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ABSTRACT

Advanced data assimilation methods are applied to simple but highly nonlinear problems. The dynamical
systems studied here are the stochastically forced double well and the Lorenz model. In both systems, linear
approximation of the dynamics about the critical points near which regime transitions occur is not always
sufficient to track their occurrence or nonoccurrence.

Straightforward application of the extended Kalman filter yields mixed results. The ability of the extended
Kalman filter to track transitions of the double-well system from one stable critical point to the other depends
on the frequency and accuracy of the observations relative to the mean-square amplitude of the stochastic forcing.
The ability of the filter to track the chaotic trajectories of the Lorenz model is limited to short times, as is the
ability of strong-constraint variational methods. Examples are given to illustrate the difficulties involved, and
qualitative explanations for these difficulties are provided. '

Three generalizations of the extended Kalman filter are described. The first is based on inspection of the
innovation sequence, that is, the successive differences between observations and forecasts; it works very well
for the double-well problem. The second, an extension to fourth-order moments, yields excellent results for the
Lorenz model but will be unwieldy when applied to models with high-dimensional state spaces. A third, more
practical method—based on an empirical statistical model derived from a Monte Carlo simulation—is formu-
lated, and shown to work very well.

Weak-constraint methods can be made to perform satisfactorily in the context of these simple models, but
such methods do not seem to generalize easily to practical models of the atmosphere and ocean. In particular,
it is shown that the equations derived in the weak variational formulation are difficult to solve conveniently for
large systems.

1. Introduction and motivation four versions of the extended Kalman filter (EKF) and
several variational methods. Ultimately, we expect to
use the experience gained from the simple models to
guide the application of these advanced techniques to
practical problems in data assimilation for the atmo-
sphere and ocean. We focus therefore on the qualitative
nature of data assimilation in nonlinear problems rather
than on the attributes of any one model or scheme.
Nonlinear systems exhibit a wide variety of behavior
. ot L types. Here we concentrate on two closely related, in-
I Preliminary results of this investigation were presented at the  (yingjcally nonlinear phenomena: bimodality and chaos.
nternational Symposium on the Assimilation of Observations in Mp— Stochasti ltimodali . . hibi
teorology and Oceanography, Clermont-Ferrand, July 1990, by Mil- tOC_ astic m"f Flmo ality ans‘?s fn systems that exhibit
ler and Ghil, and at the Assembly of the International Union of Ge- multiple equilibria deterministically. Some systems
odesy and Geophysics, Vienna, August 1991. with multiple equilibria are observed to change
abruptly from one equilibrium state to another as the
Corresponding author address: Dr. Robert N. Miller, College of pqramc?ters change. This type of behavior is aSSOCIa,ted
Oceanic and Atmospheric Sciences, Oregon State University, Ocean-  With bifurcation. One standard example of bifurcation
ography Admin. Bldg. 104, Corvallis, OR 97331-5503. in solid mechanics is the buckling of an elastic beam.
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The purpose of this study is to investigate the be-
havior of advanced data assimilation methods in the
context of simple highly nonlinear systems that exhibit
such characteristic nonlinear behavior as bifurcation
and chaos. The advanced methods implemented are
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When a beam is compressed along its length, linear
theory predicts that the beam will shorten under com-
pression, according to Hooke’s law. The linear theory
fails when the force of compression becomes so great
that the beam buckles. Such bifurcation phenomena are
widely known and studied in the physical and biologi-
cal sciences (May 1973; Rinzel and Miller 1980; Ma-
suda 1982; Guckenheimer and Holmes 1983; Chao
1984; Ghil and Childress 1987).

Chaos is the term used to describe the apparently
random behavior exhibited by certain deterministic dy-
namical systems. The best-known example is the cel-
ebrated Lorenz (1963 ) model, a truncation of the Ray-
leigh—Bénard equations describing convection. Cha-
otic behavior, however, is not restricted to models with
low-order truncation, but has been shown rigorously to
exist in many fluid systems described by the full equa-
tions of motion (Témam 1988; Constantin et al. 1989).
Chaotic behavior has also been observed in the labo-
ratory for many types of flow (e.g., Libchaber 1985).
In this study, we use two qualitative examples which
exhibit nonlinear behavior of particular interest, in or-
der to examine the expected performance of data assim-
ilation methods for strongly nonlinear systems.

What do we want from data assimilation methods in
the presence of nonlinearity? Our provisional answer
is that, in the case of bifurcation, we want our scheme
to indicate the correct qualitative state of the system;
that is, we do not want the model to tell us that the
beam is buckled if it is straight, and vice versa.

In the case of chaotic behavior, our objective is sim-
ilar in that we want our scheme to indicate the correct
quantitative state of the system in the short term, and
the correct qualitative state of the system in the long
term. We also need reliable error estimates: we do not
want the model to tell us that its predictions are reliable
when, in fact, they are no better than chance.

Ghil et al. (1981) suggested that, based on experi-
ence with highly suboptimal operational data assimi-
lation in meteorology, the EKF should be the method
of choice for extending the Kalman filter, known to be
optimal for linear systems, to the nonlinear ones en-
countered in atmospheric and oceanic dynamics. Kush-
ner (1967), however, applied the EKF to the Van der
Pol equation and found that the filter became unstable
and failed to produce useful estimates of the model
state. He modified the EKF to obtain a stable filter by
adding an estimate of the fourth moments in terms of
the covariances, while the standard EKF is formulated
entirely in terms of covariances, that is, second-order
moments, and higher-order quantities are neglected. In
Kushner’s example the data consisted of very sparse
measurements of only one of the state variables, and
the measurement error had a standard deviation the
same size as the total amplitude of the periodic motion.

While Kushner’s (1967) results prompt us to ap-
proach the problem with some caution, extensive ex-
perience with the EKF in the engineering literature
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(e.g., Gelb 1974) indicates that it works quite well un-
der less extreme conditions. In particular, Budgell
(1986) in oceanography and Lacarra and Talagrand
(1988) in meteorology have shown that the successive
linearizations, which form the basis of the EKF, work
well when advective nonlinearity is not combined with
strong instability. We study here the performance of
the EKF along with an extension through third and
fourth moments, and an empirical simplification of the
latter using Monte Carlo simulation.

A number of investigators have applied variational
formulations to nonlinear problems in meteorology
(Sasaki 1958) and oceanography (Provost and Salmon
1986). In these methods, one defines some measure of
total error, usually referred to as a ‘‘cost function’’ or
‘‘objective function,”’” and estimates the values of the
control parameters, which minimize the total error in
this sense. As a simple example, the cost function might
be the mean-square difference between the model so-
lution and observed data, and the parameters might be
the initial values on a finite-difference grid for the
model. In most practical problems, the dimension of
the space of control parameters is so large as to make
Newton-type methods unfeasible; hence descent meth-
ods are used, typically conjugate gradient methods. The
gradient of the cost function is calculated by solving
an adjoint problem; this can be readily derived by the
standard formalism of the calculus of variations. For
this reason, such methods are sometimes known as
‘‘adjoint methods.”’

In recent years, a number of adjoint methods have
been applied to prototype problems in numerical
weather prediction (e.g., Courtier and Talagrand 1987,
Derber 1989). More recently Gauthier (1992), in a
study similar to the present one, applied an adjoint
method to the Lorenz model and used the results for
guidance in analysis of an adjoint calculation with a
nondivergent barotropic model on the sphere. Such
methods have also been proposed for diagnostic anal-
ysis of the mean ocean circulation. by Schriter and
Wunsch (1986) and by Tziperman and Thacker
(1989). These methods are appealing in that they are
conceptually simple and potentially economical in
terms of computing resources and they use all of the
available data in a natural way. Error estimates for the
control parameters can be calculated using the Hessian
of the cost function with respect to these parameters
(e.g., Tziperman and Thacker 1989), but this is a re-
source-intensive calculation, comparable in effort to
computation of error covariances in the Kalman filter.
Detailed error estimates for the complete analyzed
fields are hard to come by in this framework, while they
are a natural by-product of the EKF.

There is a well-known underlying duality between
variational inverse calculations and the Kalman filter
(Bennett and Budgell 1989 and references therein;
Gaspar and Wunsch 1989; Ghil and Malanotte-Rizzoli
1991, section 5.4:1 and Table 4). One may calculate
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the solution of the variational problem by the Kalman
smoother, an augmented form of the Kalman filter in
which all of the data in the time interval of interest are
taken into account. As in the Kalman filter, error co-
variance estimates are calculated. This calculation can
be extremely costly; the variational methods owe much
of their economic advantage precisely to the fact that
one can avoid it. We investigate several variational
techniques in detail in the present work and compare
them to the EKF and to other extensions of the Kalman
filter for nonlinear problems.

In this study, we apply advanced data assimilation
techniques to two simple systems of nonlinear ordinary
differential equations (ODEs): the stochastically
forced double-well model and the aforementioned Lo-
renz model. A derivation of the extended Kalman filter
is presented in section 2. Results of data assimilation
experiments with the double-well system are described
in section 3. Results for the Lorenz system are given
in section 4. Section 5 contains a brief summary and
discussion of results. Details of the numerical methods
used to calculate solutions of stochastic differential
equations are given in appendix A, and a discussion of
the statistical characteristics of trajectories of the Lo-
renz model appears in appendix B.

2. The extended Kalman filter (EKF): Derivation
and basic assumptions

Statistically optimal analysis methods for nonlinear
systems involve, theoretically, an infinite number of
equations for the moments. This is formally identical
to the closure problem in turbulence theory, and can be
illustrated by a simple formal calculation. Begin with
the ODE: '

x = f(x)

and try to estimate the expected value £ of x; we shall
also use E( ) to denote expected value. We have %

= f(x) # f(£) unless fis linear.
The easiest thing to do is expand fin a Taylor series:

F(x) = f(&) + (x = D (D)
+(1/2)(x = DEF"R) + - - -
Thus,
F) =f(R) + (x—2)f (%)
——
+ (1/2)(x—f)2f"(f) + -
e,
—£(2) + (1I2)PF(£) + (116)(x — )" (%)

e
+ (1724)(x — B*f"(X) + - -,

e
where P = (x — £)? is the variance or centered second
moment. We may write an equation for P:
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P=(x—-%)*=2(x—f(£) +2Pf' (%)
P N
+ G- DD + DG - DD

"
+ o = 2PFI(E) 4 (x — D)PF(X)

P
+(1/3)(x = D"+ e

The expression for the evolution of the second-order
moment involves therewith the third moment, and so
on. The extended Kalman filter (EKF) can be easily
derived in the discrete form in which it is actually im-
plemented. Assume that the evolution of the underlying
natural system is given, following the notation of Ghil
et al. (1982), by

Xir1 = f(xl) + 0bg, (2.1a)
while the model system is given by
X = F(x8); (2.1b)

the superscripts ¢, f, and a denote ‘‘truth,”” *‘forecast,”’
and ‘‘analysis,”” respectively, subscripts denote time
step, and b, is a Gaussian white sequence with unit var-
iance. By ‘‘analysis,”” we mean our best estimate of the
state variable at an observation time.

We can find an expression for the evolution of the
error variance P corresponding to the discrete form of
the stochastic differential equation described above.
The evolution of the error itself is given by

Xhor = Xtar = () = f(x8) + Obin
= (W= XDf (D) + 5 5k = xDF”
+ 2 (xd = 2" (x)
+ o0 (xk = XD (xD)

+ -0+ O'bk+1. (2.2)

Squaring and taking expected values leads to
Pl = E[(¥}r — x{1)’]
= E[(xi — x)?1(f ' (xD))?
+ E[(xi = xD° I GO + f 1 (x) " (x8)
+ E[(xt ~ xD*]

X (}; (F"(xD)* + §f'(xz>f'"(xz))

+ -+ 0% (23)
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The simplést way to close (2.3) is to discard mo-
ments of third and higher order. This approach yields

Pl = E[(xk — x)21(f' (x£))? + o2
= Pi(f'(x0)* + o (2.4)

If there is an observation x7,, at time step k + 1, the
innovation x4, — x,{ﬂ may be combined with the fore-
cast state x,{“ to form the analysis x¢,, by the formula

Xe+1 = xl{+l + K1 (X541 ~ X{+1), (2.5)
where K., is the Kalman gain, given by
Kioi = PL/(P{ + R), (2.6)

and R is the observation error variance. The analysis
error variance is given by

Pi = (1 = Keut) Pl (2.7)

Formulas (2.1) and (2.4) through (2.7) define the
EKF for a scalar system. Generalization to vector sys-
tems is straightforward (cf. Jazwinski 1970). The pre-
diction is given by

xia = f(x§), (2.8a)

where x is the state vector and f is the nonlinear func-
tion that defines the state evolution. The covariance
evolution is given by

P/, = [Df]1P:Df]" + Q, (2.8b)

where P,f’“ is the model-forecast (analysis) error-co-
variance matrix, Q is the system-noise covariance ma-
trix, and Df is the matrix of partial derivatives of f
evaluated at the current analysis point x§. The obser-
vation process is described by

(2.8¢c)

where x§., is the vector of observations at time #,,, H
is the matrix that relates the true state vector x4, to the
observation vector x%.,, and by,, denotes the obser-
vation noise. We could relax the assumption that the
measurement functional is linear, at the cost of a slight
increase in complication.

The update is given by

— t
Xpr1 = HXigq + b,

X1 = X{+1 + K1 (Xk1 — Hxl{+1) (2.8d)
and the Kalman gain matrix K., by
Kiri = PLHT(HPL HT + R)™, (2.8e)

where R is the observation noise covariance matrix.
The error covariance of the updated state vector is
given by

P = (1 — K H)PL,. (2.8f)

3. The double-well potential
a. Overview

The double-well model is a stochastically forced
nonlinear scalar ODE with equilibria at O, 1, and —1.
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Of these, 0 is unstable and 1 and —1 are stable in the
absence of stochastic forcing. When weak stochastic
forcing is applied, the system will stay near one of the
stable equilibria most of the time. Occasionally, how-
ever, a sequence of perturbations will occur that forces
the system to the other stable equilibrium; this is what
is meant by a transition in such a system. This is not a
bifurcation in the same sense as the buckling of a beam,
but it allows a first test of the ability of the EKF to
follow state transitions. Weak stochastic forcing is the
conceptual counterpart, in this simple model, of sub-
grid-scale noise in a realistic model of the ocean or
atmosphere. Systems of this form have been proposed
as models of terrestrial climate in which the two equi-
libria represent conditions like the present (‘‘normal
conditions’”) and ice ages (Nicolis and Nicolis 1981;
Sutera 1981). )

The underlying deterministic dynamics are given by
the following simple nonlinear scalar system:

X=f(x)= —4x(x? - 1). (3.1)

This can be viewed as a system whose dynamics are
given by the negative gradient of the potential function
F(x) = x?(x? - 2).

From this point of view, wells appear at x = 1 and
x = —1 while a relative maximum occurs at x = 0. Any
solution of this equation that does not have its initial
value exactly equal to zero will tend to one of the two
stable equilibria. If stochastic forcing is applied, the
resulting stochastic differential equation is

dx = f(x)dt + odb, (3.1")

where b is a Wiener process whose increments have
unit variance. Eventually, the random process will gen-
erate a long enough series of increments with the same
sign that the system will move from the basin of at-
traction of one equilibrium state to that of the other. An
asymptotic formula due to Kramers (1940) for the
mean residence time  in each well is given by

T [F(O)—F'(l)]

0 ~ [_Fli(O)F"(l)]1/2 €x 0,2/2

for o < F(0) — F(1).

To make meaningful comparisons with the existing
theory of transitions between the two ‘‘states’” of a
double-well model, we must first determine what we
mean by a state transition. Naively, one would think
that a transition takes place when two successive states
take on different signs, but this is not satisfactory be-
cause x = 0 is a fixed point of the system (albeit an
unstable one), so the trajectory of the system will often
remain in the vicinity of x = 0 for a while, taking on
both signs, before falling definitely into one basin or
another. We expect from experience that the boundary
layer, which forms about x = 0, will have width pro-
portional to o (Schuss 1980).
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We chose 02 = 0.24 in (3.1") and used the trape-
zoidal rule (see appendix A) to integrate it. In numer-
ical experiments with integration times up to 100 000,
Kramers’s formula does not give a reliable estimate of
#. Ultimately, for sufficiently small o, Kramers’s for-
mula would be reliable, but the time between state tran-
sitions would then be extremely long [see discussion
of these difficulties and further references in Ghil and
Childress (1987), pp. 324-328 and 350-351].

b. The extended Kalman filter

1) EFFECTIVENESS IN DIFFERENT PARAMETER
RANGES

As long as the state variable remained in one well or
the other, the EKF functioned reliably, producing ac-
curate estimates of the state and the error variance, for
all reasonable parameter choices. The ability of the sys-
tem to track transitions of the state from one well to
the other varied with the accuracy and frequency of
observations. Results of three experiments with differ-
ent outcomes are shown in Fig. 1.

In the run depicted in Fig. 1a, the filter tracked the
true system reliably, producing a state transition as
soon as observations sensed it. In Fig. 1b, a case with
less accurate observations, the filter failed to track the
state transition. Corrections in the right direction were
produced, but they were of insufficient magnitude to
force a transition. In the run depicted in Fig. 1c, with
the same observational error as in 1b but with more
frequent observations, the filter did produce the correct
state transition; it did so even sooner than in Fig. 1a,
due to the shorter update interval. In both Figs. 1a and
Ic, the estimated state lagged the true state by a single
observational interval.

The time scale of the dynamics determined by linear-
izing the system about one of the stable equilibria is
0.125 near the equilibrium. The results in Fig. 1a show
that we can sample much less frequently than that and
still get reliable filter performance.

In the failure mode observed in Fig. 1b, we shall see
that the model can (almost) never be expected to pro-
duce a transition. More frequent sampling will fix the
problem, as shown in Fig. l1c. More accurate measure-
ments will also fix the problem. These results can be
explained by a simple qualitative argument.

2) QUALITATIVE EXPLANATION AND
SEMIANALYTICAL RESULTS

If the measurements are perfect (R = 0), the system
will be reinitialized every observation, and the transi-
tions in the estimated state will lag those in the true
state by at most one sampling interval. In the case of
perfect measurements, the filter gain is unity [cf. Eq.
(2.6)]. In fact, if the observations are accurate enough
to make the filter gain greater than 0.5, then the filtered
output will track the transitions of the true system,
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F1G. 1. Results of applying the extended Kalman filter (EKF) to
the double-well problem. Stochastic perturbation term has variance
0.24. (a) Variance of observation errors is R = 0.01; observations
are taken at intervals of 1.0 time units. (b) R = 0.04; observations
at intervals of 1.0. (¢) R = 0.04; observations taken at intervals of
0.25.

again lagged by at most one sampling interval. The
reason for this is simple: if the modeled and true sys-
tems are in different basins, a gain greater than 0.5 will
usually move the model system into the other basin.
This case is shown in Fig. 1a.

If the sampling interval is very long compared to the
typical time scale of the dynamics, then the model sys-
tem and its associated error variance will relax almost
all the way to equilibrium between observations. In that
case, it is easy to derive upper bounds on system mea-
surement errors sufficient to make the model track the
true system. At equilibrium, say x = 1, the forecast
error variance P approaches a steady value of P.
= Ate?/[1 — (1 — 8Ar)?] =~ 02/16.

Thus, if sampling is too infrequent, x = =1 and P
=~ P, over the latter part of the interval between sam-
ples. If the observation error variance R is greater than
or equal to P., then examination of Egs. (2.5) and
(2.6) shows that updating will not force the model into
the other state. This is the case demonstrated in Fig.
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1b. The estimated model-error covariance is so small
that there is not enough gain to force a transition from
the positive to the negative basin, or vice versa. More
accurate measurements will fix the problem, as seen
before.

Less accurate measurements can be tolerated if the
sampling interval is decreased. In the case in which the
filter gain is insufficient to move the system from one
basin to the other, two successive updates with data
from the other basin may be sufficient. This is the case
shown in Fig. 1c. In that case, four updates were re-
quired to force the model from the positive to the neg-
ative basin. This is the ‘‘nudged’’ case. Because the
estimated error variance P does not have time to relax
to P.. between updates, subsequent updates are given
greater weight, so the covariance, and therefore the fil-
ter gain, is modified further, along with the state vari-
able.

¢. Variational methods

The simplest of the variational methods, termed the
‘‘strong constraint method’’ by Sasaki (1970), in
which the result is an exact solution of the dynamical
model, cannot be applied here. A strong-constraint
scheme will not produce a state transition, since no state
transition can occur in the solution of the deterministic
dynamical model (3.1). Weak-constraint methods, in
which the cost function is some positive-definite func-
tion of the model residuals and the differences between
the data and the model predictions, are more difficult
to implement, since the output of the scheme is no
longer determined uniquely by initial (and, in general,
boundary) conditions. Here we follow the approach of
Bennett and Budgell (1989), generalized to nonlinear
problems.

A suitable cost function for this problem is

1 T AT N-1
— - 2 2

I =55 f L= fCoYde+ 30 3 x() =517,
where f(x) is as in (3.1), T is the final time, AT is the
interval between observations, ¢ are the observation
times, x; are the observations, and T — t, = NAT. We
assume for convenience that 1, = 0. It is a simple ex-
ercise in the calculus of variations (e.g., Courant and
Hilbert 1953) to show that the corresponding Euler—
Lagrange equations are given by

N-1
X+ £/ (0N = %T Y (1) = 516(t — 1), (3.22)

j=t

ANT) = 0, (3.2b)
T
A(0) = ‘—;;- (x(0) — xo), (3.2¢)
% — f(x) = a2\, (3.2d)

where 6(s) is the Dirac delta function, and the adjoint
variable \ is defined by (3.2d).
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This set of equations is difficult to solve in highly
nonlinear cases such as the double-well problem. The
simplest functional iteration scheme would proceed by
using the current guess for x to compute the adjoint
variable A by integrating (3.2a) backwards in time, sub-
ject to final conditions (3.2b), which would, in turn,
be used to compute the new x by integrating (3.2d)
forward in time subject to (3.2c). It is easy to see that
this scheme must fail, since a good guess for x would
result in small innovations, and thus small values of .
This would yield in turn weak forcing in the original
equation for x, which would then result in a new esti-
mate with no state transition. Straightforward transfor-
mations of x and linearizations of f about one of the
stable equilibria also fail.

Newton’s method and generalizations such as quasi-
linearization (e.g., Bryson and Ho 1975, chapter 7)
lead to practical computational problems of a sort we
wish to avoid. To illustrate these problems, consider
Newton’s method for the Euler-Lagrange equations
(3.2a—d). This method can be derived in the following
way. Suppose the pair of functions (x, \) is a good
estimate of the solution to (3.2a—d). Then the exact
solution can be written as (x + Ax, A\ + A\) where
Ax and A\ are small. Substituting x + Ax and A + AN
for x and \ in (3.2a—d) and discarding quadratic and
higher-order terms yields

AN + F'(X)AN + £ (X)NAx

AT
1

AN(T) = 0, (3.3b)

AN(O) = % Ax(0), (3.3c)

Ax — f'(x)Ax — a®A\ = p,, (3.3d)
where p, and p, are the residuals from the equations
for A\ and x in (3.2a) and (3.2d) at the current guess.
The problem is that—unlike the more familiar case of
the adjoint equations in the strong-constraint ap-
proach—the AN and Ax equations are coupled, and
one cannot integrate them separately. In the strong-con-
straint approach (e.g., Le Dimet and Talagrand 1986),
one integrates the adjoint equation (3.3a) backwards in
time, followed by a forward integration of (3.3d); both
of these integrations are stable. The Ax term'in (3.3a)
defeats that strategy here.

One could devise an iteration scheme in which one
placed the f”(x)AAx term in (3.3a) on the right-hand
side and evaluated it at the current iterate; this would
be the functional equivalent of the familiar Gauss—Sei-
del scheme of numerical linear algebra. Unfortunately,
the theorems that set forth conditions for convergence
of the Gauss—Seidel scheme involve bounds on the up-
per triangular component (e.g., Forsythe and Moler

Xgdxwkhgqwlfdwhg#e«#Grzqordghg#3<2



15 ArrIL 1994

1967); in the present context, these bounds imply that
the scheme will work only for weakly nonlinear
models.

It is possible to minimize the cost function directly
by using numerical quadrature to approximate the in-
tegral and differentiating the quadrature formula to cal-
culate the gradient of the cost function with respect to
the discrete values of x. Less than 200 values of x were
calculated in the runs from which Fig. 1 was generated,
and standard optimization algorithms such as the con-
jugate gradient method can be used. This brute force
tactic is impractical for problems which involve real-
istic atmospheric or oceanic models [but see Ghil and
Malanotte-Rizzoli (1991), section 5.4.2 and refer-
ences]. We perform the direct calculation here for
completeness and, more important, to gain experience
with the behavior of approximate solutions to the varia-
tional problem.

If the EKF is used to provide the initial guess for the
optimization algorithm in a case such as that shown in
Fig. 1b, it is unlikely that the optimization algorithm
will find a solution with a state transition. The IMSL
(1989) conjugate gradient routine in fact failed in that
case. A modified EKF can be constructed that will fol-
low the state transition in the reference solution, and
thus provide an adequate first guess for the weak-con-
straint method.

Here we follow the approach of Kailath (1968) to
the Kalman filter in deriving a modification based on
examining the innovation sequence, (x; — x;) or—
more generally—(x7 — Hx[), where H defines the re-
lation between the state vector and the observed quan-
tities. For a linear system, the sequence

[(x¢ — x{), (HPIH")'(x; — x{)]  (3.4)

should be x? distributed, and thus, examination of se-
quence (3.4) will reveal whether or not the Kalman
filter is functioning correctly. Devices such as this—
informally known as *‘sanity checkers’’—can be con-
structed for the EKF. If the sequence fails the x? test,
the system can be reinitialized, or the value of o2 used
in the calculation of the error covariance P can be ar-
tificially increased.

A technique based on (3.4) was applied to the case
shown in Fig. 1b, that is, the case in which the EKF
failed to follow the transitions in the reference solution.
The series of observations was too short to perform a
x 2 test; instead, the filtered output was forced into the
opposite basin if the average of two successive inno-
vations was greater than 1.1 in absolute value. If that
proved to be the case, the system-noise variance was
also doubled. Its original value was restored if the av-
erage of two successive innovations was less than the
root-mean-square observation error.

Figure 2 shows the results of the modified EKF and
the variational solution. The cost function was reduced
by nearly an order of magnitude from its first-guess
value using a conjugate gradient method for direct min-
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FiG. 2. Solution of the smoothing problem for the double-well
model. The variationally smoothed solution is shown as the heavy
line. The Kalman-filtered and reference solutions are shown as thin

lines; the latter is more jagged and identical to the one shown in Figs.
la—c. The observations are shown as ““+’’ signs.

imization, but most of the reduction results simply from
the greater smoothness of the variational solution. Ex-
periments were performed with a wide range of param-
eter values, and in no case did the conjugate gradient
solver produce a state transition which was not present
in the initial guess, provided by the modified EKF.

4. The Lorenz equations
a. Overview

The system of equations now known as the Lorenz
model is a Fourier truncation of the flow equations gov-
erning thermal convection. It was introduced by Lorenz
(1963) and has generated an entire body of literature
of its own; for a review of some of the major work see
Sparrow (1982). The Lorenz model was the first sys-
tem of ODEs shown to possess chaotic solutions, that
is, solutions that are apparently random over long
times, despite the fact that, as in any system of ODEs
defined in terms of smooth functions, solutions are
unique and depend smoothly upon initial data over
short times. The governing equations are

X =a(Y - X), (4.1a)
Y=pX-Y-XZ, (4.1b)
Z=XY - pZ. (4.1¢)

The parameter values first used by Lorenz to obtain
chaotic solutions are ¢ = 10, p = 28, and 3 = 8/3, where
o is the Prandtl number, p a normalized Rayleigh num-
ber, and 8 a nondimensional wavenumber. These val-
ues are still the most common ones, and will be used
throughout here.

The system has three equilibrium points: the origin
represents the conductive state of no motion, and the
two others, at [£V6(p — 1), =VB(p — 1), p — 1],
each represent a pattern of convection rolls, differing
by their direction of rotation. All three equilibria are
unstable for this choice of parameters. The origin is a
saddle with a single unstable mode in the X-Y plane.
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The two convective states are unstable spiral points.
The eigenvalue associated with the third principal di-
rection of the latter is real and negative.

The system exhibits statistical bimodality due to the
solutions looping in phase space around one of the two
convective states, then the other, then back around the
first, and so on, ad infinitum. The chances for a given
loop to occur around one convective state or the other
are exactly those of a fair coin coming up heads or tails,
in spite of the perfectly deterministic nature of the sys-
tem. Schematic diagrams of the phase space of the Lo-
renz equations, showing the stable and unstable mani-
folds of the fixed points, appear in Ghil and Childress
(1987, Figs. 5.10-5.12). Quantitative details of this
conceptual picture are given in appendix B.

b. Application of the EKF

For the Lorenz equations, we computed a reference
solution with initial values (1.508870, —1.531271,
25.46091), and constructed a sequence of ‘‘observa-
tions’’ from it, that is, values of the reference solution
contaminated by noise, at regular intervals; no stochas-
tic forcing was added to the model. The duration of the
experiment was 20 (dimensionless) time units; the os-
cillations about the convective state take place with
roughly unit time scale.

We then attempted to estimate the values of the ref-
erence solution by using the EKF to assimilate data into
the equations. It is well known that the chaotic char-
acter of the behavior of the system is due to the sen-
sitive, albeit smooth, dependence of its solutions on
initial data. Hence, only a minute error in the initial
data used is necessary to test whether the assimilated
data will keep the solution ‘‘on track,”” and prevent
divergence from the reference solution. Bimodality
here is connected intimately with the exponential in-
stability of solutions, making this test case more real-
istic with respect to the properties of intense geophys-
ical jets, atmospheric or oceanic, with their barotropic
and baroclinic instabilities.

In the EKF, the estimate of the error covariance P is
not directly influenced by the innovation sequence. The
only influence of the sequence of innovation vectors on
the evolution of P is through their influence on the
updated fields, which, in turn, determine the evolution
operator. In particular, P can be small when the inno-
vation vectors are large.

In weakly unstable systems, such as the Lorenz equa-
tions in the vicinity of one of the convective states, the
estimate of the solution error covariance generated by
the EKF will eventually be much smaller than the ob-
servation error covariance (e.g., Ghil et al. 1981; Ghil
1989). Following a period of initial adjustment, the
weights assigned to the observations will be very small
as long as the estimate of the state vector remains near
a convective state. Therefore, the estimated state vector
must pass through a region of strong instability if sig-
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nificant corrections are to be made. It is only near the
Z axis, particularly in the neighborhood of the saddle
at the origin, that the system is strongly unstable. In
general, transitional trajectories from one convective
state to the other pass near the saddle. If in some small
time interval the true system undergoes a transition and
the estimated solution does not, as will eventually hap-
pen with any pair of trajectories, the true and estimated
solutions will be in different basins, but the correction
will be small and the estimated solution will remain in
the same basin in which it started.

Results of the EKF experiment are shown in Figs. 3
and 4 for the X and Z variables. It is not necessary to
show the Y variable, given the reflection symmetry of
the Lorenz model in the Z axis. In this experiment, the
observation noise was Gaussian with variance equal to
2. Observations were provided at intervals of 0.25.
From Fig. 3a, we can see that the EKF tracked the true
solution through several loops, underwent a transition

Extended Kalman Filter
i (a)
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3 8
S
4
~
© o
t 0 5 10 15 20
3]

The Vartational Imverse Method
20

_20"""'"‘5“'&"""""""'"""""'

10 15 20
- Time (scaled)

Estimated Solution
++++ Observations
Reference Solution

FiG. 3. Results of filtering and smoothing experiments for the Lo-
renz model. (a) Estimate of the state variable X by the extended
Kalman filter (EKF). Thin line: reference solution; plus signs: sim-
ulated observations; heavy line: filtered output. (b) Estimated error
variance from the EKF corresponding to panel (a). (¢) Similar to
(a) but estimate is by calculation of initial data to minimize differ-
ence between solution and observations. Minimization was carried
out on observations from ¢ = 0 through ¢ = 7 (see arrow). Beyond
t = 7, the heavy line represents the solution to the Lorenz equations
with the calculated initial data.
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Fic. 4. Similar to Fig. 3 but for Z variable.

near ¢t = 10, followed the subsequent transitionat ¢ = 12
with large phase errors, and underwent a transition near
t = 14 which the reference solution did not undergo.
Near r = 15, the true solution passed to the basin of the
state with X and Y positive, and remained there for
nearly 4 time units. Near ¢ = 17, the spike in the esti-
mated error variance (Figs. 3b and 4b) gave rise to a
filter correction that forced the solution into the correct
basin for one half-loop, but the filter did not track the
subsequent transition of the reference system. For the
most part, the filter estimate is unreliable beyond ¢
=11.

Figures 4a and 4b show the evolution of the Z vari-
able and the associated estimate of its error variance.
From this plot alone, one cannot distinguish which con-
vective basin the estimated and true state vectors are
in, but simultaneous examination of Figs. 3 and 4 re-
veals those times when the states approach the origin,
and thus explains the spikes in the variance records.
These spikes will occur only in the region of phase
space in which trajectories are most unstable. After
each correction, the estimated error covariance is al-
ways less than the observation error covariance, so the
system must be very unstable indeed to produce sig-
nificant error growth in a single assimilation cycle.

One of the linearized growth rates must always be
negative, since the sum of the eigenvalues must be the
trace of the linearized system of equations, which is a
negative constant (Lorenz 1963). Intuitively, this de-
caying mode reflects the stability of the attractor itself.
Following a perturbation, which takes the state point
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off the attractor, the state will tend to return to the at-
tractor though not necessarily to the original trajectory.
It is this stable mode which is responsible for the ap-
parent stiffness of the evolution equations for the co-
variance matrix, first noted by E. F. Carter (1990, per-
sonal communication). The condition number of the
covariance evolution matrix will be the square of that
of the state evolution matrix, so for some choices of
time step, the covariance calculation will behave badly
while the state evolution does not. This difficulty can
be overcome through the use of square-root filters
(Bierman 1977).

c. Variational methods

It is important to note that the difficulty in tracking
a chaotic orbit by assimilating noisy observations re-
sults from the inherent instability of the system rather
than from that of the data assimilation method. Figures
3¢, 4c, and 5 show the results of an inverse calculation.
In this calculation, the conjugate gradient method was
used to estimate initial data for the solution to the Lo-
renz system, which passes closest to the observations
in the least-squares sense. As noted in the first section,
the gradient of the cost function is often calculated by
solving an adjoint problem. In this case, with only three
state variables, the gradient can be calculated directly,
and no adjoint problem need be solved.

The results shown in Figs. 3c, 4c, and 5 were cal-
culated using the IMSL conjugate gradient routine. So-
lutions could not be obtained when observations at
times greater than 7 were included in the least-squares
calculation, and even that was difficult to achieve. Even
if the conjugate gradient routine is given the exact so-
lution as its first guess, convergence could not be
achieved beyond the interval [0, 7]. It may be possible
to produce a conjugate gradient code specifically tai-
lored to the Lorenz equations which will extend the
optimization period by some small amount—doing the
calculation in double precision will also result in mar-
ginal improvement—but the end result will be the
same.

The gradient of the cost function in the vicinity of
the exact solution can be very large, up to O(10%). A
gradient of that magnitude means that a change in the
third decimal place in the initial data will produce a
unit change in the cost function. The cost function in
this calculation is defined as the mean-square error,
which implies that near the minimum the cost function
will be ~2, so a unit change is quite significant.

The arrows in Figs. 3¢, 4c¢, and 5 show the times up
to which the optimal solutions were calculated. In all
of the cases shown, the curves were extrapolated out
to ¢ = 20 by using the solution to the inverse problem
at ¢t = T as the initial value for subsequent evolution.

Figure 5 shows the results of two inverse calcula-
tions: panel (a) shows the optimal solution for the time
interval [0, 7]; panel (b) shows a similar calculation
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FiG. 5. Sensitivity of the variational method to observations. (a)
Calculation of optimal initial values for observations taken over 0
<t = 7. Thin line: reference solution; plus signs: simulated obser-
vations; heavy line: solution to equations with given initial data. (b)
As in panel (a) but for observations over the interval [0, 6.75].

for the time interval [0, 6.75]. The updating interval
was 0.25, as noted above, so the two solutions differ
only in that the one shown in panel (a) was based on
a single observation of the state vector in addition to
the one shown in panel (b).

The difficulty of finding the initial values which min-
imize the least-squares error is illustrated graphically
in Fig. 6. This figure shows three examples of graphs
of values of the cost function in a fixed direction in the
three-dimensional space of initial data. The problem of
finding the minimum of the curves in panels (b) and
(c) is intractable for any line-search minimization al-
gorithm. The unreliability of approximate derivatives
will cause secant methods to fail; even if one were able
to implement Newton’s method in the search direction,
the practical problems resulting from the density of lo-
cal minima would be insurmountable.

It is clear from Fig. 6 that the number of minima
increases as the time interval T over which the mini-
mization is carried out increases. We strongly suspect
that, in the limit of increasing T, the graph of the cost
function becomes fractal, with distinct minima being
associated with distinct sheets of the attractor. Multiple
minima have been documented for fair-sized models
(e.g., Ghil and Malanotte-Rizzoli 1991, Fig. 28, and
discussion thereof). White (1993) has shown rigor-
ously for Burgers’s equation that a unique minimum
obtains only for sufficiently short time intervals.

Weak-constraint methods such as those discussed in
the description of the double-well problem may be
more successful, but we anticipate difficulties similar
to those encountered in that earlier case. Unlike the
stochastically forced double well, the Lorenz model is
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entirely deterministic, so in order to formulate a weak-
constraint method, we would have to devise some pro-
cedure for finding reasonable values for the covariances
of the model residuals. Such a procedure will be de-
scribed in the next section.

Direct calculation of the cost-function minimum,
with each point in time and phase space considered as
an independent variable, is much more cumbersome in
this case than in the double-well example, since the
number of variables is an order of magnitude larger.
Bennett and Thorburn (1991) used a weak-constraint
method successfully with a fully nonlinear quasigeo-
strophic model, but that model did not exhibit the ex-
treme nonlinear behavior observed in the double-well
and Lorenz models.

d. Generalizations of the EKF

The earlier failure of the straightforward application
of the EKF was attributed to insufficient gain. This
could be remedied by more frequent or more accurate
observations, as we found in section 3. A condition
similar to that obtained for the double-well model prob-
ably applies; that is, the gain must be roughly 0.5 in
order to force a transition from one state to the other.
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FIG. 6. Values of cost function as a function of initial X, with initial
Y and Z held constant, in the neighborhood of the initial values used
in calculating the reference solution. (a) Cost function, i.e., mean-
square deviation of model solution with given initial data from *‘ob-
served’’ values, where observations up to 7 = 8 are considered. (b)
As in (a) but for observations up to ¢ = 10. (c¢) As in (a) but for
observations up to ¢ = 15.
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From the gain formula (2.6), this means that the esti-
mated forecast-error variance must be roughly equal to
the observation-error variance. As noted above, this
will be difficult to obtain within the framework of the
standard EKF. We therefore must find some way to
augment the estimate of the forecast error covariance,
and hence the gain.

1) HiGHER-ORDER EKF

Conceptually, one of the simplest things to do is to
estimate the higher moments, which are neglected in
the EKF. This technique was used successfully by
Kushner (1967) in his study of the Van der Pol oscil-
lator, in which third moments as well as those higher
than fourth were in fact neglected. As in the case of
Kushner’s experiments with the Van der Pol oscillator,
calculation of moments up to and including fourth or-
der is sufficient here for the calculation of the evolution
of the error covariance.

The covariance matrix in this case was calculated
according to the straightforward generalization of (2.3)
to vector equations, with moments of fifth order and
higher discarded. The forecast values of both the third
and fourth moments were calculated in a similar
straightforward fashion, consistent with this level of
approximation. The forecast value of the third-order
moments is defined as

(’9{;(1',]., k)= E[(x:l,i - xr{,i)(x:z,j - xr{.j)(xit,k - x;{,k)],
where x;, ; is the jth component of the true state vector
at time step 7, and similarly for the components of the
forecast state vector x; ;- The fourth-order moments
are defined similarly:
rﬁ(l’J, k5 l) = E[(x:l,l - x{,i)(x:l.j - xrj:,j)

X (Xhae — x4, (X = xf)].

An evolution equation for ®/ can be derived anal-
ogously to Eq. (2.4) for P:

OF; OF; OF,
®jr: ', '» k) = —
(&), &) ,E'p Ox; Ox,, Ox,
1 [8ROF O°F  OF, 0 O°F,

2 i L Ox1 Ox,, Ox,0%,

@ﬁ_](l, m, P)

OF, OF, 0°F,
0x, Ox,, O0x,0x,

where F;, F;, and F) are the right-hand sides of (4.1a)
through (4.1c), respectively, and the partial derivatives
are evaluated at the analyzed state variables. The evo-
lution of the fourth moments is calculated similarly and
yields

]F:—l(l, m9p9 q)’ (4.23)

OF; OF, OF OF, _,
axp axq 6x, axs Fn—l(p, q,r, S),
(4.2b)

MiG,j, k=3

Pg.r.s
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since fifth-order moments are neglected. The updating
of ® and I at assimilation times is done consistently
with the gain matrix K,, which is specified in terms of
P and R alone, as in the unmodified EKF:

0.3, j, k) = X (I - K)G, DU - KD, p)

Lp.g

X I - K)(k, )05, p, 9),
e, j, k, 1)

= Y (U-K)i,p)d-K)U,q)

pq.r.s

X - K,)(k, r)(I—-K,)(,s)
XTi(p,q.r,s) + %, K.(i,p)

DPsqiT,S

X K.(j, @)K, (k, 1)K, (1, 5)
X rﬁ(P, q,r, S) + Z (I— Kn)(l9p)

D.g.r,s

X (I - Kn)(.]’ q)Kn(k’ r)
X K,(l, s)PL{(p, q)R(r,s) + -+, (4.3b)

where the dots represent the permutations of the pairs
(i,p), (J,q), (k,r), and (I, s) in the last summation.

Resuits of the moment expansion are shown in Figs.
7 and 8. With moments up to fourth order included, the
generalized EKF tracks the reference solution accu-
rately by producing enough gain to overcome the ten-
dency of the unmodified filter to drift. This can be seen
from the evolution of P, shown in Figs. 7b and 8b.
Comparison with Figs. 3b and 4b shows that for the
initial ten time units, most of the spikes in 3b and 7b
occur at the same times, though the unmodified filter
tends to produce smaller amplitudes. The generalized
EKF produces a strong double spike near ¢ = 11, which
is clearly apparent in 7b. The unmodified EKF gener-
ates a single weaker spike just before this. The com-
parison of 4b to 8b is similar at this point—the pair of
spikes near ¢t = 10.5 is much larger in 8b. This is the
time at which the ordinary EKF loses track. The third
and fourth moments are quite significant, as shown in
Figs. 7c and 7d, at transition or near-transition times.

A detailed analysis based on the Fokker—Planck
equation shows that if the third moments do not vanish,
then the covariance matrix actually depends on the ob-
servations themselves (see Kushner 1967; Jazwinski
1970, chapter 6). In the present case, though, the sim-
plified evolution formulas (4.2, 4.3) were evidently
sufficient.

(4.3a)

2) STOCHASTIC APPROXIMATION

A computationally simpler remedy to the lack of
gain near transition is the use of an empirically derived
covariance matrix for the system noise. In this case, the
dynamical model is perfect, so we should have 62 = 0
in the notation of (2.4). Rather than computing higher
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FIG. 7. Results of modified EKF with third- and fourth-order mo-
ments calculated explicitly. (a) Estimates of the variable X. Heavy
line: filtered solution; thin line: reference solution; ‘‘+’’ signs: sim-
ulated observations. (b) Estimated error variances. Heavy line: Es-
timated error variance for X; thin line: estimated error variance from
ordinary EKF. (¢) Calculated third error moments. Heavy line: (1,
1, 1); thin line: (1, 3, 3). (d) Calculated fourth error moments.
Heavy line: I'(1, 1, 1, 1); thin line: I'(1, 1, 2, 3).

moments explicitly, we attempt to account for the
higher moments in terms of a constant matrix.

A very simple empirical noise model can be con-
structed based on the assumption that the right-hand
side of (4.1a—c) consists of the sum of the linearized
deterministic part and a random forcing term. We can
estimate the covariance of the assumed forcing term by
a Monte Carlo procedure, and use this to calculate our
system-noise covariance. At revision time, we became
aware that a similar stochastic error formalism for a
similar deterministic model was developed by Nicolis
(1992).
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In the Monte Carlo experiment, we took 10 000
Gaussian-distributed random initial states, with mean
equal to one of the convective states, and covariance
equal to 2l—where | is the 3 X 3 identity matrix—
since this is the observation-error covariance. For each
of these initial states, we used two models to calculate
the evolution of the system for an observing interval
At = 0.25. One model was the full nonlinear model
(4.1a—c). The other was a linear model with constant
coefficients that was constructed by linearizing (4.1a—
c¢) about the appropriate convective state, that is

*=o0(y —x), (4.4a)
Yy=XxX-—y— Xz, (4.4b)
7= Yox + Xoy — Pz, (4.4c)

where lowercase letters indicate deviation from the crit-
ical point (X, Yy, Zy). We then ran the linear and non-
linear models for an interval At = 0.25. A histogram
of the differences between linear and nonlinear runs is
shown in Fig. 9. A

Even after a time interval of only 0.25, this distri-
bution is clearly non-Gaussian. Furthermore, the vari-
ance does not increase linearly, or even monotonically,
with time, as would be consistent with the simple model
(4.4). Nevertheless, the mean deviation from linearity
is not significantly different from zero at the 95% level,
and we can calculate the sample covariance P;.

The evolution of the forecast-error covariance in this
case is given by the vector form of Eq. (2.4) for the
case of linear dynamics:

PL. = LPL" + Q,
where Q is the covariance of the random forcing and
L defines the evolution of the state vector x:
Xl = Lxg.

For fixed L and Q,

k—1
P/ = L'PILY + T LQ(L)T.
=0
We thus wish to choose Q such that
k—1
T va(LTy =P,
j=0
(see also Cohn et al. 1981; Ghil et al. 1981). We may
solve conveniently for Q by writing

Q = UAU*,

where U is the matrix whose columns are the eigen-
vectors of L and the asterisk denotes conjugate trans-
pose. The sum then becomes:

(4.5)

T UQ(LT) = U(S, AJA(A)©U*,

j=0 j=0
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