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ABSTRACT

This paper presents a simple theoretical argument to isolate the conditions under which a tropical cyclone
can rapidly develop a warm-core thermal structure and subsequently approach a steady state. The theoretical
argument is based on the balanced vortex model and, in particular, on the associated transverse circulation
equation and the geopotential tendency equation. These second-order partial differential equations contain
the diabatic forcing and three spatially varying coefÞcients: the static stabilityA, the baroclinity B, and the
inertial stability C. Thus, the transverse circulation and the temperature tendency in a tropical vortex depend
not only on the diabatic forcing but also on the spatial distributions of A, B, andC. Experience shows that the
large radial variations of C are typically the most important effect. Under certain simplifying assumptions as
to the vertical structure of the diabatic forcing and the spatial variability of A, B, and C, the transverse
circulation equation and the geopotential tendency equation can be solved via separation of variables. The
resulting radial structure equations retain the dynamically important radial variation of C and can be solved in
terms of GreenÕs functions. These analytical solutions show that the vortex response to a delta function in the
diabatic heating depends critically on whether the heating occurs in the low-inertial-stability region outside
the radius of maximum wind or in the high-inertial-stability region inside the radius of maximum wind. This
result suggests that rapid intensiÞcation is favored for storms that have at least some of the eyewall convection
inside the radius of maximum wind. The development of an eye partially removes diabatic heating from the
high-inertial-stability region of the storm center; however, rapid intensiÞcation may continue if the eyewall
heating continues to become more efÞcient. As the warm core matures and static stability increases over the
inner core, conditions there become less favorable for deep upright convection and the storm tends to ap-
proach a steady state.

1. Introduction

One of the goals of the National Aeronautics and
Space AdministrationÕs (NASAÕs) Tropical Cloud Sys-
tems and Processes (TCSP) research program is to un-
derstand the conditions under which a tropical cyclone
can rapidly intensify (i.e., rapidly decrease its central
surface pressure and rapidly increase its azimuthal wind
and inner-core temperature). Understanding changes in
the wind and thermal structure of a tropical cyclone is
not a straightforward matter. As can be seen from (2.2)
and (2.5) below, for an inviscid axisymmetric vortex the
azimuthal wind tendency depends on the radial and
vertical advection of angular momentum, whereas the
temperature tendency depends on the diabatic heating,

in addition to the radial and vertical advection terms. If
the vortex is balanced (in the sense that it is continuously
evolving from one gradient-balanced state to another),
then the transverse circulation is determined by the so-
lution of a second-order partial differential equation in
the (r, z) plane. According to this ÔÔtransverse circulation
equation,ÕÕ Þrst derived by Eliassen (1951) and given
below in (2.11), the streamfunction for the radial and
vertical motion is determined by the radial derivative of
the diabatic heating and the three variable coefÞcients
A, B, and C, which are the static stability (2.8), the
baroclinity (2.9), and the inertial stability (2.10). Al-
though solutions of (2.11) generally yield radial and ver-
tical velocities that are much weaker than the azimuthal
velocity, the radial and vertical directions are the di-
rections of large gradients, so the relatively weak trans-
verse circulation is crucial for vortex evolution (Ooyama
1969; Willoughby 1979). If vortex evolution is the main
focus of understanding, it may be preferable to consider
solutions of the geopotential tendency equation, which
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can be derived by similar means and is given below in
(2.21). Note that the geopotential tendency equation is
also a second-order partial differential equation with the
same three variable coefÞcientsA, B, and C.

In his classic 1951 paper, Eliassen presented the prin-
cipal part of the GreenÕs function solutions of the constant
coefÞcient version of the transverse circulation equation
for the case in which ‰Q/‰r is localized and for the case
in which Q itself is localized in the (r, z) plane. These
GreenÕs function solutions clearly illustrate how the
strength and shape of the transverse circulation depend
on the coefÞcientsA, B, and C. However, for applica-
tions to tropical cyclones, there are several disadvan-
tages to EliassenÕs approach: (i) the effects of top and
bottom boundary conditions and the circular geometry
are not included, (ii) the important spatial variability of
the inertial stability coefÞcient C is not included, and (iii)
the diabatic heating is localized in z, whereas in tropical
cyclones it is rather smoothly distributed over the whole
troposphere [for examples of satellite-observed vertical
proÞles of diabatic heating, see Fig. 6 of Rodgers et al.
(1998) and Fig. 9 of Rodgers et al. (2000)]. In the present
paper, we remove these limitations through a somewhat
different analysis of the balanced vortex model.

We consider an idealized vortex structure and an
idealized vertical structure of Q that allows the trans-
verse circulation equation and the geopotential ten-
dency equation to be solved by separation of variables.
This leads to the radial structure Eqs. (2.24) and (2.25).
Then, considering the diabatic heating as localized inr, we
Þnd the GreenÕs functions for these ordinary differential
equations, taking into account the circular geometry and
the far-Þeld boundary conditions. This simple theoretical
argument isolates the conditions under which a warm-
core thermal structure can rapidly develop in a tropical
cyclone and thereby elaborates on the vortex heating
efÞciency ideas discussed in Shapiro and Willoughby
(1982), Schubert and Hack (1982), Hack and Schubert
(1986), and Nolan et al. (2007). The unique aspect of the
present approach is its emphasis on the geopotential
tendency equation as the most direct route toward un-
derstanding the rapid development of the warm core.

The paper is organized in the following way. In section
2 the balanced vortex model and the associated trans-
verse circulation equation and geopotential tendency
equation are presented, followed by a discussion of how
the right-hand side of the geopotential tendency equa-
tion can be written in a compact and physically in-
terpretable form via introduction of potential vorticity
concepts, as well as a discussion of the separation of
variables to reduce the partial differential equations into
ordinary differential equations for the radial structure.
Section 3 discusses the general solution of the radial

structure problem in terms of GreenÕs functions. The
actual GreenÕs functions are derived for a resting at-
mosphere in section 4 and for a Rankine-like vortex in
section 5. The results of calculations from these solu-
tions are shown in section 6 to illustrate how the tem-
perature tendency depends on the eyewall geometry and
the radial distribution of inertial stability. In section 7 we
discuss observations of the radial distribution of heating
and inertial stability in real storms; the implications
of the impact of subsequent structure change on in-
tensiÞcation rate are also considered. Some concluding
remarks are presented in section 8.

2. Tropical cyclone theory

a. Balanced vortex model

We consider inviscid, axisymmetric, quasi-static,
gradient-balanced motions of a stratiÞed, compressible
atmosphere on anf plane. As the vertical coordinate we
use z 5 H ln( p0/p), where H 5 RT0/g is the constant
scale height and wherep0 and T0 are constant reference
values of pressure and temperature. We choosep0 5
100 kPa andT0 5 300 K, the latter of which yields H •
8.79 km. The governing equations for the balanced
vortex model are
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where u and y are the radial and azimuthal components
of velocity, w is the ÔÔlog-pressure vertical velocityÕÕ,f is
the geopotential, f is the constant Coriolis parameter,cp

is the speciÞc heat at constant pressure,r (z) 5 r 0e
2 z/H is

the pseudodensity,r 0 5 p0/(RT0) • 1.16 kg m2 3 is the
constant reference density, andQ is the diabatic heating.

b. Transverse circulation equation

Multiplying the thermodynamic equation by g/T0 and
the tangential wind equation by f 1 (2y/r), and then
making use of the gradient and hydrostatic relations, we
obtain
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where f t 5 ‰f/‰t denotes the geopotential tendency and
where the static stability A, the baroclinity B, and the
inertial stability C are deÞned by
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One way of proceeding from (2.6) and (2.7) is to
eliminate f t to obtain an equation for the transverse
circulation. This equation takes the form
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(2.11)

where we have used the mass conservation principle
(2.4) to express the transverse circulation in terms ofc
via the relations

r ru 5 2
‰(rc)

‰z
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. (2.12)

Here we consider only vortices with AC 2 B2 . 0 every-
where, which ensures that (2.11) is an elliptic equation. For
boundary conditions on (2.11), we require that c 5 0 at
z 5 0, at z 5 zT, and at r 5 0, and that rc / 0 asr / • .

c. Geopotential tendency equation

Another way of proceeding from (2.6) and (2.7) is to
eliminate u and w to obtain an equation for f t. Thus,
eliminating w between (2.6) and (2.7), we obtain
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Similarly, eliminating u between (2.6) and (2.7), we
obtain
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Through the use of the mass continuity Eq. (2.4) we can
now eliminate u andw between (2.13) and (2.14) to obtain
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where D 5 AC 2 B2. Equation (2.15) is a second-order
partial differential equation for f t, and the boundary
conditions imposed on it should be consistent, via (2.6)
and (2.7), with the boundary conditions for (2.11). Here
we simply require that ‰ft/‰r vanish at r 5 0; that ‰ft/‰z
vanish at the bottom and top isobaric surfacesz 5 0,z 5
zT; and that rf t / 0 asr / • .

We shall refer to the right-hand side of (2.15) as the
ÔÔtropical cyclogenesis functionÕÕ because it gives the
interior forcing function associated with nonzero f t.
Because of the rather complicated mathematical form
given in the right-hand side of (2.15), physical inter-
pretation is difÞcult. However, using potential vorticity
concepts, the tropical cyclogenesis function can be trans-
formed into a simpler form that allows straightforward
physical interpretation. To accomplish this transforma-
tion, we Þrst note that the potential vorticity equation,
derived from (2.1)Ð(2.5), is
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is the potential vorticity, m 5 ry 1 ½fr 2 is the absolute
angular momentum per unit mass,u 5 T( p0/p)k is the
potential temperature, D/Dt 5 (‰/‰t) 1 u(‰/‰r) 1 w(‰/‰z)
is the material derivative, (‰/‰u)m is the partial derivative
with respect to u along the absolute angular momentum
surface, and_u 5 Q/P, with P 5 cp( p/p0)

k denoting the
Exner function. Using (2.17) and (2.8)Ð(2.10), we can
easily show that
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so that (2.11) and (2.15) are elliptic if [f 1 (2y/r)]P . 0.
Using (2.18) we can also easily show that
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These last two relations allow us to write
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where z is the projection of the vorticity vector onto the
(r, z) plane. This allows (2.15) to be rewritten as
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The right-hand side of (2.21) is the compact form of the
cyclogenesis function, which can now be interpreted as
being proportional to the product of potential vorticity
with the u derivative of _u/P along an absolute angular
momentum surface. If the cyclogenesis function van-
ishes everywhere, we conclude from (2.21), with the aid of
the boundary conditions discussed above, thatf t 5 0 ev-
erywhere and the storm is in a steady state. Hausman
et al. (2006) have used an axisymmetric, nonhydrostatic,
full-physics model to demonstrate how a tropical cyclone
approaches a steady state in which theP and _u Þelds
become locked together in a thin leaning tower on the
inner edge of the eyewall cloud.

It should be noted that for the balanced vortex model,
only one second-order elliptic partial differential equa-
tion needs to be solved [see Haynes and Shepherd
(1989) and Wirth and Dunkerton (2006) for illustrations
of this point]. Depending on the particular formulation,
that elliptic equation could be the transverse circulation
Eq. (2.11) or the geopotential tendency Eq. (2.21). Be-
cause our particular interest here is in the rapid de-
velopment of a warm core, we Þnd it convenient to focus
much of our attention on the geopotential tendency
equation.

d. Idealized vortex and the separation of variables

For real hurricanes the coefÞcientsA, B, and C can
have complicated spatial distributions [e.g., Fig. 6 of
Holland and Merrill (1984) illustrates the radial and
vertical variations of inertial stability and static stability
computed from their composite tropical cyclone], which
would preclude analytical solution of (2.11) and (2.21).
To obtain analytical solutions we shall consider an ide-
alized vortex that leads to a drastic simpliÞcation of the
coefÞcientsA and B but retains the crucial radial de-
pendence of the inertial stability C. Thus, we consider
a barotropic vortex (B 5 0) with a static stability given
by r A 5 N2, where the square of the BruntÐVa¬isa¬la¬

frequency, N2, is a constant. The inertial stability (2.10)
can then be written in the form r C 5 f̂

2
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and (2.21) reduces to
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We now assume that the diabatic heating and the
streamfunction have the separable formse� z/H Q(r, z) 5
Q̂(r)Z (z) and c(r, z) 5 ĉ (r)Z (z), where Z (z) 5 e2 z/2H

sin(pz/zT). Becausee2 z/H(ez/HZ 9)9 5 2 [(p /zT)2 1 (2H )2 2]Z ,
where the prime denotes a derivative with respect toz,
the partial differential Eq. (2.22) reduces to the ordinary
differential equation
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, (2.24)

with m2(r) 5 [ f̂
2
(r)/N2][( p /zT )2 1 (2H )� 2] denoting the

inverse Rossby length squared. The corresponding se-
parable forms for the temperature and geopotential
tendencies are T t(r, z) 5 T̂ t(r)e

z/H Z (z) and f t(r, z) 5
(zT /p )f̂ t(r)e

z/H Z 9(z). Because of hydrostatic balance,
the radial structure functions T̂ t(r) and f̂ t(r) are related
by (g/T 0)T̂ t(r) 5 � (zT /p )[( p /zT )2 1 (2H )� 2]f̂ t(r). Us-
ing these results, it immediately follows that the partial
differential Eq. (2.23) reduces to the ordinary differential
equation

T̂ t 2
d

rdr
r

m2

dT̂ t

dr

 !

5
Q̂
cp

. (2.25)

Note that although it has a certain resemblance to the
thermodynamic equation, (2.25) follows directly from
(2.21), which has been obtained through a combination
of all the original Eqs. (2.1)Ð(2.5). The remainder of this
paper deals with the physical insights revealed by ana-
lytical solutions of (2.24) and (2.25). As is easily shown
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by integration of (2.25) and use of the boundary condi-
tions, these solutions have the integral property

ð•

0
T̂ tr dr 5

ð•

0

Q̂
cp

r dr , (2.26)

so the integrated local temperature change is equal to
the integrated diabatic heating. However, the crucial
question for hurricane intensiÞcation is whether the lo-
cal temperature change occurs primarily in the region of
diabatic heating or is spread over a much larger region.
This question can be answered by examining the solu-
tions of (2.25), which show the following general prop-
erties. If the diabatic heating Q̂/cp is localized to a region
of large Rossby length (i.e., a region wherem2 2 is large),
then d2T̂ t/dr2 tends to be small, so thatT̂ t tends to be
spread over a large area but with values much smaller
than the peak value of Q̂/cp. In contrast, if the diabatic
heating occurs in a region of small Rossby length (i.e.,
a region where m2 2 is small), then d2T̂ t/dr2 tends to be
larger, so that T̂ t tends to be conÞned to a smaller
area, with values more comparable to the peak value of
Q̂/cp. The former case tends to occur when a vortex is
weakÑthat is, when the effective Coriolis parameter
f̂ (r) is small and the Rossby length m2 1(r) is large.
However, as the vortex becomes stronger,̂f (r) becomes
larger and m2 1(r) becomes smaller, so that the diabatic
heating results in a tendencyT̂ t(r) that is more localized
to the region where Q̂(r) is conÞned. This process can
result in the rapid development of a tropical cyclone
warm core. In the following sections we attempt to pro-
vide a more quantitative understanding of these simple
qualitative arguments.

3. General solution in terms of the Green’s function

The solution of (2.25) can be written in the form

T̂ t(r) 5
ð•

0
G(r, r9)

Q̂(r9)
cp

r9dr9, (3.1)

where the GreenÕs functionG(r, r9) satisÞes the differ-
ential equation
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5

d(r 2 r9)
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, (3.2)

with d(r 2 r9) denoting the Dirac delta function localized
at radius r9. The validity of (3.1) and (3.2) can easily be
conÞrmed by substituting (3.1) into (2.25) and noting
that

Ð•
0 Q̂(r9) d(r � r9) dr9 5 Q̂(r). The GreenÕs function

G(r, r9) gives the radial distribution of the temperature
tendency when the diabatic heating is conÞned to a very

narrow region at radius r9. It satisÞes the boundary
conditions

dG(r, r9)
dr

5 0 at r 5 0, rG(r, r9) ! 0 as r ! •

(3.3)

and the jump conditions

[G(r, r9)] r5 r91
r5 r92 5 0 and

r
m2

dG(r, r9)
dr

� � r5 r91

r5 r92
5 2 1,

(3.4)

the latter of which is derived by integrating (3.2) across
a narrow interval centered at radius r9.

The solution of (2.24) could be obtained in an analo-
gous way. However, it is simpler to determineGc(r, r9),
the GreenÕs function forc , directly from G(r, r9), the
GreenÕs function for the temperature tendency. This can
be accomplished by noting that the thermodynamic
Eq. (2.6), with the assumptions given in section 2, leads to

d[rGc (r, r9)]

rdr
5 2

gr 0

T 0N2 G(r, r9) for r 6¼ r9. (3.5)

Thus, once we have determinedG(r, r9), we can obtain
Gc(r, r9) by integration of (3.5).

The differential Eq. (3.2) for the GreenÕs function
G(r, r9) can be solved analytically only if m(r) takes some
simple form. Here we present two simple cases. In the
Þrst case (section 4) the atmosphere is assumed to be at
rest, so thatmis a constant. In the second case (section 5)
we consider a Rankine-like vortex, so thatmis piecewise
constant, with a large value ofmin the vortex core and
a small value of min the far Þeld.

4. Green’s functions for a resting atmosphere

We Þrst consider the case wherey 5 0, so that
f̂ (r) 5 f and m(r) takes on the constant valuemf. Then,
(3.2) reduces to the order zero modiÞed Bessel equation
(Abramowitz and Stegun 2006, chapter 9) whenr 6¼ r9.
The general solution of the problem is constructed from
a combination of the order zero modiÞed Bessel func-
tions I0(mf r) and K0(mf r). Because of the boundary con-
ditions (3.3), only the I0(mf r) solution is valid for r , r9
and only the K0(mf r) solution is valid for r . r9. Matching
these solutions acrossr 5 r9involves the jump conditions
(3.4), which can be enforced with the aid of the derivative
relations dI0(x)/dx 5 I1(x) and dK0(x)/dx 5 2 K1(x) and
the Wronskian I0(x)K1(x) 1 K0(x)I1(x) 5 1/x. The Þnal
result is
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G(r, r9) 5 m2
f

K 0(mf r9)I 0(mf r) if 0 # r # r9

I 0(mf r9)K 0(mf r) if r9# r , • .

(

(4.1)

Integrating (3.5), using (4.1) and the derivative relations
d[rI 1(mr)]/ rdr 5 mI0(mr) and d[rK 1(mr)]/ rdr 5 2 mK0(mr),
we obtain

Gc (r, r9) 5
gr 0mf

T 0N2

� K 0(mf r9)I 1(mf r) if 0 # r , r9

I 0(mf r9)K 1(mf r) if r9 , r , • .

(

(4.2)

To compute the actual temperature tendency associated
with the GreenÕs function (4.1), we return to (3.1) with the
condition Q̂(r9) 5 0 for r96¼ rh. Then (3.1) becomes

T̂ t(r) 5 G(r, rh)
ðrh1

rh�

Q̂(r9)
cp

r9dr9. (4.3)

Note that according to (4.3), the spatial distribution
of T̂ t(r) is given by G(r, rh) and the magnitude byÐrh1
rh� [Q̂(r9)/cp]r9dr9, which is somewhat arbitrary. We

have chosen this normalization factor to be

ðrh1

rh�

Q̂(r9)
cp

r9dr9 5 (26 K h2 1)(25 km)(10 km) [ S, (4.4)

which is the same normalization used by Schubert et al.
(2007) in their study of the distribution of subsidence in
the hurricane eye. With this normalization, the c(r, z)
and Tt(r, z) Þelds can be written as

c(r, z) 5 SGc (r, rh)e2 z/(2H ) sin
pz
zT

� �
, (4.5)

T t(r, z) 5 SG(r, rh)ez/(2H ) sin
pz
zT

� �
. (4.6)

Figure 1 shows contours ofrc and Tt in the (r, z) plane
for this resting atmosphere case. These plots have been
constructed from (4.5) and (4.6) using the GreenÕs func-
tion Eqs. (4.1) and (4.2). Note that rc is negative for r ,
25 km and positive for r . 25 km, which means that the
transverse mass ßux is counterclockwise forr , 25 km
and clockwise forr . 25 km. The discontinuity of rc at r 5
25 km means that inÞnite upward vertical velocity occurs
there. However, the vertical mass ßux is Þnite because

r
ðrh1

rh2
w(r, z)r dr 5 rh[c (rh1 , z) 2 c(rh2 , z)]

5
gr 0S

T 0N2 e2 z/(2H ) sin
pz
zT

� �
, (4.7)

which follows from (4.2), (4.5), and the Wronskian. The
minimum value of rc , which occurs just insider 5 25 km,

is given in the sixth column of the Þrst row in Table 1,
while the maximum value of rc , which occurs just outside
r 5 25 km, is given in the seventh column. Thus, at the
level of maximum vertical mass ßuxes, the downward
mass ßux insider 5 25 km is 0.53393 106 kg s2 1, while
the downward mass ßux outsider 5 25 km is 448.383
106 kg s2 1. DeÞning h 5 (rc )max/[( rc )max 2 (rc )min] as
the fraction of the upward mass ßux that is compensated
by far-Þeld subsidence, we see (eighth column of Table 1)
that approximately 99.88% of the upward mass ßux is
compensated by downward mass ßux outsider 5 25 km
and only 0.12% is compensated by downward mass
ßux insider 5 25 km. As can be seen in the right panel of
Fig. 1, there is very little variation of the temperature
tendency on a Þxed isobaric surface. In other words, the
Dirac delta function in the diabatic heating leads to
a transverse circulation that raises the temperature on a
given isobaric surface nearly uniformly over a large area.
The production of very weak horizontal temperature
gradients and corresponding weak vertical shears of the
azimuthal wind is consistent with the well-known result
that diabatic heating on a horizontal scale smaller than
the Rossby length is a very inefÞcient way to produce
rotational ßow (e.g., Schubert et al. 1980; Gill 1982;
Shapiro and Willoughby 1982; Schubert and Hack 1982).

Although the assumption of a resting atmosphere is too
restrictive for our present goals, the idealized GreenÕs
functions (4.1) and (4.2) provide useful comparisons for
the more general results of section 5.

5. Green’s functions for a nonresting atmosphere

a. A Rankine-like vortex

To treat radial variations of m(r) in a simple manner,
we consider the speciÞc barotropic vortex in which the
square of the absolute angular momentum is given by
m2(r) 5 [ry(r) 1 ½fr 2]2 5 1/4 f 2

cr4 for 0 # r # rc and by
m2(r) 5 m2(rc) 1 1/4 f 2(r4 � r4

c) for rc # r , • , where rc

and fc are speciÞed constants giving the radius and
strength of the vortex core. It can easily be shown that

f̂ (r) 5
‰m2

r3‰r

� � 1/2

5 f 1
2y
r

� �
f 1

‰(ry)
r‰r

� �� � 1/2

5
f c, if 0 # r , rc (vortex core),

f , if rc , r , • (far field),

(

(5.1)

so that fc can be interpreted as a speciÞed constant giving
the effective Coriolis parameter in the vortex core. Be-
cause of (5.1), the inverse Rossby lengthm(r) also has
the piecewise constant form

m(r) 5
mc if 0 # r , rc (vortex core),
mf if rc , r , • (far field),

�
(5.2)
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where the constantsmc and mf are deÞned in terms of
the constantsfc and f via mc 5 ( fc/N)[( p /zT)2 1 (2H)2 2]1/2

and mf 5 ( f /N )[( p /zT)2 1 (2H )2 2]1/2. Plots of y(r), com-
puted using the parameters listed in the second (sixth)
through the Þfth (ninth) rows of Table 1, are shown
in the left column of Fig. 2 (Fig. 3). In constructing
Table 1 and Figs. 2 and 3, we have usedf 5 5 3 102 5 s2 1

and mf
2 1 5 1000 km. Note that the y(r) proÞles are

Rankine-like and that the strength of the tangential
winds range from tropical depression, through tropical
storm, to Category 1 on the SafÞrÐSimpson scale. The
Rossby length in the vortex core, given bymc

2 1 and listed
in the Þfth column of Table 1, is less than 20 km for the
stronger vortices.

FIG . 1. Isolines ofrc and temperature tendencyTt in the (r, z) plane for the resting atmosphere case. The radial axis
is labeled in km and the vertical axis in the dimensionless vertical coordinatez/zT. The radius of diabatic heating is
rh 5 25 km (as indicated by the vertical dashed line).

TABLE 1. Parameters for the resting case (Þrst row) and the Rankine-like vortex cases (remaining rows): radius of the vortex core,rc;
maximum azimuthal wind, y(rc); dimensionless effective Coriolis parameter in the vortex core,fc/f ; and Rossby length in the vortex core,
mc

2 1. The last four columns show the minimum value ofrc (which occurs just insider 5 rh), the maximum value of rc ( just outside r 5 rh),
the fraction ( h) of the downward mass ßux that occurs in the regionr . rh, and the maximum value of Tt.

Case rc (km) y(rc) (m s2 1) fc /f mc
2 1 (km) ( rc)min (3 106 kg s2 1) (rc)max (3 106 kg s2 1) h (%) ( Tt)max (K h 2 1)

R0 Ñ 0 1.0 1000.0 2 0.5339 448.38 99.88 0.0411946
A10 20 10 21.0 47.6 2 0.5266 448.39 99.88 0.0411952
A20 20 20 41.0 24.4 2 0.5081 448.41 99.89 0.0411969
A30 20 30 61.0 16.4 2 0.4830 448.44 99.89 0.0411992
A40 20 40 81.0 12.3 2 0.4557 448.46 99.90 0.0412018
B10 30 10 14.3 69.8 2 5.5922 443.31 98.75 0.43832
B20 30 20 27.7 36.1 2 18.099 430.75 95.97 1.47819
B30 30 30 41.0 24.4 2 35.154 413.61 92.17 3.05366
B40 30 40 54.3 18.4 2 53.852 394.81 88.00 5.04679
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FIG . 2. Isolines of rc(r, z) and temperature tendencyTt(r, z) for the four Rankine-like vortices shown in the left column. The radius of
maximum wind is rc 5 20 km and the radius of diabatic heating isrh 5 25 km (as indicated by the vertical dashed line).
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FIG . 3. As in Fig. 2, but for rc 5 30 km, so the diabatic heating occurs inside the radius of maximum wind. Note the change in isoline
intervals from those used in Fig. 2.
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b. Diabatic heating outside the vortex core (rc , rh)

To solve the GreenÕs function problem (3.2)Ð(3.4)
for this Rankine-like vortex, we Þrst consider the case
rc , rh. Then (3.2) reduces to

d
rdr

r
dG(r, rh)

dr

� �
2 m2

cG(r, rh) 5 0 if 0 # r , rc,

d
rdr

r
dG(r, rh)

dr

� �
2 m2

f G(r, rh) 5 0 if rc , r , •

but r 6¼ rh. (5.3)

Now, in addition to the boundary conditions (3.3) and
the jump conditions (3.4), we require

[G(r, rh)] r5 rc1
r5 rc2

5 0 and
r

m2

dG(r, rh)
dr

� � r5 rc1

r5 rc2
5 0,

(5.4)

the latter of which is derived by integrating (3.2) across
a narrow interval centered at r 5 rc. The solution of (5.3)
consists of linear combinations of the zeroth-order
modiÞed Bessel functionsI0(mcr) and K0(mcr) in the
region 0 # r , rc and linear combinations of I0(mf r) and
K0(mf r) in the region rc , r , • . Because our boundary
condition requires that dG(r, rh)/dr 5 0 at r 5 0, we can
discard the K0(mcr) solution in the inner region. Simi-
larly, becauserG(r, rh) / 0 asr / • , we can discard the
I0(mf r) solution in the outer region. The solution of (5.3)
can then be written as

G(r, rh) 5 m2
f

F1(rc, rh)K 0(mf rh)I 0(mcr) 0 # r # rc

F1(r, rh)K 0(mf rh)I 0(mcrc) 1 g1F1(rc, r)I 0(mf rh)K 0(mf rh) rc# r # rh

g1F1(rc, rh)I 0(mf rh)K 0(mf r) rh # r , • ,

8
>><

>>:
(5.5)

where

F1(x, y) 5
I 0(mf x)K 0(mf y) � K 0(mf x)I 0(mf y)

I 0(mcrc)K 0(mf rh) � g1K 0(mf rc)I 0(mf rh)
(5.6)

and

g1 5 mf rc I 0(mcrc)K 1(mf rc) 1
mf

mc

I 1(mcrc)K 0(mf rc)
� �

1 mf rc I 0(mcrc)I 1(mf rc)
�

�
mf

mc

I 1(mcrc)I 0(mf rc)
� K 0(mf rh)

I 0(mf rh)
. (5.7)

Since F1(rc, rc) 5 0 and F1(rh, rh) 5 0, (5.5) guaran-
tees thatG(r, rh) is continuous atr 5 rc andr 5 rh, so that
the Þrst entry in (3.4) and the Þrst entry in (5.4) are
both satisÞed. The jump condition on the derivative at
r 5 rh [i.e., the second entry in (3.4)] and the jump

condition on the derivative at r 5 rc [i.e., the second
entry in (5.4)] can be conÞrmed by using the Bessel
function derivative relations and the Wronskian. The
GreenÕs function forc can be obtained by integrating
(3.5), using (5.5) for G(r, rh). The result is

Gc (r, rh) 5
gr 0mf

T 0N2

�
mf

mc

F1(rc, rh)K 0(mf rh)I 1(mcr) 0 # r # rc

� K 0(mf rh)[ I 0(mcrc)F̂1(rh, r) � g1I 0(mf rh)F̂1(rc, r)] rc # r , rh

g1F1(rc, rh)I 0(mf rh)K 1(mf r) rh , r , • ,

8
>>><

>>>:

(5.8)

where

F̂1(x, y) 5
K 0(mf x)I 1(mf y) 1 I 0(mf x)K 1(mf y)

I 0(mcrc)K 0(mf rh) 2 g1K 0(mf rc)I 0(mf rh)
.

(5.9)

To summarize for the caserc , rh, after specifying mc,
mf, rc, and rh, we can computeg1 from (5.7), and then
G(r, rh) from (5.5) and Gc(r, rh) from (5.8). Note that
when mc 5 mf, (5.7) reduces tog1 5 1, the Þrst two lines
of (5.5) become identical, the Þrst two lines of (5.8)
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become identical, and (5.5) reduces to (4.1) while (5.8)
reduces to (4.2).

c. Diabatic heating within the vortex core (rh , rc)

Now consider the caserh , rc. The GreenÕs function
for the temperature tendency is

G(r, rh) 5 m2
c

g2F2(rh, rc)K 0(mcrh)I 0(mcr) 0 # r # rh
g2F2(r, rc)K 0(mcrh)I 0(mcrh) 1 F2(rh, r)I 0(mcrh)K 0(mf rc) rh # r # rc
F2(rh, rc)I 0(mcrh)K 0(mf r) rc # r , • ,

8
<

:
(5.10)

where

F2(x, y) 5
I 0(mcx)K 0(mcy) 2 K 0(mcx)I 0(mcy)

I 0(mcrh)K 0(mf rc) 2 g2K 0(mcrh)I 0(mcrc)
(5.11)

and

g2 5 mcrc
K 0(mf rc)I 1(mcrc) 1

mc

mf

I 0(mcrc)K 1(mf rc)
� �

1 mcrc
K 0(mf rc)K 1(mcrc)

�

2
mc

mf

K 0(mcrc)K 1(mf rc)
�

I 0(mcrh)
K 0(mcrh)

. (5.12)

Note that the continuity of G(r, rh) at r 5 rh and r 5 rc follows directly from F2(rh, rh) 5 0 and F2(rc, rc) 5 0. The
GreenÕs function forc is

Gc (r, rh) 5
gr 0mc

T 0N2

2 g2F2(rh, rc)K 0(mcrh)I 1(mcr) 0 # r , rh

I 0(mcrh)[2 g2K 0(mcrh)F̂2(rc, r) 1 K 0(mf rc)F̂2(rh, r)] rh , r # rc
mc

mf

F2(rh, rc)I 0(mcrh)K 1(mf r) rc # r , • ,

8
>>><

>>>:

(5.13)

where

F̂2(x, y) 5
K 0(mcx)I 1(mcy) 1 I 0(mcx)K 1(mcy)

I 0(mcrh)K 0(mf rc) 2 g2K 0(mcrh)I 0(mcrc)
.

(5.14)

When mc 5 mf, (5.12) reduces tog2 5 1, the last two lines
of (5.10) become identical, the last two lines of (5.13)
become identical, and (5.10) reduces to (4.1) while
(5.13) reduces to (4.2).

6. Conditions for rapid development of a warm core

a. Inner-core response to heating

Plots of mass streamfunctionrc(r, z) and temperature
tendencyTt(r, z) can now be constructed from (4.5) and
(4.6) using either (5.5) and (5.8) forrc , rh or (5.10) and
(5.13) for rh , rc. It can be shown that the rc(r, z) Þeld
constructed in this way also satisÞes the mass ßux nor-
malization relation (4.7).

We Þrst consider the caserc 5 20 km and rh 5 25 km,
which is typical of cases in which the diabatic heating lies

outside the radius of maximum wind. In the second and
third columns of Fig. 2 we show isolines ofrc(r, z) and
Tt(r, z) for the four vortices displayed in the left column.
These vortices all have a maximum wind atrc 5 20 km,
but with y(rc) 5 10, 20, 30, and 40 m s2 1. The corre-
sponding values of fc/f and mc

2 1 are given in the fourth
and Þfth columns of Table 1, along the rows labeled A10,
A20, A30, and A40. The most obvious feature of Fig. 2 is
the similarity of the four rc (r, z) Þelds and the fourTt(r, z)
Þelds, together with the fact that they differ little from
the resting case shown in Fig. 1. For example, the peak
value of Tt(r, z) is 0.041 195 K h2 1 for case A10 and
0.041 202 K h2 1 for case A40. Because the vortex core is
more inertially stable in case A40, the compensating
subsidence does not extend as far inward, which means
the subsidence is not as large atr 5 0 and thusTt is not as
large at r 5 0. This explains why the temperature ten-
dency in Fig. 2m is somewhat more localized than the
temperature tendency in Fig. 2c. This ÔÔwarm-ring effectÕÕ
has been observed in real storms such as Hurricane Isabel
(2003; see Fig. 10 of Schubert et al. 2007). However, the
main conclusion to be drawn from Fig. 2 is that diabatic

NOVEMBER 2009 V I G H A N D S C H U B E R T 3345

�X�q�d�x�w�k�h�q�w�l�f�d�w�h�g�#�•�#�G�r�z�q�o�r�d�g�h�g�#�4�4�2�4�6�2�5�7�#�3�9�=�7�7�#�S�P�#�X�W�F



heating in the low-inertial-stability region outside the ra-
dius of maximum wind produces a temperature tendency
that is nearly uniform horizontally and similar to that
found for a resting atmosphere. In other words, diabatic
heating outside the radius of maximum wind is very in-
efÞcient at producing rotational ßow, no matter how small
the Rossby length inside the radius of maximum wind.

Now consider the caserh 5 25 km and rc 5 30 km,
which is typical of cases in which the diabatic heating lies
inside the radius of maximum wind. In the second and
third columns of Fig. 3 we show isolines ofrc(r, z) and
Tt(r, z) for the four vortices displayed in the left column.
These vortices all have a maximum wind atrc 5 30 km,
but with y(rc) 5 10, 20, 30, and 40 m s2 1. The corre-
sponding values of fc/f and mc

2 1 are given in the fourth
and Þfth columns of Table 1, along the rows labeled
B10, B20, B30, and B40. The most obvious features of
Fig. 3 are the much larger and more localized values of
Tt(r, z) near r 5 25 km. The values are approximately 10
(0.4383 K h2 1 for case B10) to 100 (5.047 K h2 1 for case
B40) times the values in Fig. 2. Thus, when diabatic
heating occurs within the high-inertial-stability region
that lies inside the radius of maximum wind, there is en-
hanced subsidence inside the radius of heating1 and
a tendency to rapidly form a warm core.

It should be noted that while all results shown here
represent the heating as a Dirac delta function, these
results could be extended for a more general distribution
of heating of Þnite width. Because of the linearity of the
geopotential tendency equation and the transverse cir-
culation equation, we can construct solutions for general
diabatic heating Þelds by superposition of the GreenÕs
functions G(r, r9) and Gc(r, r9) for different values of r9.
This allows us to argue as follows:Suppose that the dia-
batic heating Þeld consists of an annular ring of Þnite width
and that the radius of maximum wind occurs somewhere
between the inner and outer edges of this ring. In this case,
the portion of the diabatic heating that occurs inside the
radius of maximum wind contributes much more efÞ-
ciently to warm core formation and vortex intensiÞcation
than the portion of the diabatic heating that occurs outside
the radius of maximum wind. A consequence is that the
inward or outward movement of the radius of maximum
wind relative to the annular ri ng of convection can have
a large effect on the vortex intensiÞcation rate.

b. Outer core response to heating

Further physical insight may be gained by noting subtle
differences among Figs. 1, 2, and 3. Isolines ofrc(r, z) for

the B40 vortex in Fig. 3l possess a discernible slope be-
tween rh and rc, whereas they do not in Figs. 1 and 2l.
This slope indicates that signiÞcant subsidence (and
therefore adiabatic warming) occurs locally outside of the
diabatic forcing region where the inertial stability re-
mains high. As a word of caution, it should be recognized
that our idealized vortex has a very large change of in-
ertial stability at the radius of maximum winds and
thereby accentuates the difference between the efÞciency
of diabatic heating just inside and just outside this radius.
In real hurricanes the variation of inertial stability with
radius (Mallen et al. 2005; Holland and Merrill 1984) is
somewhat smoother, so there is a more gradual change
from the inefÞcient response to diabatic heating outside
the radius of maximum wind to the efÞcient response
inside this radius. In Holland and MerrillÕs composite
tropical cyclone, inertial stability peaks at approximately
1000f 2 at r • 30 km, decreases rapidly to 100f 2 at r •
80 km, and then drops off more gradually to 10f 2 at r •
200 km. The corresponding Rossby length atr • 200 km
is approximately 300 km, or one-third that of the far-
Þeld value (1000 km), so the heating there will still be
considerably more efÞcient than in the far Þeld. Thus,
heating in this transition region can still spin up the local
tangential wind and radially constrain the circulation
responseÑdespite the fact that the heating is occurring
outside of the radius of maximum wind. This causes
strong subsidence warming and increased static stability
outside of the inner core, which will tend to inhibit con-
vection. According to the authors, this effect likely ex-
plains the relatively clear doughnut-shaped region
sometimes observed surrounding intense storms follow-
ing a period of rapid intensiÞcation.2 Annular hurricanes
have been noted to lack signiÞcant outer rainbands
(Knaff et al. 2003) and may also possess a vortex ÔÔskirtÕÕ
outside of the radius of maximum winds. Our simple
analytic results suggest that the enhanced outer sub-
sidence associated with such a vortex skirt may be im-
plicated in suppressing these outer rainbands. This effect
has also been suggested by a recent full-physics modeling
study by Wang (2008).

c. Far-Þeld response to heating

In passing, we note that the outer core (r • 50 km)
temperature tendencies are qualitatively similar be-
tween all three Þgures,3 but the far-Þeld tendencies (e.g.,
r ; 500 km, not shown) of Fig. 3 are slightly less than the

1 See the values ofh listed in Table 1. Smaller h values indicate
that more of the mass ßux recirculates into the eye.

2 For an example, see the remarkable clear ÔÔmoatÕÕ that sur-
rounded Hurricane Allen (1980) shown in Fig. 1e of Jorgensen (1984).

3 This difference is not very apparent from the Þgures because
the isoline levels have been changed in Fig. 3 to highlight the en-
hanced inner-core tendency response.
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tendencies in Figs. 1 and 2. This difference is easily ex-
plained by recalling from (2.26) that the integrated local
temperature tendency must be equal to the integrated
diabatic heating. So in Fig. 3, the large temperature ten-
dencies of the small inner-core region are exactly com-
pensated for by the slightly reduced tendencies (compared
to Figs. 1 and 2) over the expansive far-Þeld region.

7. Comparison to observed storms and further
discussion

In light of these results, we would be remiss if we did
not inquire as to the radial distributions of diabatic
heating and inertial stability in real storms. In particular,
does the location of the radius of maximum wind relative
to the heating really play a prominent role in controlling
intensiÞcation rates in observed storms? Seeking to an-
swer this question, we turn our attention to observational
studies that have shed some light on this issue.

a. Location of diabatic heating relative to the radius of
maximum wind in observed storms

Shea and Gray (1973) conducted a landmark study in
which they examined 533 radial ßight legs from Atlantic
hurricanes over a 13-yr period. They characterized the
radius of maximum wind as the boundary between two
dynamically disparate regions of the storm. Outside the
radius of maximum winds, convergence and high winds
dominate, whereas high winds, high vorticity, and sub-
sidence are found inside the radius of maximum winds.
At low levels, air ßowing in toward the radius of maxi-
mum wind meets air ßowing outwards from the eye,
forcing a strong updraft at or near the radius of maxi-
mum wind. Thus, in the overwhelming majority of cases,
the radius of maximum wind occurs within the eyewall
cloud.4 In fact, on average, the radius of maximum wind
was located 8Ð10 km outward from the inner edge of the
eyewall (as observed by aircraft radar). Jorgensen (1984)
made additional observations of mature hurricanes that
possessed contracting eyewalls; his results show that the
maximum convective-scale updrafts (which correspond
to the maximum diabatic heating) are typically located
between 1 and 6 km inward from the radius of maximum
wind. These observations indicate that signiÞcant diabatic
heating normally occurs within the high-inertial-stability
region of most storms. Thus, the typical tropical cyclone

structure clearly supports intensiÞcation, but the more
interesting question still remains: what controls how
rapidly a storm will intensify?

It is not a trivial matter to resolve the radial distri-
bution of diabatic heating in a tropical cyclone. Several
past studies have used satellite-based passive microwave
radiometer data or aircraft to examine the relationship
between inner-core diabatic heating and intensity change.
Some general Þndings of those studies are summarized
here. (i) As a storm develops and intensiÞes from a dis-
turbance to the hurricane stage, inner-core diabatic
heating tends to increase and concentrate toward the
center (Adler and Rodgers 1977; Lonfat et al. 2004). (ii)
Episodes of enhanced heating seem to precede periods
of intensiÞcation, with perhaps a lag of a day or two
(Rodgers and Adler 1981; Steranka et al. 1986; Rao and
MacArthur 1994). (iii) The storm tends to become more
responsive to increases in inner-core diabatic heating as
the intensity increases (Rodgers et al. 1998); hurricanes
may need less of an increase in heating to intensify as
compared with tropical storms (Rodgers et al. 1994). (iv)
In the mature stage, however, Marks (1985) observed no
relationship between Hurricane AllenÕs (1980) intensity
changes and inner-core diabatic heating over a 5-day
period. Increases in latent heat seemed to be related to
areal increases in rainfall caused by rainband activity or
the presence of multiple eyewalls.

Most of the above studies share several common
weaknesses. First of all, it is difÞcult to separate the in-
tensiÞcation response due to increased inner-core dia-
batic heating from the general tendency of the diabatic
heating to concentrate near the center as the storm in-
tensiÞes. Additionally, the early satellite-based estimates
of diabatic heating could not adequately resolve the ra-
dial distribution of diabatic heating. Finally, these studies
did not include any information on the distribution of
heating relative to the radius of maximum winds.

One study has overcome some of these limitations.
Corbosiero et al. (2005; see their Fig. 6) have performed
a detailed investigation of Hurricane Elena (1985) data
during a 28-h period when it was well observed by both
ground-based radar and aircraft. These data show that
during ElenaÕs period of most rapid intensiÞcation, the
radius of maximum wind contracted to approximately
30 km and the inner edge of the eyewall convection
remained at approximately 20 km, while there appeared
to be periods of intense convection in the region be-
tween 20 and 30 km. According to the analysis pre-
sented here, the portion of the diabatic heating that
occurred between 20 and 30 km was most responsible
for the intensiÞcation of Elena. Because this is just one
case, and the intensiÞcation rate appears to be constant
during this period (as indicated from the best track,

4 In a small number of cases, the radius of maximum wind was
found inside the eye. This suggests that diabatic heating associated
with the eyewall updraft may occur entirely outside of the high-
inertial-stability region. Our Fig. 2 suggests that any such distri-
bution of heating will be very inefÞcient at intensifying the storm.
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which only gives intensity values every 6 h), it is difÞcult
to tell whether the concentration of diabatic heating
within the radius of maximum winds actually affected
ElenaÕs intensiÞcation rate.

Returning to the study of Shea and Gray, their Fig. 18
plots the difference between the radius of maximum
wind and the inner eye radius as a function of intensity.
This distance measures how far within the cloud area the
radius of maximum wind resides and can be thought of as
a crude proxy for the amount of efÞcient diabatic heating.
According to the Þgure, storms near minimal hurricane
intensity exhibit a wide variation in this quantity (with the
radius of maximum wind sometimes occurring near the
inner cloud edge but in other cases lying more than 40 km
outward from the inner cloud edge). Their Þgure bolsters
the view that the proportion of diabatic heating located
within the radius of maximum decreases as a storm in-
tensiÞes. But clearly an observational challenge remains
to continue to document, for a broad set of storms with
widely varying intensiÞcation rates, the relation between
the radius of maximum wind and the inner edge of eye-
wall convection.

b. Effects of eye formation and contraction

Because the formation of an eye5 must necessarily
remove some of the diabatic heating from the high-
inertial-stability region of a storm, Schubert and Hack
(1982) viewed eye formation as a stabilizing factor that
prevents runaway intensiÞcation. On the other hand,
observations suggest that storms often intensify most
rapidly during or immediately following the formation
of an eye (Mundell 1990). The argument for eye for-
mation as a stabilizer to storm intensiÞcation can be
summarized thus: Convective heating in the consolidat-
ing eyewall forces central axial subsidence, increasing
static stability in the nascent eye. At the same time, the
increased inertial stability associated with the intensifying
swirling ßow of the developing eyewall acts as a barrier to
moist air ßowing toward the center. With the moisture-
rich low-level source air becoming ÔÔlocked outÕÕ from
the center, and any remaining convection being ÔÔlocked
downÕÕ by the increasing static stability, diabatic heating
is removed from the high-inertial-stability region and
an eye appears. All things being equal, this change in
the radial distribution of heating should decrease a
stormÕs overall heating efÞciency, thereby retarding the
intensiÞcation rate.

However, all other things are clearly not equal when
an intensifying storm forms an eye. While it is true that
the development of an eye must necessarily remove
diabatic heating from the center, signiÞcant heating still
occurs between the inner edge of the eyewall and the
radius of maximum winds. During intensiÞcation both
the radius of maximum winds and the inner edge of
diabatic heating tend to move inward in accordance with
the convective ring hypothesis discussed by Willoughby
et al. (1982, 1984) and Willoughby (1990). Although the
area of efÞcient heating may shrink in physical space,
when viewed in potential radius coordinates, the ÔÔdy-
namic sizeÕÕ of the heated area may actually increase if
the angular momentum surfaces move inward faster
than the edge of the convective heating (Schubert and
Hack 1983). Since the reduction in the radius of maxi-
mum wind and the increase in tangential winds both act
to dramatically shrink the local Rossby length in the
eyewall, the intensiÞcation rate of a storm increases as its
spatial scale shrinks and its intensity increases. This has
been shown recently by Pendergrass and Willoughby
(2009), who used a more general framework to solve the
SawyerÐEliassen equation for a piecewise-continuous
balanced mean vortex that includes a realistic vertical
shear. Their realistic vortex case (their Fig. 9a) shows
that the tangential wind tendency experiences a rapid
increase as the maximum wind crosses the 30Ð35 m s2 1

threshold. As Shapiro and Willoughby (1982) note, this
is the threshold at which a tropical cyclone tends to form
an eye.

In addition to the effects of spatial scale and intensity,
the eyewall heating rate likely increases as the eyewall
organization improves. Thus, the storm concentrates its
diabatic heating in the area where the inertial stability is
most rapidly increasing. As a result, continued increases
in the efÞciency of the eyewall heating can offset the
losses in efÞciency that result from removal of diabatic
heating from the eye. Neglecting other factors, it seems
likely that the net effect of eye formation is to increase
the stormÕs intensiÞcation rate.

c. Maturation of the warm core and approach to
a steady state

As the storm continues to intensify and warm air
overspreads the inner core, several factors begin to act
against further intensiÞcation. First of all, rising air par-
cels require increasing amounts of energy to overcome the
warmer temperatures aloft; this tends to hinder deep up-
right convection (Ooyama 1969). Second, the increased
static stability imposes an additional source of resistance
to the secondary circulation. This tends to reduce the
convergence of moisture and angular momentum into the
inner core. Both of these factors decrease the inner-core

5 The dynamical mechanisms responsible for eye formation are
not discussed here, but most surely involve the remarkable prop-
erty for the boundary layer Ekman pumping to maximize at a Þnite
radius rather than at r 5 0 (see Eliassen and Lystad 1977).
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heating, countering the increased efÞciency gains that
occur because of eye contraction. Eventually, the matu-
ration of the warm core should cause the storm to ap-
proach a steady state. These negative inßuences may be
minimized if the storm is able to concentrate the warming
as high as possible and as close to the center as possible
(Mundell 1990). The details of the vertical distribution of
the warm core response depend on the inßuence of baro-
clinity, an effect which is not included in our mathe-
matical framework but which is likely very important
[van Delden (1989) suggests that baroclinity enhances
deepening rates when the maximum winds speed exceeds
30 m s2 1]. Eventually, the region of efÞcient heating in
the eyewall collapses to a small Þnite area through which
only a certain amount of mass ßux can occur to drive
diabatic heating. These ideas suggest that the ultimate
intensity achieved by the storm may depend in part on the
vertical and spatial distribution of the warm core and on
the amount of diabatic heating that remains in the efÞ-
cient region of the eyewall. This ÔÔdynamical limitÕÕ view
of intensiÞcation is surely not the whole picture, but it
may offer further avenues of investigation by models of
intermediate complexity.

d. Analogy to stratospheric sudden warming

Dr. T. Dunkerton (2009, personal communication)
has pointed out the existence of a useful analogy be-
tween the hurricane problem considered here and the
stratospheric sudden warming problem considered by
Matsuno and Nakamura (1979) and Dunkerton (1989).
In the idealized hurricane problem the secondary cir-
culation is driven by a ÔÔvertical delta surfaceÕÕ of dia-
batic heating, whereas in the idealized stratospheric
sudden warming problem the Lagrangian mean circu-
lation is driven by an EliassenÐPalm ßux convergence
that is singular at a given height (i.e., by a ÔÔhorizontal
delta surfaceÕÕ that provides a ÔÔzonal forceÕÕ that drives
a transformed Eulerian mean circulation). An important
difference between the two problems is that quasigeo-
strophic theory is a useful dynamical framework for
studying stratospheric sudden warming, but the gradient
balanced vortex model is necessary for the highly
curved, large-Rossby-number ßows in hurricanes.

8. Concluding remarks

It has been known for several decades that one of the
necessary conditions for hurricane development is that
diabatic heating occur in the region of high inertial sta-
bility. Compared to past studies, the present study is
unique in that it has analytically solved for the temper-
ature tendency associated with a vertical delta surface of
diabatic heating in a vortex with a simple radial de-

pendence of inertial stability. The solutions emphasize
the fact that diabatic heating in the low-inertial-stability
region outside the radius of maximum wind is inefÞcient
at generating a warm core, no matter how large the cur-
rent storm intensity. In contrast, diabatic heating in the
high-inertial-stability region inside the radius of maxi-
mum wind is efÞcient at generating a localized tempera-
ture tendency, and this efÞciency increases dramatically
with storm intensity. In other words, the present results
emphasize that the vortex intensiÞcation rate depends
critically on how much of the heating is occurring inside
the radius of maximum wind. However, when a tropical
cyclone reaches a minimum surface pressure of approxi-
mately 985 hPa and a maximum tangential wind of ap-
proximately 35 m s2 1, an eye forms, and diabatic heating
becomes at least partially locked out of the high-inertial-
stability region. Thus, it can be argued that storms that
continue rapid intensiÞcation after eye formation are
those in which at least some of the diabatic heating
persists in the high-inertial-stability region inside the
radius of maximum wind. Our results suggest that the
shrinking effect on the local Rossby length due to
the decreasing spatial scale and increasing tangential
winds compensates for the loss of efÞciency due to eye
formation.

In closing, it is interesting to note that we have derived
the GreenÕs functions for the transverse circulation
Eq. (2.11) and the geopotential tendency Eq. (2.21) in
the special case of a resting atmosphere and the special
case of a height-independent Rankine-like vortex. In
these special cases the differential operators in (2.11)
and (2.21) simplify considerably. Obviously, it would be
useful to obtain the corresponding GreenÕs functions for
a general baroclinic vortex. Such baroclinic GreenÕs
functions would aid in understanding the role of eyewall
slope and in understanding how a steady state is ap-
proached as the ratio of _u to P becomes constant along
each absolute angular momentum surface. One ap-
proach to this more difÞcult baroclinic problem is to
transform (2.11) and (2.21) from (r, z) coordinates to
either (R, z) coordinates (where ½fR2 5 m) or ( r, u)
coordinates. In both cases, the operators on the left-
hand sides of (2.11) and (2.21) are considerably simpli-
Þed, so that simple analytical solutions can be found.
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