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ABSTRACT

The purpose of this paper is twofold. First, a formalism is presented that extends the conceptual framework
identified by Ritchie as the “semi-Lagrangian method without interpolation.” While his words for this concept
refer to a particular class of semi-Lagrangian approximations, the idea is actually much more general. The
formalism may be used to convert any advection algorithm into the semi-Lagrangian format, and it makes
most algorithms sufficient for the integration of flows characterized by large Courant numbers. The formalism
is presented in an arbitrary curvilinear system of coordinates. Second, exploiting the generality of the theoretical
considerations, the formalism is implemented in solving a practical problem of scalar advection in spherical
geometry. Rather than elaborating on Ritchie’s semi-Lagrangian techniques employing centered-in-time differ-
encing, the focus is on the alternative of forward-in-time, dissipative finite-difference schemes. This class of
schemes offers attractive computational properties in terms of the solutions’ accuracy and preservation of a sign

or monotonicity.

1. Introduction

A complaint with traditional numerical methods for
general circulation models (GCMs) is that they usually
lead to negative values in the positive-definite scalar
fields (e.g., water substance fields, chemical tracers,
etc.), or in more general terms, to spurious numerical
over- and undershots in regions of steep gradients in
these variables. To preserve the positivity of the field,
GCMs have traditionally used various (more or less
arbitrary ) computational “fixes” to eliminate spurious
negatives. However, the more restrictive monotonicity
preservation requirement has been addressed only re-
cently (Williamson and Rasch 1989; Rasch and Wil-
liamson 1990a, 1990b) in terms of shape-preserving
interpolation in conjunction with the semi-Lagrangian
transport approach. The method developed by Wil-
liamson and Rasch represents one variant of the many
monotone methods developed in the field of compu-
tational fluid dynamics (see, for example, Sweby 1984;
Zalesak 1987, for reviews). These other techniques,
however, are usually designed to deal with the problem
in simple geometries, and their implementation on the
sphere is not always straightforward or efficient. In this
paper we shall consider an alternate approach for solv-
ing the transport problem. The goal of this study is to
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provide a general formalism that allows for either Eu-
lerian or semi-Lagrangian implementations of existing
transport schemes in an arbitrary curvilinear frame-
work. Consequently, the theoretical formulation is de-
veloped in general terms of an arbitrary geometry and
transport technique. In applications spherical geometry
will be used as an important focus for the problem,
and the theoretical considerations will be illustrated
with selected monotone finite-difference advection
schemes.

The difficulty with traditional numerical methods
for GCMs is that they may require much smaller time
steps (due to numerical restrictions associated with the
gridpoint distribution ) than the time step required to
model the relevant physical scales of interest (see, for
example, Williamson 1979; and Rasch and Williamson
1990b, for detailed discussion). The Courant-Fried-
richs-Levy (CFL) stability condition (necessary for the
convergence of numerical integrations) represents a
potential disadvantage of an Eulerian finite-difference
transport scheme. This makes a semi-Lagrangian ap-
proach especially attractive for GCM applications as
it circumvents the CFL criterion (particularly restric-
tive near the poles) and replaces it by a much weaker
condition characteristic of methods for integrating or-
dinary differential equations of parcels’ trajectories. The
semi-Lagrangian approach has developed dynamically
in the last decade (e.g., Robert 1981, 1982; Bates and
McDonald 1982; McDonald 1984; Robert et al. 1985;
Ritchie 1985, 1986, 1987; Staniforth and Temperton
1986, Temperton and Staniforth 1987; Williamson and
Rasch 1989; Ranc¢i¢ and Sindji¢ 1989) and has proved
to be a useful tool for many large-scale applications.
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In this paper a semi-Lagrangian option of an arbitrary
transport scheme is developed; the adopted approach
extends the original ideas of Ritchie (1986). This semi-
Lagrangian option will retain many useful properties
of the original scheme such as sign or monotonicity
preservation; however, in general it loses the conser-
vation property of flux-form schemes. The generality
of the semi-Lagrangian option is illustrated with
examples of applications to the multidimensional
positive-definite advection transport algorithm
(MPDATA) (Smolarkiewicz 1983, 1984; Smolar-
kiewicz and Clark 1986; Margolin and Smolarkiewicz
1989; Smolarkiewicz and Grabowski 1990) and to the
flux-corrected transport (FCT) versions of Tremback
etal. (1987) schemes. We compare the properties, per-
formance, and efhiciency of conservative Eulerian and
nonconservative semi-Lagrangian sign-preserving and
monotone schemes on the sphere using idealized tests
relevant to GCM applications.

The paper is organized as follows: section 2 outlines
the elementary considerations about the analytic for-
mulation of the advection problem in a curvilinear
system of coordinates and establishes the conceptual
framework used in the rest of the paper; section 3 sum-
marizes certain general properties of finite-difference
Eulerian schemes; these properties are important for
the development in section 4 of the semi-Lagrangian
option of Eulerian finite-difference advection schemes;
section 5 illustrates the theoretical considerations with
idealized tests of scalar advection on a sphere; and the
summary of our conclusions is presented in section 6.

2. Analytic formulations of the advection problem

The general conservation law describing the advec-
tive transport of an intensive scalar variable ¥ in an
arbitrary curvilinear framework is

9 € + § 9 Gpv’ 0

a0+ 2 g Sy =0 (1)
Here M is the dimensionality of the problem, and X
=(x', « « -, x) and  have the usual meaning of spa-
tial and temporal coordinates. The density and velocity
of a fluid are denoted by p and v = dX/dI, and 9 = 9(x)
is the Jacobian of the coordinate transformation
det(dx’/0x7) from the Cartesian to the curvilinear
framework x — X, (see, for example, Gal-Chen and
Somerville 1975). In order to simplify further discus-
sion, (1) is normalized with respect to arbitrarily se-
lected spatial and temporal scales Ax and At, such that

x
AX 7 At

Implementing (2) in (1) results in the familiar con-
servation form of the evolution equation for y

(E,r)=( )ERMXR‘. (2)

d
5, (5P¥) + V- (Spay) = 0, (3)
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where @ = vAt/AXxand V = (8/d¢', - - -, 3/9EM). By
using the mass conservation law [ = 1 in (3)] one
can construct the advective alternative to (3)

—ai+a°V¢=0.

or (4)
The general solutions to (3) and (4) may be formally
written at an arbitrary point (£, 7,) as

(Sp9E, ) = (Sp¥)(E, 7o)
- [" 9+ Soa, nar ()

and

Wer) =tk )~ [ (@) dr, (6)

respectively.

Yet other (Lagrangian) forms of the general solution
follow from (4). Equation (4) implies invariance of y
along a parcel’s trajectory

WE, 1) = W&o, 7o), (7

where

b=t+ [ adr=t-an-r).  ®

71
As a consequence of the Stokes theorem for differ-
ential forms (see, for example, Flanders 1963, section
5.8)

d
Wt ) - wes ) = [ (@, dl)-(a—‘f,w), )

where C denotes an arbitrary contour connecting two
arbitrary points (£, 7;) and (§*, 7,) of the M + 1 di-
mensional domain (2). Implementing (4) in (9) gives

W(E, 1) = (€% 75) — fc(adf —dn-Vy. (10)

Exploiting the arbitrariness of the contour selection in
(10), we consider two types of contours (see Fig. 1 for
a schematic outline of the geometric configuration).
A contour of the first type consists of two segments;
the first segment lies entirely on the 7 = 7, plane and
connects (£*, 7,) with (§&,, 7,), whereas the second
segment connects (&,, 7,) with (§, 7;) through the tra-
jectory (8). Since the integral in (10) vanishes along
the trajectory, (10) reduces to a simple form

Wt =wes )+ [ vy, an
where C' connects (£*, 7,) with (&,, 7,) still in an ar-

bitrary manner.! We chose for C' a segment of the
straight line of the parametric equation

! For the special case M = 1 in (2), C’ necessarily becomes a
segment of the straight line.
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a0 ={E=E 0 +er r]

AE[7,,71]. (12)

Although the parameter A in (12) assumes the same
limits as the dimensionless time 7 along the trajectory
(8), A must not be confused with 7 as along C’ 7 is
constant and equal to 7,,.

A contour of the second type considered in (10),
C”in Fig. 1, connects (£*, 7,) with (&, 7,) directly, i.e.,
without passing through (&,, 7,); herein, we employ a
segment of the straight line of the parametric equation

£—¢&*

T —

(13 T)(A)=[ (>‘_To)+£ AJ

AE[7o, 71], (13)

where, in contrast to (12), 7(A) = X for all A € [7,,
7,] implies 7 = A.

Implementing (12) in (11) and (13) in (10) gives
the alternatives to (7)
g - &
o T1 — To

X Vy(l, 7,)dN  (14a)

WE, 1) = UEX, 7o) —

and

WE, 1) = WEX, 10)

T _ g
-[ (aa,f){l —

(4 o

)-Vx//(l, 7)dr, (14b)

where integrals in (14a) and ( 14b) are evaluated along
(12) and (13), respectively.

The formal solutions (5), (6), (7), and (14) are
equivalent even though they emphasize different as-
pects of scalar advection. This equivalence is lost, how-
ever, where their discrete approximations are con-
cerned. The next section summarizes the general as-
pects of finite-difference approximations to (5) and (6)
important for the development of the semi-Lagrangian
option in section 4.

3. Finite-difference advection schemes

From the generality of the coordinates in (1) and
the arbitrariness of the normalization in (2) it is as-
sumed that the approximate solutions for y are sought
on a uniform, discrete mesh with spatial increments
equal to unity in each of M directions. In other words,
it is assumed that the eventual inhomogeneity of the
computational grid has already been included into &
(the resulting ¢ framework is often referred to as logical
coordinates; see, for example, Dukowicz 1984).
Choosing the temporal scale in (2) equal to the tem-
poral interval after which the solution is required im-
plies 7; — 7, = 1 in (5) and (6). In order to compress
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FIG. 1. A schematic outline of the geometric configuration of points
and contours appearing in Egs. (9) to (14). The two plains represent
R¥ spaces at different time levels.

the notation in the following numerical equations, we
choose 7, = n and & = i for the points of the compu-
tational grid, and adopt e; for the unity vector in the
I direction [i.e., e, = (0, ++ -, 1, -+, 0) with 1 ap-
pearing at the I position].

With the foregoing assumptions, a general flux-form,
finite-difference approximation to (5) may be com-
pactly written as

1
n+lg

n
P
wt = P W Z (Fir12e = Fi172e1)
i

if=t
(15a)

where

Fliioe, = Yir1 26,8841 /2e, = F(§, &) (15b)

may be viewed as an approximation to the / component
of the integrated 9pa’y flux in (5), evaluated at £ = i
+ '2e; based on the information provided in a local
neighborhood of the i + Y2¢; grid point. The density p
and the Jacobian § do not appear explicitly in (15b)
since they are included into either ¥ or & (i.e., either
V=ypSanda =a,ory =y and & = pSa). The
temporal position of the ¥’s and &’s employed in (15b)
may be n, n + %, or n + 1, which corresponds to dif-
ferent approximations of the integral in (5). An explicit
form of the functional dependence F = F (¥, &) relating
fluxes to quantities defined on the computational grid
specifies a particular advection scheme. The require-
ment that the fluxes in (15) are single-valued functions
of Y’s and o’s from a local neighborhood implies
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v

Li (16)

74 = !
Fi+l/2e; = Fi+e1—l/2ep

which ensures the global conservation of §py consis-
tent with the analytic equation (3). Because of this
property the approximations (15) are also referred to
as conservative advection schemes.

For the purpose of further development it is con-
venient to view the finite difference approximations to
(6) as a special implementation of flux-form schemes
in (15). Putting in (15) p, § = const. and allowing
double-valued fluxes such that

v

1 _ 1
I Fiv1)2¢, = Yirr 26 and
b

FiL e, = Yic1 207, (17a)

results in

M
W == 2 (Floyoe — Floijze),  (17b)
=1

which approximates (6 ) using the same functional de-
pendence ¥ (¥, a) employed by a conservative scheme
in (15). In other words, one can use a conservative
advection algorithm defined by its functional depen-
dence on the transported scalar and flow field to form
a consistent approximation to (6) providing that
FL )2, and Fl 2, in (17) use the same . [The re-
verse is also true, i.e., a nonconservative approximation
to (6) can be used to construct a conservative scheme
consistent with (3); see, for example, Tremback et al.
1987.]

Although the numerical solutions in (15) and (17)
approximate the equivalent exact solutions to the ad-
vection equations (3) or (4), they have different dis-
tributions of truncation errors and consequently dif-
ferent properties. The most apparent difference be-
tween the two classes of schemes is that ( 15) conserves
¥ consistently with the analytic equation (3), whereas
(17) does not—except for the special case of constant
§ and a. In contrast, (17) maintains uniform fields
consistently with (4), whereas (15) does not, unless
special precautions are undertaken [e.g., for y = const,
the algorithm in ( 15) must reduce to that for the mass
conservation law]. The less obvious, but equally note-
worthy differences between (15) and (17) are in the
accuracy of solutions for variable flows. In particular,
in the category of the forward-in-time (dissipative) ad-
vection schemes, the conservative algorithms in (15)
offer entirely second-order-accurate solutions for ar-
bitrary flows (see, for example, Smolarkiewicz and
Clark 1986, section 3), whereas (17) contains first-
order error terms proportional to partial derivatives of
a no matter how accurate are the approximations to
(3) or (4), derived customarily for the uniform flow
case.
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4. Semi-Lagrangian option of Eulerian advection
schemes

A finite-difference algorithm in (15) or (17) usually
needs to satisfy the CFL stability condition, which re-
quires « to be appropriately bounded, i.e.,

la] <@ €ER!, (18)
where the constant @ depends on the algorithm em-
ployed. From the viewpoint of the physical processes
described by (1), the computational mesh in (15) is
already determined by the choice of characteristic scales
Ax and At. Such a discretization does not necessarily
satisfy (18), which in general may require temporal
increments much smaller than those dictated by phys-
ical considerations. On the other hand (7) informs us
that the solution to the advection equation may be
provided by solving the ordinary differential equation
(8). Numerical techniques for integrating ordinary dif-
ferential equations usually require the stability criterion
of the type

6]l < B ER! (19)
(see, for example, Potter 1973, chapter 6), where ||6«||
is a measure of the variation in « along a path of in-
tegration, and the constant B depends on the technique
selected. The condition in (19) relates the stability of
the numerical integration to the variability of the flow
field. In particular, (19) implies that in a uniform flow
there 1s no restriction on the time step in the evaluation
of (8) and consequently (7). This contrasts with (18),
which relates the stability of an advection scheme in
(15) or (17) to the magnitude of the flow field.

Although (7) circumvents the CFL condition in
(18), it is not sufficient to provide the solution on a
discrete grid. In general, &, in (7) does not coincide
with a point of the computational grid (at which the
solution is immediately available), and the rhs of (7)
needs to be determined based on interpolation from a
local neighborhood of &,. This establishes the basis for
the traditional forms of the semi-Lagrangian method.
Different interpolation techniques lead to a variety of
semi-Lagrangian schemes. Implementation of (14) al-
lows one to replace interpolation operators with ad-
vection operators of desired properties, and this forms
the basis of the concept of a “semi-Lagrangian method
without interpolation” (Ritchie 1986).

The arbitrariness of £* in (14) allows us to select

£ = [&], (20)

where [r]=([r'], - - -, [r™]) denotes the point whose
coordinates are the nearest integer of the components
r. With this choice £* becomes the point on the com-
putational grid nearest to &,, and & — [£,]/7 — 70
becomes a vector of integers when £ coincides with a
grid point. Defining

Xgdxwkhqwlfdwhg#«#Grzgordghg#442



15 MARCH 1991

=[] - &, (21a)
[a] = £ L8] (21b)
Ty — To

and writing the exact solutions (14) on the computa-
tional grid results in

n+1
W = Y — f e Vyd\,  (22a)

and

n+1
G = ;'_m—f (a —[a]):Vydr, (22b)

where the integrals in (22a) and (22b) are evaluated
along the contours

IN=i—[a] —«X—n), 7(\)=n,

AE([n,n+1] (23a)

and
I(7)=i—[a] +[a]l(r —n), r€[n,n+ 1], (23b)

respectively. A schematic outline of the geometric con-
figuration associated with (22) and (23) is provided in
Fig. 2.

By design € in (22a) is constant along (23a) and the
rhs of (22a) formally represents the exact solution to
the advection equation 3¢/ /d\ + €+ V¢ = 0 in the fixed
grid point i — [a] = 1(A\) + &« A — n) of the coordinate
system translating with —e. One may interpret (22a)
to mean that the frozen-in-time value y{ (o) = ¥"*'
is reported by an observer at i — [a] after his entire
mesh has been displaced by —e (a control volume ap-
proach interpretation; see, for example, Dukowicz and
Kodis 1987). Since by design e < 1, the solution
(22a) may be approximated with any forward-in-time
advection scheme in (17) [or (15) with p = § = 1].
The centered-in-time schemes are not attractive for
(22a) since with this design V1 is not available at the
midpoint of the interval in (23a). The constancy of e
has important implications. First, given an exact eval-
uation of the departure point i — [a] — ¢, the accuracy
of the approximation to (22a) is that of the advection
scheme employed in the approximation. In particular,
all common experience with a variety of advection
schemes, both in terms of the Taylor series expansion
and the von Neumann linear analysis, is immediately
applicable to (22a): the truncation error is that of the
advection scheme, and the amplification factor for a
wavenumber vector k is that of the advection scheme
multiplied by exp(—ik - [e]). Second, a straightforward
application of the alternate-direction (time-split) flux-
form schemes becomes attractive since it does not suffer
from the first-order truncation errors proportional to
the deformation of the flow field (see, for example,

Petschek and Libersky 1975; Smolarkiewicz 1982);
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FIG. 2. A schematic outline of the configuration of points and
vectors appearing in relationships (22). The two plains represent
M-dimensional grids at different time levels. The heavy dot in the
(i ~ ||, n) grid box represents the departure point , of the trajec-
tory (8).

note also that the alternate-direction approximation
may be justified by the selection of the appropriate
contour in (12) or (23a). These properties are well
illustrated in Bates and McDonald (1982) and Mc-
Donald (1984), where in their multiply upstream
schemes with linear, quadratic, and quartic interpo-
lation operators we recognize (22a) approximated us-
ing the upstream and Crowley’s (1968) second- and
the “fourth”-order accurate schemes.

The interpretation and consequences of (22b) are
somewhat different. The rhs of (22b) represents the
formal solution to the advection equation ¢ /d7 + («
— [a]): V¢ = 0 at the fixed grid point i — [a] = 1(7)
— [a](7 — n) of the inertial framework moving with
velocity [«]. As in (22a) it may be approximated with
a variety of advection schemes in (17). In contrast to
(22a), since « appears under the integral in (22b) and
may vary arbitrarily, the CFL condition is automati-
cally satisfied only in a sense of the von Neumann sta-
bility analysis (for uniform flow a — [a@] = €). This
special case, however, is of no interest as the entire
problem of large Courant number integrations then
reduces to a trivial application of Galilean transfor-
mation to the advection equation (4) and consequently
to its finite difference approximations (17). In general,
a may be always cast into the constant and the fluc-
tuating part a = [a] + éa, which shows that the CFL
condition for (22b) reduces to the requirement that
|6a|| remains appropriately bounded over the temporal
interval in (22b). In other words, the CFL stability
condition for (22b) reduces to that of a type for ordi-

Xgdxwkhqwlfdwhg#«#Grzqordghg#442



798

nary differential equations (19).2 It is important to re-
alize that the effective velocity a — [a] in (22b) varies
in time along (23b) even if the original flow in (6) only
varies in space. Thus, in order to achieve second-order-
accurate solutions one needs to consider advection
schemes employing centered-in-time approximations
to the temporal derivatives [see, for example, Ritchie
1986, in whose noninterpolating semi-Lagrangian
scheme we recognize an approximation to (22b) using
a spectral advection scheme]. The approximations with
forward-in-time, dissipative schemes are possible but
unattractive. As discussed in section 3, in a general
flow case such schemes will never achieve fully second-
order accurate solutions. This contrasts with (22a)
where (due to the constancy of ¢) the dissipative
schemes offer, in principle, arbitrary accuracy ( Trem-
back et al. 1987) given an exact prediction of the de-
parture point.

The exact solutions (22a) and (22b), forming the
basis of the semi-Lagrangian option of Eulerian ad-
vection schemes, may be derived in a different manner
using a Galilean transformation, or a control volume
approach, or even the exact Taylor formula. The ar-
guments adopted in this paper, however, have the ad-
vantage of exposing a common root of the different
forms of the solutions as well as the degree of freedom
associated with the design of the semi-Lagrangian op-
tion. From the same fundamental principles one can
derive forms different from (22); however, since the
entire approach originates from and finally approxi-
mates (4), the global conservation property consistent
with (3) will always be lost (except for the special case
of uniform flow in a Cartesian framework). Providing
a stable evaluation of (8) the implementation of either
(22a) or (22b) makes most advection algorithms suf-
ficient for the integration of flows characterized by large
Courant numbers. Among common schemes, those
employing centered-in-time differencing are advanta-
geous in applications with (22b) but unattractive for
(22a), whereas those employing forward-in-time dif-
ferencing are perfectly suited for (22a) and unattractive
for (22b). Moreover, the dissipative schemes imple-
mented with (22a) are generally more attractive than
the centered-in-time approximations in (22b) due to
their simplicity, stability, and accuracy properties. We
shall proceed with this class of approximations because
it is particularly well suited for applications with a va-
riety of monotone and/or sign-preserving advection
schemes.

In the next section, the theoretical framework de-
veloped earlier is applied to the practical problem of a
sign or monotonicity preserving, finite-difference ad-
vection in spherical geometry. Both the conservative

2In the limit [a] = 0, da = a, Eq. (22b) = Eq. (6), and (18)
holds. This contrasts with (22a): if [a] = 0, ¢ = & [see (8)], (22a)
reduces to (7), and (19) holds.
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Eulerian schemes in (15) and their nonconservative
semi-Lagrangian options in (22a) are examined.

5. Sign-preserving and monotone finite-difference ad-
vection on the sphere: Idealized test solutions

a. The test problem

As a test problem we examine a solid-body rotation
on the sphere (Williamson and Rasch 1989). The axis
of rotation is not coincident with the polar axis of the
spherical coordinate system. The resulting flow field is
nondeformational and generally has no particular
symmetries with respect to the coordinate system.
Herein, only the results from the most difficult (com-
putationally) case is presented, where the initial per--
turbation rotates over the poles. The formal details of
the test problem are provided in appendix A; only its
general configuration is outlined here.

The uniform computational grid consists of 128
points in longitude, and 64 points in latitude (2.8-deg
spacing ). This mesh has the same number of nodes as
the T42 Gaussian grid typically used in a spectral
model; tests with the Gaussian grid will be briefly dis-
cussed later. The wind field is designed such as to cover
one full revolution of a given initial condition around
the globe (starting from a point on the equator and
passing over both poles) in 256 iterations, using the
semi-Lagrangian option of the Eulerian advection
schemes. Although the entire revolution could be cov-
ered in a single time step, this number of iterations has
been chosen in order to correspond to the number of
iterations required for typical applications with a spec-
tral GCM. With this design the Courant number for
finite-difference Eulerian schemes reaches a magnitude
of ~16 near the poles. In order to ensure the com-
putational stability, the integrations with Eulerian
schemes are performed with a time step reduced by 20
times, i.e., the entire revolution around the globe is
covered in 5120 iterations. Two types of the initial
conditions are considered: 1) a conical distribution that
varies from 1 at the center to 0 over a great-circle dis-
tance corresponding to 7 grid points in longitude at
the equator, and 2) a cylindrical shape that is 1 within
the same radius, and 0 outside that radius. The first
test shape allows us to identify the tendency of the
algorithms to “clip” the peak value, whereas the second
shape helps to expose the difference between the sign-
preserving and the monotone algorithms.

In order to assess the quality of the numerical results,
we consider the following global measures of errors:

min(y;") — min(y;°)
EMIN(n) = — max( %0') ,

(24a)

max (¢;") — max(;°)
EMAX(n) = — p— ¢_0') ,

(24b)
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{2 %" = vo(i, m)]°8:} 2

ERRO(n) = — —— , (24c)
Z "9

ERRI(n) = S 1, (24d)
Z (%)%

ERR2(n)EW— 1, (246)

where ¥, denotes a true solution on the computational
grid. The quantities EMIN, EMAX, ERRO, ERR1, and
ERR?2 represent, respectively, the minimum value mi-
nus the true minimum value normalized by the true
maximum value, the maximum value minus the true
maximum value normalized by the true maximum
value, the root-mean-square error of the solution nor-
malized by the true maximum value, and the nor-
malized errors of the mean and the variance of the
field. These measures are designed so that if the true
solution and numerical solution match, then the mea-
sure is zero.

b. Benchmark solutions—Eulerian MPDATA

The conservative Eulerian solutions to the test prob-
lem were obtained with the MPDATA schemes whose
theory, properties, and performance were broadly doc-
umented in Smolarkiewicz (1983, 1984), Smolar-
kiewicz and Clark (1986), Margolin and Smolarkiew-
icz (1989), and Smolarkiewicz and Grabowski (1990).
MPDATA iterates the first-order-accurate donor-cell
scheme of form (15). The first iteration provides a
low-order solution to the transport problem, whereas
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the following iterations compensate the truncation er-
rors of the donor-cell scheme by again using the donor-
cell scheme, but with specially defined pseudovelocity
fields. The pseudovelocities are derived from the field
that is being advected and have no physical significance;
they are defined so as to compensate the error terms
of the previous iteration. The MPDATA family of al-
gorithms offers a variety of options of different accu-
racy, computational efficiency, and complexity levels.
All MPDATA schemes are conservative, sign preserv-
ing, and at least second-order accurate for an arbitrary
flow field, in an arbitrary curvilinear system of coor-
dinates. The metric term & appearing in (3) is explicitly
incorporated into the schemes (section 3.3, Smolar-
kiewicz and Clark 1986), which allows for easy appli-
cation of the algorithms to the problem at hand. The
nonoscillatory (monotone) option (Smolarkiewicz and
Grabowski 1990) is applicable with any version of
MPDATA. The results of a series of experiments using
various MPDATA options (including the donor-cell
scheme as a special case) are summarized in Table 1.
In the following, we shall discuss selected solutions that
emphasize certain important-for-applications proper-
ties of the MPDATA schemes.

Figure 3 shows the solution to the test problem
(cone) obtained with the simplest second-order-accu-
rate MPDATA scheme. The solution is strictly sign-
preserving and conservative; however, it suffers from
such apparent inaccuracies as artificial deformation
(elongation in the flow direction), spurious displace-
ment of the solution in the flow direction (related to
the phase error), and the implicit diffusivity (the peak
value is =54% of the original value and the variance
error is ~ —30%; Table 1). These results are consistent
with those for the similar test problem in a Cartesian
framework (see, for example, Smolarkiewicz 1984),
and they are not significantly related to a particular
geometry of the problem. Increasing the number of the

TABLE 1. The results of the test problem after one revolution of the initial condition around the globe (5120 time steps) using conservative,
Eulerian MPDATA schemes. The three numbers in the first column denote, respectively, a number of the iterative applications of the
donor-cell scheme, the order of the scheme, and the status of the monotone option (0—off, I—on). The values of the error characteristics
were put to zero where they reflected round-off errors (<107'2). The CPU column provides information about the CPU time consumption

for the fully vectorized advection calculations on a Cray X-MP48.

Scheme EMIN EMAX ERRO ERRI ERR2 CPU (s)
Cone tests
MPDATA-1, 1,0 0.0 —0.84 0.056 0.0 —0.63 7.8
MPDATA-2, 2,0 0.0 —0.46 0.034 0.0 —0.31 41.9
MPDATA-3, 2,0 0.0 -0.33 0.030 0.0 —0.18 76.4
MPDATA-4,2,0 0.0 -0.30 0.029 0.0 —0.15 110
MPDATA-3, 3,0 0.0 ~0.17 0.015 0.0 —0.13 150
MPDATA-3, 3, | 0.0 -0.28 0.015 0.0 -0.14 246
Cylinder tests
MPDATA-3, 3,0 —0.07 0.13 0.057 0.0 -0.002 151
MPDATA-3, 3, 1 0.0 -0.0003 0.053 0.0 —0.004 243

Xgdxwkhqwlfdwhg#«#Grzqordghg#442



800

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 48, No. 6

SO W

eemnaz®

FIG. 3. The second-order, Eulerian MPDATA solution to the cone test problem after one
revolution around the globe (5120 time steps). Contour lines of the solution (solid lines) are
displayed on an orthographic projection with the perspective centered over the true solution

(dashed lines). The contour interval is 0.1.

corrective iterations reduces the amplitude of the trun-
cation errors and improves the results (see Table 1),
which is consistent with the previous experience with
MPDATA schemes (Smolarkiewicz 1984; Smolar-
kiewicz and Clark 1986; Margolin and Smolarkiewicz
1989; Smolarkiewicz and Grabowski 1990).

Figure 4 documents properties of the solution ob-
tained with the third-order-accurate> MPDATA
(Margolin and Smolarkiewicz 1989). Comparing the
result with that in Fig. 3 shows a dramatic improvement
of the solution’s accuracy. Both the artificial defor-
mation and the phase error are much smaller compared
to the second-order solutions, the maximum value is
over 80% of the initial value, and the variance error is
somewhat larger than 10% (Table 1). The solution is
strictly sign-preserving and conservative. Although the
solution does not exhibit apparent over- and/or un-
dershots, it is not strictly monotonic. This may be seen
in Fig. 5a, which shows the error characteristics (24a—

3 The third-order accuracy refers customarily to the constant coef-
ficient limit; in variable flows the solution is formally second-order-
accurate as it contains third-order error terms proportional to the
derivatives of the flow field.

¢) as a function of time. The small-amplitude oscilla-
tions along the EMAX curve and the two characteristic
kinks, appearing as the perturbation passes over the
poles, illustrate the lack of monotonicity preservation
in the solution. Application of the monotone option
of MPDATA suppresses these oscillations (Fig. 5b).
In terms of overall accuracy, the monotone solution
(Fig. 6) is close to that generated with the oscillatory
MPDATA (Fig. 4). The error characteristics ERRO
and ERR2 are similar in both cases; however, EMAX
has been made about 10% more negative (Fig. 5, Ta-
ble 1).

The small-amplitude oscillations and the polar kinks
(Fig. 5a) may represent acceptable errors, and the im-
provements offered by the monotone option may not
always be worth the effort. This must be judged for
each particular problem. However, it should be re-
membered that the conical test shape exposes weak-
nesses rather than strengths of the monotone option.
Since all MPDATA schemes are sign-preserving, the
numerical undershooting characteristic of higher-order
schemes, which usually leads to spurious negatives,
does not appear in these solutions. In order to empha-
size the issue of monotonicity, we compare the oscil-
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FIG. 4. The third-order Eulerian MPDATA solution to the cone test problem (cf. Fig. 3).

latory (Fig. 7) and the monotone (Fig. 8) third-order-
accurate MPDATA solutions for the cylindrical test
shape placed on a constant background field of unity.
The solution in Fig. 7 exhibits numerical oscillations
with an amplitude of about 10% of the maximal true
field value (about 20% of the height of the cylinder).
The monotone solution in Fig. 8 is free of the oscil-
lations, while it closely matches the overall accuracy
of the oscillatory solution (Table 1). Note that the or-
ders-of-magnitude reduction in ERR2 compared to
those for previous tests does not reflect adequately in-
creased accuracy of the solutions but is due to the nor-
malization in (24e).

¢. Semi-Lagrangian option

The semi-Lagrangian option (22a) is implemented
as a simple two-step procedure. The first step is com-
mon to all semi-Lagrangian schemes. It determines the
departure points £, of the trajectories arriving at (i,
+ 1) grid points (using a desired technique for inte-
grating ordinary differential equations), their nearest
adjacent grid points [£,], and the displacements be-
tween the adjacent and the departure points . The
second step implements an advection scheme of desired
properties over a neighborhood of every [£,] using ve-

locity e constant within this neighborhood. The con-
stancy of e allows for the alternate-direction applica-
tions of one-dimensional, forward-in-time flux-form
schemes without degrading the formal accuracy of their
constant coefficients limit. In contrast to the general
case (3), there is a great variety of methods suitable
for integration of the one-dimensional, constant coef-
ficient advection problem. In order to illustrate the
performance of the semi-Lagrangian option (22a), we
have chosen the second-, fourth-, and sixth-order-ac-
curate representatives of a family of “constant-grid-
flux” dissipative schemes of Tremback et al. (1987).
The monotone option of these schemes has been coded
following a general FCT procedure (see, for example,
Zalesak 1979, Smolarkiewicz and Grabowski 1990).
In this paper the two steps of the semi-Lagrangian pro-
cedure are separated assuming exact integrations of the
trajectories. Hence, the only errors in the solutions are
those inherent in the advection scheme itself. In prac-
tical applications the choice of the advection scheme
and trajectory integration technique should be corre-
lated in terms of the overall accuracy and efficiency of
calculations.

Table 2 summarizes the results of the cone test using
the semi-Lagrangian option of the Tremback et al.
schemes. Figure 9 shows the solution for the second-
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F1G. 5. The error characteristics (24a-c) displayed as a function
of time. The time has been normalized to unity, so that at times
0.25, 0.5, 0.75, and 1.0 the true solution passes over the North Pole,
the equator, the South Pole, and returns to its initial position at the
equator, respectively. The upper panel shows EMIN (solid line),
EMAX (short dashed line), and ERRO (long dashed line) for the
solution in Fig. 4, whereas the lower panel shows the same charac-
teristics for the equivalent monotone solution (Fig. 6).

order-accurate scheme (also, Crowley 1968). The so-
lution is more accurate than that for the simple con-
servative MPDATA (Fig. 3); however, it is both non-
conservative and oscillatory. The overall accuracy of
the solutions improves dramatically when increasing
the order of the scheme from 2 to 4 (not shown). In
applications where the 3% undershots and 0.02% con-
servation errors are acceptable, the solution offers ac-
curacy and efficiency of computations with which no
conservative MPDATA scheme (Table 1) can com-
pete. Increasing the order of the implemented scheme
from 4 to 6 improves the results even further. Figure
10 shows the test result using the sixth-order-accurate
scheme. In the figure, this solution is hardly distin-
guishable from that for the fourth-order scheme (not
shown) and, also, from the exact solution (dashed line)
if the dispersive ripples are disregarded. If the mono-
tonicity or sign-preservation properties are one of the
primary concerns, the FCT option may be used. How-
ever, as follows from Table 2, the price to be paid is a
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degradation of the overall accuracy of the computations
(which is not surprising since the FCT procedure mixes
high-order and low-order schemes). Note that the sec-
ond-order scheme exhibits a large, =~~7% global mean
error ERR1, whereas the higher-order schemes con-
serve mass with an accuracy to =~1.5%. For the sake
of conciseness the monotone solution corresponding
to that in Fig. 10 is not shown. The two solutions appear
similar, except that the monotone one is free of un-
dershots and has a 10% smaller peak value (similar to
that of Figs. 5a,b). Note that in terms of overall ac-
curacy, the Eulerian MPDATA schemes (Table 1) are
competitive to the current algorithms, especially since
they offer mass conservation within the accuracy of
round-off errors.

As in section 5b, there is a question of whether the
monotone versions of the semi-Lagrangian schemes
are worth the effort. To demonstrate attractive aspects
of this option, we again consider the test with the cyl-
inder placed on the constant background. Figure 11
shows the semi-Lagrangian solution using the sixth-
order Tremback et al. scheme. The corresponding,
monotone solution is displayed in Fig. 12. The nu-
merical values of the errors for the two solutions are
provided in Table 2. As for the Eulerian MPDATA,
the oscillations with the amplitude of ~20% of the
height of the initial perturbation are effectively sup-
pressed by the monotone option without substantial
degradation of the overall accuracy of the solutions.
Again, note that the orders-of-magnitude reduction in
ERR1 and ERR2 compared to those for the cone tests
does not reflect adequately increased accuracy of the
solutions but is due to the normalization in (24d)
and (24e).

To demonstrate the universality of the semi-La-
grangian option (22a) it has also been tested with the
MPDATA schemes discussed in the previous section.
In general, the resulting semi-Lagrangian algorithms
cannot compete with those based on the fourth- or
higher-order-accurate schemes of Tremback et al. in-
sofar as the accuracy, efficiency of computations, and
simplicity of coding are concerned. The semi-Lagran-
gian MPDATAs offer an accuracy comparable at best
to that of the monotone versions of the Tremback et
al. schemes. For the sake of illustration, included in
Table 2 are the results of the cylinder test using the
most attractive (in terms of the accuracy vs cost) ver-
sion of semi-Lagrangian MPDATA. The corresponding
solutions are shown in Figs. 13 and 14. In principle, it
is possible to design more accurate and efficient
MPDATAS (see, for example, Margolin and Smolar-
kiewicz 1989); however, they will never achieve the
simplicity of the Tremback et al. schemes.

The tests discussed in this and the previous section
were also performed on the Gaussian grid, traditionally
applied in spectral models on the sphere (see appendix
B for details), with a view toward applications in a
hybrid mode with spectral methods. The overall out-
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FIG. 6. The monotone solution to the cone test problem using the third-order
Eulerian MPDATA scheme (see Fig. 4).

FiG. 7. The third-order Eulerian MPDATA solution to the test problem with the initial
condition consisting of a cylinder placed on the constant background.
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FIG. 8. The monotone solution to the cylinder test problem using
the third-order Eulerian MPDATA scheme (see Fig. 7).

come was similar to that discussed earlier. However, lutions than the conservative Eulerian schemes that
unlike the equiangular grid solution, the Gaussian were insensitive to the inhomogeneity of the grid. This
semi-Lagrangian solutions often generated noisier so- is due to the fact that the residual velocity € cannot be

TABLE 2. The results of the test problem after one revolution of the initial condition around the globe (256 time steps) using the semi-
Lagrangian option of the selected Tremback et al. and MPDATA schemes. The two numbers appearing after “TREMBA” denote the order
of the implemented scheme and the status of the monotone option (0—off, 1—on); the numbers appearing after “MPDATA” have the
same meaning as those in Table 1. The CPU column provides information about the CPU time consumption for the fully vectorized
advection calculations on a Cray X-MP48. After Williamson and Rasch (1989), a second-order-accurate trajectory calculation would require
8.6 X 107 s per grid point per timestep; with the current grid configuration this would add 18 s to the CPU time of each test.

Scheme EMIN EMAX ERRO ERRI ERR2 CPU (s)
Cone tests
TREMBA-2, 0 -0.16 -0.21 0.023 -0.0012 —0.038 2.8
TREMBA-4, 0 -0.03 -0.12 0.004 —0.0002 -0.0034 9.72
TREMBA-6, 0 -0.02 -0.10 0.003 -0.0001 —0.0013 30.9
TREMBA-2, 1 0.0 -0.34 0.022 0.074 —0.128 8.65
TREMBA-4, 1 0.0 -0.24 0.006 -0.016 -0.077 18.35
TREMBA-6, | 0.0 \ -0.23 0.005 -0.013 —0.063 42.4
Cylinder tests
TREMBA-6, 0 —0.08 0.09 0.036 -4 X 1076 —0.001 30.6
TREMBA-6, 1 0.0 —0.0004 0.042 -—0.0002 -0.0035 423
MPDATA-3,2,0 —-0.04 0.05 0.046 5% 1073 —0.0022 33.2
MPDATA-3,2, 1 0.0 0.0 0.045 0.0004 —0.0025 85.3
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FIG. 9. The semi-Lagrangian solution to the cone test problem after one revolution around
the globe (256 time steps) using the second-order Tremback et al. (1987) scheme. Contouring
convention is the same as in Fig. 3.

FIG. 10. The semi-Lagrangian solution to the cone test problem using
the sixth-order-accurate Tremback et al. scheme (see Fig. 9).
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FIG. 11. The semi-Lagrangian solution to the test problem with the initial condition consisting
of a cylinder placed on a constant background using the sixth-order Tremback et al. (1987)
scheme.

F1G. 12. The semi-Lagrangian solution to the cylinder test problem using a monotone version
of the sixth-order Tremback et al. (1987) scheme (see Fig. 11).
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