Indeed, the important term in (2) is the
ratio oo/ 0 rather than gy and o, individually. The last
column in Table 1 lists this ratio (where og = o). It
is noted, for both the IR and VIS-IR schemes, that the
satellite retrievals are clearly superior to the model es-
timates in classes of low or no rainfall. However in
classes of moderate rain rates, such as 8 and 15 of the
VIS-IR scheme and 1, 3, and 16-19 of the IR scheme,
the model estimates are of equal or superior quality to
the satellite estimates. In July/August (errors not
shown by class but broader categories will be discussed
further), the model was systematically poorer than the
satellite retrievals; nevertheless, it performed best in
classes just mentioned, with error ratios in the range
0.7 to0 0.9. Class 22, deep cumulonimbus, is important

because of the high rainfall rate associated with it. For
the 82 samples of the IR scheme, the error standard
deviations ¢, and o, are similar, but the model suffers
a large negative bias. This occurs because the model
cannot localize storms as precisely as the satellite. The
probability of precipitation (POP) in Table 1 is a score
of detection of rain versus no rain, with highest un-
certainty at POP = 50%. In class 22, the POP exceeds
90%. To account for the model difficulty in locating
deep cumulonimbus, the satellite to model error ratio
should be of the order of 0.5 in cases where the model
infers no rain, while class 22 is observed.

The classification process used here is just one way
to categorize the error. Perhaps the categorization is
too detailed since classes associated with significant
rainfall have similar error ratios. The key concept is
that of joint model-satellite categories. In Table 1, the
model and satellite errors are linked by the classification
process. Another way, less detailed but more generally
applicable, to link model and satellite error estimates
in order to improve the determination of o,/ o} is to
define broad joint categories. Four categories come to
mind:

1) model and satellite agree on significant rainfall;

2) model infers little or no rainfall, but satellite infers
significant rainfall;

3) model infers significant rainfall, but satellite in-
fers little or no rainfall;

4) all other cases (mostly little or no rainfall from
model and observations).

Table 2 presents the statistics for these broad cate-
gories, for both schemes and for the two monthly pe-
riods. The thresholds defining the categories are spec-
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ified in the table caption. The ground truth average
rain rate RR, was higher in July/August, characterized
by less frequent but more intense rainfall, than in June
when stratiform rain prevailed. Model and satellite er-
rors were both higher in July/August than in June.
However, the error ratio o,/ o}, of the VIS-IR scheme
was similar for both time periods. The error ratios were
not too different either for the IR scheme of both pe-
riods, except in category 2. There were many false
alarms in June, resulting in the 0.54 mm h™! bias in
category 2, but little bias occurred in July/August. This
bias was due mostly to the significant IR rain classes
1 and 16, in which the observed probabilities of rainfall
were, respectively, 56% and 37% in June, but much
higher in July/August: 78% and 54%, respectively. Due
to this uncertainty in the relative model and satellite
errors, an error ratio of unity could be imposed in cat-
egory 2 of the IR scheme, implying a resulting analysis
that will be a compromise between two conflicting es-
timates. It is worth noting that the occurrence of con-
flicting situations, that is, categories 2 and 3, accounts
for a relatively modest 10%~13% of the cases. This is
quite encouraging for the eventual implementation of
an operational rainfall analysis.

In each period, the error ratio is significantly less for
the VIS-IR scheme than it is for the IR scheme, a
result that is indicative of the true utility of the visible
channel for rain inference (see Cheng et al. 1993, who
support this conclusion ). Another tangible result is the
clear superiority of the satellite in the conflict category
3. The VIS-IR rms error ratio is as low as about 0.40
[ variance ratio of 0.16, equivalent from Eq. (2) to a
weight of 0.86 for a single observational increment at
the analysis grid point]. This simply reflects the fact
that the satellite is very good in detecting regions with
no precipitation: its negative bias is small, whereas the
positive bias of the model is of the order of 0.6 mm h ™!
in category 3. Imposing these low error ratios in these
situations will minimize the negative influence of
model phase errors. The significant differences in error
ratios among the categories in Tables 1 and 2 dem-
onstrate the utility of the categorization.

d. Model and satellite horizontal correlation of errors
1) CLASSICAL APPROACH

The horizontal covariance of model or satellite rain
rate errors is computed from

cov(i,j) = EE, - E E, 4)

where E; is the error at site i, that is, the deviation of
the model or satellite estimate from the radar-rain
gauge observation. The covariance was computed from
the 63 contiguous 1.25° X 1.25° areas in distance bins
between sites i and j. The results are presented in Table
3 for the two time periods and for all hours. The co-
variance is negligible beyond 700 km and is not listed.
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TABLE 3. Model and satellite (Sat) rain rate error autocovariance
[(mm h™")?] as a function of distance (km) for June and July/August:
N—number of samples. Corresponding length scales (km) fitted from
Eq. (3) are also listed.

June July/August

Distance N Model Sat N Model Sat
0 45 045 0.422 0.436 47061 0.581 0.349
126.0 72930 0.177 0207 76194  0.283 0.119
179.2 64350 0.096 0.136 67230 0.172 0.058
264.9 126 555 0.027 0.068 132219  0.053 0.012
345.2 140 855 —0.006 0.031 147159  0.025 0.005
450.1 177320 —0.011 0.00t 185256 —0.011 -0.003
557.8 137995 —0.003 0.003 144171 -0.012 0.003
696.6 231660 -—0.002 0.002 242028 —0.002 0.005

Ly, Ly 66.2  80.0 74.3 58.8

The satellite estimates were derived from the IR scheme
at night and from the VIS-IR scheme in daytime. The
bin at distance 126 km represents all pairs one grid
point away from one another. From Table 3, at zero
distance it is noted that the model and satellite had
very similar error variances in June (corresponding to
armserror of 0.65 mm h™'), whereas satellite estimates
were significantly superior to model estimates in July/
August. The data from Table 3 were fitted using (3).
The resulting fits are shown in Fig. 1. It is seen that

‘the function chosen fits the data satisfactorily. The same

function was used by Sullivan et al. (1993) to fit tem-
perature retrieval errors from polar-orbiting satellites.
This function is also used at CMC to fit humidity errors
(Garand 1994). The Gaussian hill function used by
Tanguay and Robert (1990) was also tried, resulting
in reasonable fits. However, that function appeared to
decrease somewhat too slowly at short distances and
too sharply at larger distances (150 km and beyond).

The radar-rain gauge “truth” dataset is obviously
not free from errors. Assuming that radar-rain gauge
errors at various sites are not correlated horizontally
means that the error component associated with the
verification dataset is zero in (4), except at zero dis-
tance, where the covariance error represents the sum
of the model or satellite errors and that of the radar-
rain gauge. One way to separate the two errors is to
ignore the zero distance data and to fit the function
with the other bins only (Mitchell et al. 1990). The
intercept at zero distance then represents the “true”
model error, and the difference between the total error
and the intercept represents the error of the verification
dataset. This was tried, but for three of the four curves
in Fig. 1, the intercept ended up slightly above the total
error, which cannot be, but is indicative of a low error
for the verification dataset. One curve yielded a radar-
rain gauge error variance of 0.05 (mm h~')2. Based
on this, it was assumed that the radar-rain gauge error
variance was 0.04 (mm h~')?orarmsof 0.2 mm h~'.
This number can be compared with the discretization
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FIG. 1. (a) Rain-rate error covariance as a function of distance for the June dataset: S and M designate the satellite
and model background bin values (Table 3). (b) Same as (a) but for the July-August dataset.

of the radar-rain gauge data of 0.1 mm h~! and with
the approximate 0.7 mm h ™! model or satellite errors.
The M and S at zero distance in Fig. 1 represent the
total error (model or satellite plus radar-rain gauge)
as listed in Table 3 lowered by 0.04. The excellent
quality of the verification dataset is the result of the
ongoing calibration process with a large number of rain
gauges and of the spatial and temporal averaging of
observed high-resolution rain rates to hourly values on
the 1.25° grid, which minimizes an otherwise impor-
tant representativeness error. Thus, it appears justifiable
to compute error standard deviations, as was done in
Tables 1 and 2, assuming a negligible error for the ver-
ification dataset. The quantity of importance in SI, the
error variance ratio, would be insensitive to a verifi-
cation dataset error of that magnitude.

The effect of the length scales is also important. As
seen in Table 3, the resulting length scales (Lo and L)
are consistent in the two datasets. When compared with
June, L, slightly increases in July/ August, whereas the
reverse is true for L,. The average of the two months
suggests a value of about 70 km for both Ly and L,.
Separating the data into low and high rain rates to get
varying length scales did not appear to be warranted
in the sense that the resulting length scales varied only
marginally (about 15%) for both satellite and model.
Using Ly = L, in all conditions greatly simplifies the
interpretation of the analysis resulting from (2). It
means that the weights are controlled almost entirely
by the satellite-to-model error ratio, and the role of the
length scale is to define a smoothing influence up to
about 2.5 L. It is known (see, e.g., Daley 1991; Garand
1994) that ignoring the horizontal error correlation for
observations increases the relative weight of the obser-
vations with respect to the background, and this effect

increases with the density of observations. In more
general terms, with o4/ o, equal to unity, the weight of
the observation increases if Ly < L, and it decreases
otherwise. Thus, the ratio Lo/ L, may amplify or coun-
teract the effect suggested by a ratio ¢,/ o), that differs
from unity.

2) ALTERNATIVE APPROACH TO INFER MODEL
ERRORS

The classical approach just described requires a truth
dataset. For precipitation, gathering truth data at sim-
ilar resolution to that of forecast models is not an easy
task. Also, the errors need to be evaluated over different
regions of the globe, by season, etc. Furthermore, truth
data being typically sparse, it is difficult to obtain 2D
error correlations in order to validate the hypothesis
of isotropy. To infer model errors, one idea that is cur-
rently being investigated at forecasting centers ( Parrish
and Derber 1992) is that of using differences of forecasts
valid at the same time but issued 12 or 24 h apart, for
example, differences between 24- and 48-h forecasts
valid at the same time. The differences between the
two forecasts results solely from the different state of
the model at the initial time of the shortest of the two
forecasts; this difference can be seen as a perturbation
of the initial state, and it is hypothesized that the re-
sulting forecast differences provide a good picture of
the model error. Because no actual truth is used, it is
clear that such a method cannot yield the right absolute
value of the error variance. However, the hypotheses
of interest are that

1) scaling the resulting maps of model error to a
realistic values is possible;
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2) the horizontal (as well as vertical for 3D fields)
correlation of forecast errors can be inferred to very
good accuracy with this method.

Our own investigation at the CMC of the second
hypothesis looks promising in that horizontal and ver-
tical correlations are indeed very similar to those ob-
tained by the classical method. Similar findings were
obtained at the European Centre for Medium-Range
Weather Forecasts (ECMWF; Rabier and McNally
1993).

Here we examine the horizontal correlation of errors
from the difference between a 6- and an 18-h forecast
both valid at 0600 UTC 27 June 1994. Normally, an
ensemble of such forecast pairs would be required, but
since we only examine here the horizontal correlation
of errors (not the horizontal patterns of ¢;), one ex-
ample provides a sample size sufficient for illustration
purposes. The CMC spectral model currently uses 360
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X 180 points on a Gaussian grid at 1° resolution, which
permits one to obtain a large number of pairs at various
distances from a single forecast. The error covariance
can be obtained by Eq. (4). However, a fast approach
exists for this calculation of the autocorrelation over a
gridded domain. Indeed, a result often used in image
processing is that the (discrete) autocorrelation of a field
f(x, y) is the inverse Fourier transform of the power
spectrum of the field (see Rosenfeld and Kak 1982), so
that the sequence of calculations is the following:

1) compute the discrete Fourier transform f(u, v)
of the field f(x, y) represented by the difference be-
tween the 6- and 18-h forecasts with the overall bias
removed;

2) compute the inverse Fourier transform of the
power spectrum |f(u, v)|?, and normalize (its real
part) with the (0, 0) component to get the autocorre-
lation.

FIG. 2. The 6-h forecast rain rate (mm h™") valid at 0000 UTC 27 June 1994.
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FIG. 3. Difference (mm h™!') of 6-h minus 18-h forecasts valid at 0000 UTC 27 June 1994,

The 2D correlation is obtained from all possible dis-
tance pairs (dx, dy, in gridpoint units) between grid
points. A plot of C(dx, dy) reveals the level of isotropy
of the autocorrelation function. The physical distance
between 1° grid points in the north-south direction is
fixed at dy = 111 km, but it varies with latitude (L) in
the east-west direction. More specifically, the physical
distance between sites separated by (dx, dy) gridpoint
units is

d = dy(dx? cos?L + 3y*)'/2. (5)

In the binning process, the average value of cos?L is
used, which between latitudes L, and L, in radians is

cos’L = 0.5 + 0.25[sin(2L,) — sin(2L,)]
X(Ly— L)™' (6)

Three 120° X 120° subdomains were examined,
each between 60°S and 60°N, and starting at longitudes

0°, 120°E, and 240°E. Figure 2 shows the 6-h forecast
rain rate for the subdomain starting at 240° and Fig.
3 shows the difference between the 6- and 18-h rain
rate forecasts valid at 0000 UTC 27 June 1994. It is
noted that phase differences are largest in precipitating
areas associated with frontal zones, as recognized by
the shape of the precipitation pattern in Fig. 2. The
main features in the difference map of Fig. 3 resemble
those present in the 6- or 18-h forecasts. The field of
autocorrelation is nearly isotropic (Fig. 4), and an ex-
cellent fit can be obtained (Fig. 5) from (3), yielding
L, = 76.3 km, a value close to the average of 70 km
found in the previous section. This subdomain coin-
cides with that used for the sensitivity experiments de-
scribed in section 3; therefore, the correlation length
scale ( ~70 km) and the isotropy assumption seem ap-
propriate for these experiments. The subdomain start-
ing at 0° yielded L, = 107.9 km and that starting at
120°E yielded L, = 92.0 km; both with a high degree
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FIG. 4. Autocorrelation function extracted from Fig. 3. Pixels represent unit grid size distances (dx, dy).
Only the center portion of the pattern is shown: center pixel (white) represents zero distance.

of isotropy. In the latter subdomains (not shown), it
was verified that the precipitation was organized at a
slightly larger scale, especially over tropical oceans, as
opposed to the finer structure shown in Fig. 2. A 40°
X 40° area centered on Japan had a mean L, of 66
km, again similar to that obtained over the same area
in the previous section, but the 2D pattern of corre-
lation was slightly elongated in the northeast-southwest
direction. Subdomains were examined in regions of
fronts oriented at some angle with respect to the east—
west direction. There the horizontal correlation struc-
ture was strongly anisotropic (elongated ) at the same
angle as the front. Bellon et al. (1993) have shown the
importance of using anisotropic interpolation in re-
gions where rain patterns are elongated. Our results
suggest that further research is warranted along the lines
of detecting anisotropic error structures in real time by
the method of forecast differences. Such studies are
beyond the scope of the present paper. The important

point that we wish to convey is that there is hope of
defining realistic model error structures locally and to
relax the assumption of isotropy.

3. Example of analysis

To assess the sensitivity of the analysis to variations
in the satellite-to-model error ratios, five analyses at
1200 UTC 27 June 1994 were made, each with a dif-
ferent error ratio. For all experiments, the values of L
and L, are fixed at 70 km. The analysis grid is Gaussian
at 1° X 1°, while the satellite observations are on a
latitude-longitude grid also at 1° X 1°. The two grids
share the same longitude boundaries, but the latitudes
have an offset of 0.5°. For each grid point, observations
up to 300 km are considered, implying typically 25
observations, hence a 25 X 25 matrix system to solve
for the weights in (2). That system is solved by an
iterative procedure using a steepest-descent algorithm
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Fi1G. 5. Fit of the autocorrelation data in Fig. 4 as a function
of distance; a length scale L, = 76.3 km is found.

(Faddeev and Faddeeva 1963). The assumption of a
locally uniform background error was used. It was
found that unrealistic weights can occur in regions
containing sharp discontinuities of o, because the
background error correlation, derived from overall
statistics, 1s not representative of such situations. These
problems are avoided if the assumption of a locally
uniform background error is used. Specifically we solve
the system:

z [#ij+”fj(@) (ﬁ) ]Wj=uai; i=L N (7)

j=1,N Op Gp j

The analyses are obtained from a 6-h forecast issued
at 0600 UTC of the selected day and satellite estimates
based on 1200 UTC images using the GG94 algorithm,
that is, based on the rain rate means RR; listed in Table
1. Figure 6a shows the satellite estimates for a portion
of the GOES-7 satellite disk. There are a few missing
lines near 30° latitude. The rainfall analysis is equal
to the 6-h forecast where there is no data within 300
km. Most estimates in Fig. 6a are based on the IR
scheme since cloud albedo information was available
only on the extreme eastern portion of the GOES disk.
Figure 6b shows the corresponding 6-h forecast. A good
degree of similitude between the two pieces of infor-
mation is apparent, which is in accordance with earlier
statements on the relatively low occurrence of rain ver-
sus no rain conflicts between the model and satellite
estimates. At the CMC, humidity profiles derived from
a VIS-IR classification (Garand 1993) are used in the
operational humidity analysis and therefore contribute
to the similarity between model and satellite rain rate
patterns. However, in this particular case, such hu-
midity profiles were not used at 0600 UTC that day.
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The five analyses were made over the 70° X 70°
domain, all using the four error categories defined in
section 2. In each experiment the satellite rain rate es-
timates were identical, namely, the values based on
Table 1, but with different values of the satellite-to-
background error ratios. These ratios o,/ o, are listed
in Table 4 for the five experiments. In “EQUAL” the
standard deviation ratios are all set to unity, whereas
in “PERFO” they are set to 0.1, simulating a nearly
perfect satellite observation. In “IR” and “VIS-IR”
the ratios are based on a compromise between the June
and July/August results shown in Table 2. The
“SSM /T test uses VIS-IR ratios arbitrarily multiplied
by 70% in order to simulate higher quality retrievals
that could be available from microwave imagery (the
Special Sensor Microwave /Imager: SSM/I). An ex-
periment using weights based on the 22 classes was
also made, but the results turned out to be very similar
to those made using the corresponding (IR or VIS-
IR) four categories. For the IR, VIS-IR, and SSM/I
experiments, a fifth category (listed in Table 4) is
added: when class 22 occurs (rain rate of 4 mm h™'),
the ratio is set at 0.5 (0.35 for SSM/1) if the model
infers no or little rainfall (<0.3 mm h'); the rationale
for this was previously discussed in section 2.

The resulting analyses for PERFO, EQUAL, and
VIS-IR are shown in Figs. 6¢-e. In the PERFO ex-
periment, the analysis closely resembles the satellite
estimates, but some smoothing extending to the im-
mediate neighbors is apparent due to the length scale
of 70 km; such a length scale implies an influence of
the observation up to about 250 km (Fig. 1). Com-
parison of the EQUAL and VIS-IR analyses reveals a
good degree of similitude in terms of location and in-
tensity of rainfall. Nevertheless, the positive effect of
the categorization is particularly clear in regions where
the model infers rain and the satellite disagrees. These
regions include the northeast of Cuba and south of
Guatemala near 10°N, 90°W, where the VIS-IR anal-
ysis reduces the precipitation inferred by the model
significantly, while EQUAL, as expected, blends the
two estimates equally. The VIS-IR scheme also main-
tains sharper contrasts, especially where maximum es-
timates of 4 mm h™! occur. Figure 6f shows the dif-
ference between the analysis and the background (A4
— B) for the VIS-IR experiment. Strong positive re-
gions are mostly associated with the 4 mm h™! esti-
mates (class 22), which have a strong weight. Largest
negative sectors (white) are associated with category 2
(satellite infers no rain, models disagrees).

In the domain of Fig. 6, there were 1480 grid points
where either the model or the nearest satellite obser-
vation (distant by about 65 km) or both had estimates
superior to 0.1 mm h™'. For those grid points, the rms
difference between the analysis and the model back-
ground | 4 — B| and between the analysis and nearest
observation | 4 — O] are listed in Table 4 along with
the corresponding mean difference. For the ensemble
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(d)

FIG. 6. (Continued)
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FIG. 6. (Continued)

(e)
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TABLE 4. Satellite-to-model rms ratios by joint satellite-model
rainfall category for five observing simulations: equal (EQUAL)
weights, IR and VIS-IR schemes, SSM/I assumed errors, and nearly
perfect observations (PERFO). Bias and rms distance of the resulting
analysis to guess field (4 — B) and to the nearest observation (4
— O) are listed for the case shown in Fig. 6 along with the mean
analyzed rain rate. These statistics are based on 1480 points where
either the model or the observation infers rainfall.

Standard deviation ratio o,/0,

Category EQUAL IR VIS-IR SSM/T PERFO
1 1.00 0.90 0.85 0.60 .10
2 1.00 1.00 0.92 0.64 0.10
3 1.00 0.68 0.40 0.28 0.10
4 1.00 1.00 0.63 0.44 0.10
5 1.00 0.50 0.50 0.35 0.10
Field statistics (mm h™')
A—-—B 0.09 0.22 0.17 0.18 0.18
|4 — B| 0.45 0.78 0.74 0.81 0.89
A-0 -0.11 0.02 —-0.03 —0.02 —-0.02
|4~ 0| 058 048 0.45 0.41 0.39
A 0.38 0.51 0.46 0.47 0.47

of 1480 points, the mean observed rain rate was 0.49
mm h~!, and the mean background rain rate was 0.29
mm h~!: there was an overall (O — B) difference of
0.20 mm h~'. The mean analyzed rain rate, 4, shows
that all analyses, with the exception of EQUAL, tend
to produce an overall mean rain rate similar to that of
the observations. As expected, the analysis gets closer
to the observations and farther away from the back-
ground as o,/ g, decreases. For example, the distance
{ 4 — B| in EQUAL is about one-half that in PERFO.
However, that distance is slightly smaller in VIS-IR
than it is in the IR experiment (by 0.04 mm h™!) de-
spite a significantly lower ratio o,/ ;. This is caused
by the effect of the horizontal correlations and the en-
semble of participating observations, which make pos-
sible an analysis at a grid point lying outside the range
defined by the background and the nearest observation;
in such situations the analysis will be closer to both
the nearest observation and the background as the
weight of the observation increases.

Tests were conducted using observations up to 200
km, that is, the nearest nine observations (rather than
about 25). The results were only marginally different,
with distant 4 mm h ™! observations increasing some
increments by about 0.4 mm h™!; this was expected
given the sharp decrease of error correlation with dis-
tance. Tests were also made assuming no correlation
of errors for observations assumed to belong to a dif-
ferent category (differing by more than 0.25 mm h™');
resulting analysis increments usually differed by less
than 10%, but with local differences up to 0.8 mm h™"
noted in the vicinity of maximum rain rates; the net
effect there was to reduce the maxima as rain rates of
differing types were considered more like independent
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information. Perhaps this latter approach would be the
best to take. Finally, tests were made assuming no cor-
relation at all for observation errors (v; = 1 for i = j;
0 otherwise). The difference between VIS-IR analyses
without and with error correlation is shown in Fig. 7.
The satellite data had clearly more weight, with higher
analyzed rain rates (up to 0.9 mm h™! in southern
Manitoba) in sectors where the observed rain rates were
higher than the background and lower analyzed rain
rates in the reverse situation (typically 0.2-0.5 mm h ™!
over the eastern United States and over the ocean to
the southwest of Mexico).

4. Discussion

This study has shown that forecast models provide
rainfall-rate fields of sufficient accuracy to be used with
observations in an objective analysis scheme. Over the
oceans, a possible scenario would involve an analysis
combining 6-h forecast rain-rate fields, VIS, and IR
estimates from geostationary satellites and microwave
estimates from polar orbiters, using channels such as
those of SSM/I. Over land, observations from ground
stations would contribute, but the CMC has found these
rain gauge measurements to have a significant repre-
sentativeness error relative to model fields. As models
produce forecasts at higher resolution (responding to
topographical effects), we expect this problem to di-
minish. Radar observations, properly calibrated, also
represent a very valuable data source. In any case, there
is a need to average or sample the data to approximately
the same scale and to quantify the observation errors
at that scale.

A key element of this study was the estimation of
the observation and background errors. We found it
very desirable to categorize the errors in at least a few
classes; this is not customary for conventional obser-
vations in operational weather analysis but has been
used with some forms of satellite data (Sullivan et al.
1993). The concept of joint model-observation cate-
gories of errors was proposed, with emphasis on the
satellite-to-model ratios rather than the determination
of each individual component. We found this ratio to
be very low in the case when the satellite does not infer
rainfall while the model does. In the converse situation,
the satellite and model errors appear to be roughly
equivalent for the VIS-IR technique used, but we ex-
pect microwave satellite and radar estimates to show
some advantage in that case.

Another important aspect was the specification of
the horizontal correlation of model and satellite errors.
Using a conventional collocation method, these were
found to be negligible beyond 250 km. We also inves-
tigated an alternative approach for computing the
model error correlation function by using the difference
between 6- and 18-h forecasts valid at the same time.
This approach yields a very similar correlation function
for large domains, but not locally, and suggests a means
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FIG. 7. Difference between the VIS-IR rainfall analysis (mm h™') performed without consideration of the
horizontal correlation of observation errors minus that performed with (i.e., Fig. 6¢) consideration of this

correlation.

to obtain maps of the error standard deviation and to
relax the current hypothesis of error isotropy.

The applications of a near-real time (delay of a few
hours) analysis of rainfall are numerous. Global cli-
matologies of rainfall are only starting to be assembled
from different sources. The objective analysis approach
offers a good framework to accomplish this task without
having to assemble massive amounts of data after the
fact. There is a need for a timely rainfall analysis that
can serve as input to soil moisture schemes within me-
soscale prediction models (Smith et al. 1994). Finally,
rainfall analyses can be used to improve the initial state
of the atmosphere via diabatic or physical initialization
(see, e.g., Puri and Miller 1990; Krishnamurti et al.
1994 ) or through some humidity enhancement in pre-
cipitating areas. Although the issues of error estimation
and validation of satellite techniques remain challeng-
ing, a global analysis of instantaneous rainfall appears
feasible from the current availability of satellite esti-

mates and from the quality of short-term forecasts at
a horizontal scale on the order of 100 km.
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