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ABSTRACT: The World Meteorological Organization has developed a set of headline indicators 
for global climate monitoring. These seven indicators are a subset of the existing set of essential 
climate variables (ECVs) established by the Global Climate Observing System and are intended 
to provide the most essential parameters representing the state of the climate system. These 
indicators include global mean surface temperature, global ocean heat content, state of ocean 
acidification, glacier mass balance, Arctic and Antarctic sea ice extent, global CO2 mole fraction, 
and global mean sea level. This paper describes how well each of these indicators are currently 
monitored, including the number and quality of the underlying datasets; the health of those 
datasets; observation systems used to estimate each indicator; the timeliness of information; 
and how well recent values can be linked to preindustrial conditions. These aspects vary widely 
between indicators. While global mean surface temperature is available in close to real time and 
changes from preindustrial levels can be determined with relatively low uncertainty, this is not 
the case for many other indicators. Some indicators (e.g., sea ice extent) are largely dependent 
on satellite data only available in the last 40 years, while some (e.g., ocean acidification) have 
limited underlying observational bases, and others (e.g., glacial mass balance) with data only 
available a year or more in arrears.
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A wide range of variables is used to monitor the state of the global climate. This monitoring 
includes reporting on annual time scales, such as through the World Meteorological 
Organization’s (WMO) State of the Climate series (e.g., WMO 2019) and the State of 

the Climate reports published through BAMS (e.g., Blunden et al. 2018), as well through the 
systematic Assessment Reports of the Intergovernmental Panel on Climate Change (IPCC) 
(IPCC 2013, 2019a,b).

Key indicators play an important role in many forms of global monitoring. They are 
quantified, objective, based on data provided by virtually all countries, and used to demon-
strate change in the climate system over time. The parties to the United Nations Framework 
Convention on Climate Change (UNFCCC) are also likely to include indicators in the “global 
stocktake,” an assessment made every 5 years to measure progress under Article 14 of the 
Paris Agreement (United Nations 2015a). The ongoing negotiations on how to structure this 
process and on what information to include in the stocktake are due for finalization before 
the first stocktaking exercise takes place in 2023.

The main framework for determining key variables representing the state of the climate 
system has hitherto been the Global Climate Observing System (GCOS) set of essential climate 
variables (ECVs) (Bojinski et al. 2014; Table 1), a concept which dates from the early 2000s. 
This set consists of 54 different variables (16 atmospheric, 19 ocean, and 19 terrestrial), 
some of which have multiple indicators associated with them, and includes variables that are 
measured using conventional surface and upper-air meteorological observations, as well as 
many that are primarily measured using means such as remote sensing platforms or ocean-
based platforms. An assessment of how well ECVs are monitored forms the core of regular 
assessments of the status of the global climate observing system (e.g., WMO 2015). Some 
variables, such as surface temperature, are supported by the comprehensive global observing 
networks, a long history of observations, and well-established mechanisms for international 

Table 1. The current ECVs.

Category Subcategory ECVs

Atmospheric Surface Precipitation; pressure; temperature; surface radiation budget; wind speed and direction; water  
vapor

Upper atmosphere Earth radiation budget; lightning; temperature; water vapor; wind speed and direction

Atmospheric composition Aerosols properties; carbon dioxide, methane, and other greenhouse gases; cloud properties; 
ozone; precursors (supporting the aerosols and ozone ECVs)

Oceanic Physics Ocean surface heat flux; sea ice; sea level; sea state; sea surface salinity; sea surface temperature;  
subsurface currents; subsurface salinity; subsurface temperature; surface currents; surface stress

Biogeochemistry Inorganic carbon; nitrous oxide; nutrients; ocean color; oxygen; transient tracers

Biology/ecosystems Marine habitat properties; plankton

Terrestrial Aboveground biomass; albedo; anthropogenic greenhouse gas fluxes; anthropogenic water use;  
fire; fraction of absorbed photosynthetically active radiation (FAPAR); glaciers; groundwater;  
ice sheets and ice shelves; lakes; land cover; land surface temperature; latent and sensible heat  
fluxes; leaf area index (LAI); permafrost; river discharge; snow; soil carbon; soil moisture
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data exchange and archiving, while for some other variables (particularly ocean and terrestrial 
variables), the amount of information available is much more limited.

The ECVs provide the basis for a comprehensive assessment of the state of the global 
climate system, but form a complex picture, particularly for communicating with policymak-
ers and nonspecialists. Frequently in public discourse, assessments like the WMO State of 
the Global Climate statement and similar reports are communicated via a single indicator, 
global mean surface temperature. To address this, WMO, in conjunction with the World 
Climate Research Programme (WCRP) and GCOS, developed a new set of headline climate 
indicators. The primary objective (Williams and Eggleston 2017) is to provide a range of 
indicators which gives a more comprehensive picture of the overall state of the global climate 
system than surface temperature alone. These indicators should be scientifically robust and 
cover the atmosphere, ocean, and cryosphere, while still being sufficiently simple and few 
in number (ideally between 5 and 10) to be suitable for widespread public communication. 
The indicators are targeted particularly at high-level policy events such as the activities 
of the UNFCCC, but we expect that they will also be valuable for broader reporting of the 
state of the global climate.

The desired characteristics (Williams and Eggleston 2017) for the headline climate indica-
tors were as follows:

Relevance: Each headline indicator should be a clear, understandable indicator of the state 
of the climate system, with broad relevance for a range of audiences, whose value can be 
expressed as a single number. Some such global indicators may also have value at the 
national and regional levels.

Representativeness: The indicators as a package should provide a representative picture of a 
broad range of changes to the Earth system related to climate change.

Traceability: Each indicator should be calculated using an internationally agreed upon (and 
published) method and accessible and verifiable data.

Timeliness: Each indicator should be calculated regularly (at least annually), with the mini-
mum possible time between the end of the period and publication of the data.

Data adequacy: The available data needed for the indicator calculation must be sufficiently 
robust, reliable, and valid.

Seven headline indicators (Table 2), each of which draws on one or more ECVs, were final-
ized by the WMO’s Commission for Climatology at its 2018 meeting (WMO 2018a), following 
earlier discussions at meetings of WMO and GCOS in February (WMO 2017a; GCOS 2017) 
and October 2017. These took the above criteria into account while providing the broadest 
possible picture of the state of the climate system. These were first formally reported by WMO 
(for the five indicators which at that time had available data for 2017) in the 2017 State of 
the Climate report (WMO 2018c).

Table 2. The seven headline climate indicators.

Variable Proposed indicator

Temperature Global mean surface temperature

Ocean heat content Global ocean heat content anomaly

Sea level Global mean sea level change from a reference benchmark

Sea ice extent Sea ice extent for the Arctic and Antarctic

Glacier mass balance Global mass change of glaciers outside the Greenland and Antarctic ice sheets

Ocean acidification Global mean ocean pH

Greenhouse gas mole fractions Mean global mole fraction of CO2
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The purpose of this paper is to assess how well each of the seven indicators chosen by WMO 
is supported by the underlying observation and computational methodology, and, for some of 
the less completely observed indicators, what is required to improve their monitoring into the 
future to allow the criteria above to be fully met. The indicators are intended for use of global 
level; while many of them will also be applicable at smaller spatial scales, other indicators will 
also be required for local climate assessment. There are numerous other potential indicators, 
especially for atmospheric variables, which broadly meet the criteria above (see Table ES2 in 
the supplemental material) but have not been included in the interests of keeping the total 
number of indicators manageably small.

The way in which these indicators are conventionally expressed varies from indicator to 
indicator. For example, mean global mole fraction of CO2 is most often expressed as abso-
lute value, glacial mass balance as a year-on-year change, and temperature as an anomaly 
or departure from the average of a given baseline period. The choice of baseline period 
depends on the indicator and the availability of data. The most commonly used baseline 
period is 1981–2010 (WMO 2017b), especially for indicators which draw on satellite datasets 
which begin in the 1970s, while another example of a baseline period, used particularly for 
temperature, is 1850–1900, used as an approximation to preindustrial conditions by IPCC 
(Allen et al. 2018). The choice of baseline shifts absolute values but has little or no impact on 
the estimation of changes or trends.

The headline indicators
Temperature. Global mean surface temperature (GMST) is arguably the best-known metric 
used in monitoring the state of the climate. Conventionally, it is defined using a combination 
of air temperature at screen level (2 m) over land and sea surface temperature (SST) in ocean 
areas. It is conventionally expressed as an anomaly from a baseline period, although the 
baseline period used differs between different datasets.

A number of global datasets are maintained by various institutions (see Table ES1 in the 
supplemental material). These combine historical data drawn from a range of sources with data 
collected through national meteorological services and transmitted in near–real time through 
the WMO’s Global Telecommunications System, particularly the monthly CLIMAT reports from 
land stations, while the International Comprehensive Ocean–Atmosphere Dataset (ICOADS; 
Freeman et al. 2017) is a major data source for SST data. More recently, reanalyses have also 
been used for the assessment of global temperatures, using the (not strictly equivalent) defini-
tion of air temperature over the oceans rather than SST. As updating is drawn from sources 
which normally report within a few days of the end of each month, these GMST analyses are 
normally available for each month within 1–2 weeks of the end of the month for reanalyses, 
and 2–4 weeks for “conventional” datasets.

All of the datasets listed in Table ES1 have been the subject of extensive assessment 
of their quality and homogeneity. The largest differences between them, particularly in 
more recent years, relate to the way in which they do (or do not) interpolate over data-
sparse areas such as the polar regions, with approaches ranging from that of HadCRUT4 
(which treats 5° × 5° grid boxes with no data as missing) to the reanalyses, whose data are 
spatially complete (Fig. 1), and Cowtan and Way (2014), who use satellite data to extend 
surface analyses to polar regions. As the Arctic is warming much faster than the rest of 
the globe (Davy et al. 2018), the more spatially complete datasets show stronger recent 
warming trends than those with limited Arctic representation (Simmons et al. 2017). The 
treatment of systematic biases associated with changes in the way that SST are measured 
is also significant (e.g., Kennedy et al. 2019).

Current values of GMST can be linked to the preindustrial period with a modest level 
of uncertainty (Hawkins et al. 2017). Although the preindustrial period was not formally 
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defined in the Paris Agreement, 
IPCC has adopted 1850–1900 
as a working definition of a 
preindustrial-equivalent base-
line. Of the datasets in Table 
E S1,  on ly  HadC RU T4 a nd 
BEST cover the full 1850–1900 
period, with other conventional 
datasets starting in 1880, but 
methods have been developed 
(Allen et al. 2018) to connect 
those datasets (and the reanaly-
ses) to a 1850–1900 baseline. 
Uncertainties in instrumental 
GMST in the 1850–1900 period, 
particularly the early part of it, 
are larger than for more recent 
data, because of sparse data 
coverage (especially for South-
ern Hemisphere land areas), 
and potential residual uncer-
tainties associated with non-
standardization of instrument 
shelters and SST measurement 
methods (Morice et al. 2012).

Ocean heat content. A defin-
ing characteristic of the global 
ocean is a large capacity to store 
and transport heat. The upper 
few meters of the global ocean 
have the same heat capacity 
a s  t he  ent i re  at mosphere 
(Gill 1982). It is estimated that 
over 90% of the radiative imbalance associated with anthropogenic climate change is 
absorbed by the oceans, with the remaining 10% going into heating of the land surface, 
atmosphere, and cryosphere (von Schuckmann et al. 2016). The ocean’s dominant role in 
the planetary energy budget arises at annual time scales (Palmer and McNeall 2014) and 
makes ocean heat content (OHC) change a primary observational metric of global warm-
ing because it provides a strong constraint on the magnitude of Earth’s energy imbalance 
(von Schuckmann et al. 2016; Palmer 2017). In addition, OHC is less subject to interannual 
to decadal variability than global mean surface temperature (Palmer and McNeall 2014; 
Wijffels et al. 2016).

The primary means of estimating OHC change is through analysis of historical subsurface 
temperature profiles. The methods used are broadly similar to those applied to global sur-
face temperature; a number of profiles in a given time “window” are spatially interpolated 
to estimate the global average, relative to a reference period. As with surface temperature, 
interplatform biases are assessed and corrected for, e.g., those associated with expendable 
bathythermograph (XBT) instruments (Abraham et al. 2013; Cheng et al. 2016). A number 
of indirect methods for estimating OHC change are also available, such as satellite-based 

Fig. 1. October 2019 global temperature anomaly (°C) maps showing 
differing coverage in different datasets: (a) the HadCRUT4 dataset (Met 
Office) and (b) the ERA5 dataset (Copernicus Climate Change Service/
ECMWF). The ERA5 dataset shows more extensive coverage in polar 
regions and over Africa than does HadCRUT4. This also illustrates the 
different baseline periods used by different data providers in their 
routine products.
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estimates of ocean thermal expansion and ocean data assimilation products that combine 
the available observations with a dynamical ocean model (Meyssignac et al. 2019).

A key challenge for estimating OHC change is the highly heterogeneous and depth-limited 
historical ocean sampling (Abraham et al. 2013; Palmer 2017). Estimates of annual OHC 
change that extend back to the mid-twentieth century (Fig. 2) are typically limited to the 
0–700-m-depth layer and have particularly large sampling uncertainties before the mid-1960s 
(Lyman and Johnson 2008; Palmer and Brohan 2011; Abraham et al. 2013; Cheng et al. 2017). 
Since the mid-2000s, the Argo array of autonomous 
profiling floats has provided near-global coverage 
of the upper 2,000 m of the ice-free ocean and a 
dramatic improvement in our ability to monitor OHC 
change (Riser et al. 2016), with greater consistency 
between data products.

Estimates of sub-2,000-m OHC change rely on 
a sparse network of full-depth hydrographic sec-
tions from scientific research vessels that permit 
estimation of decadal trends in OHC from about 
the 1990s onward (Purkey and Johnson 2010; 
Desbruyères et al. 2016). However, combined with 
Argo observations, this information allows us to esti-
mate the global OHC change over the full-depth from 
the mid-2000s and also characterize the spatial time 
evolution of the warming (Desbruyères et al. 2017). 
While the observational basis is less robust, some 
recent estimates of full-depth OHC change extend 
back to 1960 (Cheng et al. 2017).

Time series of global OHC anomaly from a number 
of semi-operational products are presented routinely 
as part of the annual BAMS State of the Climate 
report (e.g., Blunden et al. 2018). The data include 
annual time series for the 0–700 and 700–2,000-m 
layers, and an estimate of the long-term trend for 
ocean below 2,000 m. The data products are based on various interpolation methods and may 
also vary in their approach to XBT bias correction (Boyer et al. 2016). While statistically based 
estimates remain prevalent for monitoring OHC change, ocean data assimilation products 
(ocean reanalyses) are also increasingly being used (e.g., Palmer et al. 2017). An ensemble 
of four ocean reanalyses is used to provide annual time series of global OHC change for the 
0–700 and 0–2,000-m layers from 1993 onward as part of the Copernicus Marine Service 
Ocean State Report (von Schuckmann et al. 2018).

Linking the current OHC state robustly to the preindustrial climate is extremely challeng-
ing, owing to the lack of subsurface temperature observations during the period 1850–1900. 
The primary source of data we have in this regard is the HMS Challenger expedition, which 
took place between 1872 and 1876. Although the Challenger subsurface temperature obser-
vations were global in scope, they were taken along a small number of ship tracks, mostly 
confined to 40°N–40°S in the Atlantic and Pacific Oceans (Roemmich et al. 2012). These data 
have been used to assess the change in OHC for 0–700 m between 1872–76 and 2004–10 
(Roemmich et al. 2012), albeit with large uncertainties. Further insights into the OHC state 
during preindustrial times may be afforded by more novel approaches, such as the Green’s 
function method used by Zanna et al. (2019). This method uses an estimate of ocean circulation 
to propagate observed surface temperature anomalies into the ocean interior and therefore 

Fig. 2. Time series of 0–700-m-depth global 
ocean heat content change (1021 J) relative to the 
1981–2010 average, based on the EN4 quality-
controlled subsurface ocean temperature profiles 
(Good et al. 2013) following Palmer et al. (2007). 
The shaded regions indicate the 5th–95th percen-
tiles of uncertainty, following the approach of 
Palmer and Brohan (2011). Note that uncertainties 
associated with bias correction and structural un-
certainty are not represented. A 1–2–1 smoothing 
has been applied to the annual data to reduce 
sampling noise. Source: Good et al. (2013).
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provide an estimate of change 
in ocean heat content since 
1871.

Since the mid-2000s, Argo 
provides the vast majority of 
subsurface temperature pro-
files used for in situ–based 
estimates of OHC change. 
While these data are provided 
in near–real time, the highest 
quality “delayed-mode” data 
(Wong et al. 2018) may have 
a 1–2-yr time lag associated 
with them. Public release of 
research cruise data are often 
the responsibility of the cruise 
principal investigator and 
can result in delays of several 
years.

Sea level. The global mean 
sea level (GMSL) is recognized 
as a leading indicator of global 
climate change because it 
reflects changes occurring in 
multiple different components 
of the climate system (ocean, 
atmosphere, cryosphere, and 
hydrosphere) and their mu-
tual interactions.

Historically, sea level has 
been measured by tide gauges 
located along continental 
coastlines and islands but 
the coverage of long, good-
quality tide gauges is hetero-
geneous and biased toward 
the Northern Hemisphere for 
most of the twentieth cen-
tury. This tide gauge–based 
sea level record, despite its 
limited geographical cover-
age, provides a fundamental 
historical reference for long-
term sea level studies. Since 
the early 1990s, sea level 
is routinely monitored with 
near-full global coverage by 
high-precision satellite al-
timetry (Fig. 3) that provides 

Fig. 3. (a) Global mean sea level evolution over January 1993–December 
2019 based on multi-mission satellite altimetry. From January 1993 to 
December 2015, the curve is derived from the ESA Climate Change Initia-
tive sea level product (Legeais et al. 2018). Beyond December 2015, it is 
extended with sea level data from the Copernicus Marine Environment 
Monitoring Service (www.marine.copernicus.eu). The last few points of the 
time series (in red) are based on the near-real-time altimetry measurements 
of the Jason-3 satellite (Source: Laboratoire d’Etudes en Geophysique et 
Oceanographie Spatiales, EGOS). (b) Global mean sea level budget over 
1993–2016. The individual contributions are shown at the bottom of the 
panel. The altimetry-based sea level and sum of contributions are shown 
by the black and red curves, respectively (Source: ESA Sea Level Budget 
Closure project, Horwath et al. 2020).
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“absolute” sea level data in a geocentric reference frame (unlike tide gauges that also sense 
vertical land motions). This allows the routine estimation of GMSL as a climate indicator 
from 1993 onward.

Since the launch of the TOPEX/Poseidon mission in 1992, there is now a 27-yr-long sea level 
record from which the global mean sea level rise can be inferred as well as regional trends 
(Cazenave et al. 2019). The satellite altimetry constellation includes the so-called “reference” 
missions (TOPEX and Jason-1, -2, and -3, covering the 66°N–66°S latitude domain, and pro-
viding the most accurate long-term stability of sea level measurements at global and regional 
scales). There are also complementary satellites covering part of the Arctic Ocean, up to 82°N 
latitude (ERS-1 and -2, Envisat, SARAL/AltiKa, Sentinel-3A and -3B). Different groups world-
wide provide altimetry-based GMSL time series, which can be updated with less than 1 
month’s delay using Jason-3 data, as well as gridded datasets. Although different processing 
approaches are implemented by these groups, the quality of the different GMSL time 
series is similar. Long-term trends agree well to within 6% of the signal, approximately 
0.2 mm yr−1 in terms of trend, well within the GMSL trend uncertainty range estimated 
to around 0.3 mm yr−1 from tide gauge comparison and error assessments of all sources 
of uncertainties affecting the altimetry system.

This 27-yr-long record indicates that the global mean sea level continues to rise at a 
mean rate of 3.2 ± 0.3 mm yr−1, with some evidence of acceleration. The acceleration (about 
0.1 mm yr−2) results of increased ocean thermal expansion (due to ocean warming) and ice mass 
loss from glaciers, Greenland, and Antarctica (WCRP Global Sea Level Budget Group 2018; 
Nerem et al. 2018).

Regular assessments of the global mean sea level budget have been recently initiated for the 
altimetry era, a period for which different observing systems are available (e.g., Argo profiling 
floats for the ocean thermal expansion component and GRACE space gravimetry for the mass 
components). These budget studies that indicate that in terms of global mean, the sea level 
budget is closed within quoted uncertainties (e.g., WCRP Global Sea Level Budget Group 2018; 
Horwath et al. 2020) are important for many reasons. Quasi closure of the sea level budget 
indicates that no systematic errors affect the different observing system and that there is no 
important missing contribution (e.g., from the deep ocean not sampled yet by Argo). They 
allow improved process understanding and detection of temporal change (e.g., acceleration 
or abrupt change) in the components, and may be useful for validating the climate simula-
tions used for projections (although the current record is still short for the latter application). 
Finally, the altimetry-based global mean sea level corrected for the mass components (e.g., the 
GRACE-based ocean mass contribution) is a proxy of the total ocean heat content. It provides 
thus another approach to monitor the global mean OHC, independently from in situ ocean 
temperature measurements, with applications for estimating the Earth’s energy imbalance 
(von Schuckmann et al. 2016).

While the GMSL remains a major climate indicator, for coastal communities, what matters is 
“relative” coastal sea level change (“relative” means with respect to the Earth crust), i.e., the 
sum of the GMSL plus superimposed regional variability plus small-scale coastal processes. 
The latter include small-scale shelf currents, changes in wind and waves, and freshwater input 
from river estuaries (that modifies the density structure of seawater). Moreover, at the coast, 
vertical land motions due to natural or anthropogenic factors (such as ground subsidence from 
hydrocarbon or water extraction, or sediment compaction in river deltas) will superimpose 
on the global mean and regional sea level components. Such vertical land motions amplify 
the climate-related sea level rise in many places, although in others they offset it.

Sea ice extent. Sea ice extent is the most widely used climate indicator to assess long-term 
changes in Arctic and Antarctic sea ice. Sea ice extent is defined as the area covered by an areal 
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ice concentration greater than 15%. It is typically derived from passive microwave satellite 
measurements that are available in close to real time and provide a consistent observational 
record that now spans more than 40 years. There are several different sea ice datasets that 
make use of passive microwave satellite measurements, and different retrieval algorithms. 
Therefore, the uncertainty varies depending on the dataset. Resolving the position of ice 
edge or marginal ice zone, thin ice and melt ponds forming on the surface of the sea ice are 
the primary sources of uncertainty (Ivanova et al. 2015; Comiso et al. 2017). To that end, 
the differences in sea ice extent between datasets can range from 0.5 × 106 to 1 × 106 km2 
(Meier and Stewart 2019). Further, construction of more than 40 years of sea ice extent record 
requires combining sensors of shorter operational lifetimes together; therefore, uncertainty 
can vary temporally depending on the quality of sensor calibration (Eisenman et al. 2014). 
Despite these differences, the long-term datasets of passive microwave satellite derived mea-
surements of sea ice extent still provide the most robust and consistent indictor of long-term 
change (Comiso et al. 2017).

Figure 4 shows the time series of sea ice extent anomalies for the Arctic in March (winter 
maximum) and September (summer minimum) as well as for the Antarctic in September 
(winter maximum) and February (summer minimum) for two of the most common, widely 
used, and available in close to real time sea ice extent datasets, the Sea Ice Index version 3 
(Fetterer et al. 2017) and Satellite Application Facility on Ocean and Sea Ice (OSI-SAF) version 
2 (Lavergne et al. 2019). Note the interannual variability is similar between these two 
products. In the Arctic, the summer minimum sea ice extent has declined at a rate of around 
12.5% decade−1 and winter maximum sea ice extent has declined at a rate of around 2.7% 
decade−1 over the 1979–2019 period. Reductions are particularly prominent in the Beaufort 
and Chukchi Seas during the summer and in the Barents and Bering Seas during the winter. 
Overall, the downward trend in the Arctic’s September sea ice extent is perhaps one of the 
most visually striking indicators of climate change. In the Antarctic, there has been consider-
ably more interannual variability in both summer and winter sea ice extents in addition to 
a weak increasing trend up until 2014 that contrasts the strong negative trend in the Arctic. 
However, this positive Antarctic trend has been found to have reversed in 2014 with the 
recent decreasing sea ice extent rates greater than observed in the Arctic (Parkinson 2019).

There is evidence to sug-
gest that the recent decline 
in Arctic September sea ice 
extent observed over the post-
1979 satellite record is unprec-
edented compared to historical 
reconstructions for the pre-1979 
period (Walsh et al. 2017) and 
paleoclimate proxy data (e.g., 
Kinnard et al. 2011). Pre-1979 
observations for the Antarctic 
point to a decrease in February 
sea ice extent (Abram et al. 2013; 
Gallaher et al. 2014), but there 
is considerable uncertainty in 
these observations and there-
fore it is difficult to link these 
with the more consistent post-
1979 satellite observations 
(Hobbs et al. 2016).

Fig. 4. Time series of 1979–2019 sea ice extent anomalies (%) in (a) March 
(maximum ice extent) and September (minimum ice extent) for the Arctic 
and (b) September (maximum ice extent) and February (minimum ice 
extent) for the Antarctic. The anomaly for each year is the percentage dif-
ference in sea ice extent relative to the 1981–2010 mean. Sea ice extent is 
defined as an area covered by sea ice that contains an ice concentration of 
15% or greater. Data source: Sea Ice Index version 3 (Fetterer et al. 2017) 
and OSI-SAF version 2 (Lavergne et al. 2019).
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A concern with the 40+-yr passive microwave sea ice extent record is that the remain-
ing satellites in orbit are well beyond their operational lifetime (Witze 2017). However, the 
European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) Polar 
System–Second Generation (EPS-SG), which is expected to launch in 2023, will contain 
sensors to facilitate the continuation of the 40+-yr passive microwave sea ice extent record. 
In addition, there is the Copernicus Imaging Microwave Radiometer (CIMR) mission that is 
currently a candidate mission (high priority) within the European Copernicus Expansion 
program and could launch in the late 2020s. Should the current passive microwave sensors 
in orbit fail before these aforementioned European satellites are launched, gap-filling data are 
currently available from the Fengyun 3 (FY-3) Microwave Radiation Imager (MWRI) operated 
by the China Meteorological Administration (CMA).

Glacier mass balance. Variations in glacier mass are closely linked to changes in atmo-
spheric forcing. The mass balance of glaciers—defined as the sum of all gains and losses in ice 
mass—is primarily affected by summer air temperatures. Variations in solid precipitation and 
radiation fluxes also exert a significant influence on glacier mass change (Braithwaite 1981; 
Ohmura 2001). Long-term cumulative glacier mass changes are thus a valuable indicator 
integrating the effects of various components of the global climate system on snow and ice. 
As glaciers adapt to altered climatic conditions by retreating to higher elevation, the mass 
change signal also depends on their dynamic response. Glaciers are distributed over most 
continents of the Earth with a concentration in the high mountain ranges of Asia and North 
and South America, as well as in high latitudes (Pfeffer et al. 2014). Limited glacierization is, 
however, also present in tropical regions.

Observing the mass change of the roughly 200,000 glaciers outside the two ice sheets 
in Greenland and Antarctica is challenging due to their remoteness and general inacces-
sibility on the one hand, meaning that sampling of these glaciers is incomplete, and on the 
other hand due to the inherent difficulty of directly measuring variations in glacier mass. 
Therefore, a combination of different methodologies is employed. Direct field observations 
on about 300 glaciers globally deliver data on seasonal to annual glacier mass change 
(Zemp et al. 2015). Due to logistical reasons, most observations refer to glaciers smaller than 
about 20 km2, although in several regions larger glaciers are also monitored. Although at 
least one series is available in all large-scale glacierized regions worldwide, measurements 
are overrepresented in the European Alps, Scandinavia, and the Rocky Mountains. Due to 
the inhomogeneity of national monitoring programs and the laborious field data process-
ing, global-scale results on seasonal or annual mass change are typically only available a 
few months up to a year after acquisition. Comparison of repeated digital elevation models 
of the ice surface, referred to as the geodetic method, allows assessing the volume change 
of large glacier samples at time intervals of a few years to decades (e.g., Kääb et al. 2012; 
Brun et al. 2017; Braun et al. 2019). The Gravity Recovery and Climate Experiment (GRACE) 
provided a powerful method to directly observe glacier mass change from space, albeit only 
at a spatial resolution of 100 km or more, until its cessation in 2017. Furthermore, uncer-
tainties for mountain ranges with small glaciers are high due to limitations in the model 
separating mass change signals from glaciers and other components of the hydrological 
cycle (e.g., Gardner et al. 2013; Wouters et al. 2019).

Data on glacier mass balance (Fig. 5) are collected through a worldwide network of na-
tional correspondents and principal investigators and are further distributed by the World 
Glacier Monitoring Service (WGMS, www.wgms.ch). Analysis of long-term variations in glacier 
mass often relies on a set of global reference glaciers, being defined as sites with continu-
ous high-quality in situ observations of more than 30 years. Results from these series are, 
however, only partly representative for glacier mass changes at the global scale as they are 
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disproportionately in well-acces-
sible regions (e.g., Europe). For 
the most recent pentad 2015–19, 
data of WGMS reference glaciers 
indicate specific mass-change 
rates that are more negative than 
in all other periods since 1950 
(Fig. 5a). These measurements 
corroborate the widespread and 
substantial glacier mass losses 
recognized for several decades.

Global mass change esti-
mates require extrapolation of 
the scattered direct observa-
tions to all glaciers. The study 
by Zemp et al. (2019) provides 
a comprehensive assessment 
of glacier mass changes at the 
global scale based on a combina-
tion of year-to-year variabilities 
stemming from in situ mea-
surements, and decadal-scale 
geodetic mass changes from a 
large set of roughly 20,000 in-
dividual glaciers covering about 
25% of the global glacier area. 
Results indicate an accelera-
tion of glacier mass losses from 
around 1985, after moderately  
negative values (Fig. 5b). Over the  
last decade, glaciers lost more 
than 300 Gt yr−1 on average, 
thus approaching a sea level rise contribution of 1 mm yr−1 (Zemp et al. 2019). Mass loss 
from glaciers outside the two ice sheets thus makes up almost a third of the current sea level 
rise. The glacier mass-change rates for the last decade are also confirmed by global studies 
based on satellite gravity and altimetry (Fig. 5b; Gardner et al. 2013; Wouters et al. 2019).

Knowledge on glacier mass change is limited before the 1960s. Only very few direct 
observations exist, and the spatial coverage of these measurements does not allow any 
global assessment. However, observations of glacier length change reaching back until 
the sixteenth century in some cases (Leclercq et al. 2014), as well as glacier modeling (e.g., 
Marzeion et al. 2014) indicates significant glacier mass losses globally since the maximum 
of the so-called Little Ice Age around 1850. This is also consistent with geomorphological 
evidence (Grove 2004).

Ocean acidification. Increasing atmospheric carbon dioxide concentrations affect the 
chemistry of the ocean. The ocean absorbs around 30% of the annual emissions of carbon 
dioxide (CO2) to the atmosphere, which helps to alleviate the impacts of climate change on the 
planet. The CO2 reacts with seawater and alters the acidity of the ocean by decreasing its pH. 
This process is called ocean acidification. The change of pH level is linked to a range of shifts 
in other carbonate chemistry parameters in the seawater, such as a decrease in carbonate 

Fig. 5. (a) Average of observed annual specific mass-change rate (red; 
kg m−2 yr−1) of all reference glaciers of the WGMS, including pentadal 
means (black lines). (b) Annual mass-change rate (Gt yr−1) of all glaciers 
outside the two ice sheets (Greenland, Antarctica) inferred from a combi-
nation of remotely sensed glacier thickness change and annual in situ ob-
servations, according to Zemp et al. (2019). Pentadal averages (black lines) 
and their uncertainties (shading) are shown. Global glacier mass-change 
rates from two independent studies, primarily based on GRACE results, 
are shown for comparison [2003–09 for Gardner et al. (2013); 2006–16 
for Wouters et al. (2019)]. Note that results of Wouters et al. (2019) do 
not include glaciers in the periphery of Greenland and Antarctica, which 
have been supplemented for comparability based on Zemp et al. (2019). 
Source: World Glacier Monitoring Service.
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ion concentrations. This lowers the saturation state of biogenic calcium carbonate minerals, 
including calcite and aragonite, used in the formations of shells and skeletal material by a variety 
of marine organisms, from mussels and crustaceans to corals, decreasing their ability to calcify 
(e.g., reef building corals and shelled mollusks). Together, the changes in CO2 concentration, 
pH, and carbonate chemistry parameters affect the energy budget of marine life, lessening 
the potential to grow and reproduce. It is therefore important to fully characterize the ocean’s 
changing carbonate system through observations with high temporal and spatial resolution.

Ocean acidification observations started at a limited number of stations 30 years ago, a 
very limited set of observations compared with the other headline indicators, and at present 
data are generally reported at the station level rather than as a consolidated global indicator. 
Established methodology and standards are available, but data are not regularly produced by 
countries. IPCC (2019a) reported information on ocean pH based on eight stations globally 
with 15 years or more of data.

Notwithstanding the limited existing data, increasing awareness, international col-
laboration, e.g., that supported by the Intergovernmental Oceanographic Commission–
United Nations Educational, Scientific and Cultural Organization (IOC-UNESCO), the Ocean 
Acidification International Coordination Centre (OA-ICC) and in particular the Global Ocean 
Acidification Observing Network (GOA-ON), and related capacity development activities, have 
increased the human and technical capacity to measure ocean acidification and analyze 
related datasets. In 2015, ocean acidification was further identified as one topic to address 
within the 2030 Agenda for Sustainable Development (United Nations 2015b) [Sustainable 
Development Goal (SDG) target 14.3]. In 2017 UN Member States further agreed on the re-
lated indicator 14.3.1: average marine acidity (pH) measured at agreed suite of representative 
sampling stations. IOC-UNESCO is the custodian agency for this SDG indicator, which means 
it is responsible to develop internationally agreed-upon standards, coordinate the indicator 
development, and support increased adoption and compliance with the internationally agreed 
standards at the national level. Based on this methodology, IOC-UNESCO collects ocean 
acidification data from countries (or regional organizations) through existing mandates and 
reporting mechanism to provide internationally comparable data and calculate global and re-
gional aggregates. The commissions also strengthen national statistical capacity and improve 
reporting mechanisms for ocean acidification with specific capacity training activities. As a 
result of these initiatives, it is expected that the observation network for ocean acidification 
will expand rapidly over the next few years.

In 2019, a new 14.3.1 data portal1 was launched by IOC-UNESCO, which now facilitates 
the reporting and analysis of ocean acidification data and metadata toward reporting of the 
indicator. In turn, a headline indicator on ocean acidification can benefit from the collected 
data on an annual basis by IOC-UNESCO, assuring a high 
quality of scientific data and information used across different 
reporting mechanisms, international conventions, and related 
publications/outputs.

Greenhouse gas concentration. Carbon dioxide is the single most important anthropogenic 
greenhouse gas in the atmosphere, contributing ~66% of the radiative forcing by long-lived 
greenhouse gases. It is responsible for about 82% of the increase in radiative forcing over the 
past decade and about 81% of the increase over the past 5 years. Atmospheric concentration 
of CO2 is closely linked to anthropogenic activities and it is defined by the exchange processes 
between the atmosphere, the biosphere, and the oceans.

The long-term trends and seasonal variations in the global average mole fractions of CO2 
(Fig. 6) are calculated using surface observations at stations of the Global Atmosphere Watch 
(GAW) Programme and its contributing networks. In total 129 stations were used for the 

1 www.goa-on.org
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calculation of the 2018 global average. For the global 
analysis (WMO 2009) used in the WMO Greenhouse 
Gas Bulletin, stations were selected to be represen-
tative of their region and not significantly impacted 
by local CO2 sources or sinks (e.g., not impacted by 
direct emissions from the traffic or industry or direct 
CO2 uptake by the forest).

Data from the network are submitted to the WMO 
World Data Centre for Greenhouse Gases within 8 
months after the end of the calendar year, after re-
ceiving a thorough quality control by the laboratories 
performing the measurements. Some stations provide 
data on their websites in shorter release cycles with 
delays up to just 1 day, bypassing part of the quality 
protocols, but only the fully quality controlled data 
can be used for the global mean calculations.

All WMO GAW greenhouse gas observations are 
performed following the recommendation for quality 
assurance, in particular the confirmed traceability 
chain to the primary WMO scale, as described in 
WMO (2018b). To ensure global compatibility of the 
measurements, the World Calibration Centre (WCC), 
supported by NOAA, organizes regular comparisons 
in which the set of the well-characterized cylinders is 
sent by the world calibration center to the stations in 
the chain (so that stations measure the same flasks 
one after the other). This demonstrates the compat-
ibility of the measurement systems.2

Selection of observational sites is based on whether 
they provide data representing a reasonably large 
geographical area, considering the fact that some sites 
may be susceptible to local emission sources and sinks.

The mole fractions of greenhouse gases exhibit 
variations on different time scales. The two major 
components are seasonal variation and long-term trends. In the WMO Greenhouse Gas 
Bulletin, average seasonal variations derived from components of Fourier harmonics and 
long-term trends are extracted via a Lanczos low-pass filter.

In general, the number and distribution of sites used to assess trends during the analysis 
period should be kept unchanged as much as possible to avoid biases and additional uncer-
tainties arising from introduction of the new data of removal of 
stations. However, data covering the entire analysis period are 
available for fewer than 20 sites3; for most sites, coverage is for 
shorter periods or contains data gaps. Smaller gaps are filled using 
linear interpolation based on available data in the fitted long-term 
trends derived by subtracting the average seasonal variation.

Six zonal mean mole fractions are calculated by determining the arithmetic average 
of the mole fractions in each latitudinal zone (90°–60°, 60°–30°, and 30°–0° in each 
hemisphere), based on consistent datasets derived as above. Global and hemispheric 
means are calculated as the weighted averages of the zonal means taking account of the 
area of each latitudinal zone. Growth rates for the whole globe, each hemisphere and 

Fig. 6. (a) Monthly globally averaged CO2 mole 
fraction (ppm) and (b) its growth rate (ppm yr−1) 
from 1984 to 2018. Increases in successive annual 
means are shown as the shaded columns in (b). 
The red line in (a) is the monthly mean with the 
seasonal variation removed; the blue dots and 
line depict the raw monthly averages. Source: 
World Meteorological Organization Greenhouse 
Gas Bulletin (https: //public.wmo.int /en/resources/
library/wmo-greenhouse-gas-bulletin).

2 Results can be found on the WCC website at www.

esrl.noaa.gov/gmd/ccgg/wmorr/wmorr_results.php
3 https://gaw.kishou.go.jp/publications/summary
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each latitudinal zone are derived from the time derivatives of the corresponding long-
term trends fitted to the observations (WMO 2009). The uncertainty in global mean mole 
fractions (at a 68% confidence level) is calculated using bootstrap analysis. From the 
dataset of mole fractions obtained after the site selection and data extension procedure 
described above, n sites are randomly selected, with duplication of the same sites allowed 
on condition that at least one site is selected from each of the six latitudinal bands, and 
a global mean mole fraction is calculated using the data from the n sites. The procedure 
is repeated m times to determine m different global mean mole fractions. Uncertainty is 
defined as the standard deviation of these mole fractions.

The preindustrial levels of CO2 are estimated with the same techniques as are used for 
modern in situ measurements but using analysis of the air trapped in ice cores. Those levels 
are estimated with a level of confidence which is lower than for modern observations (uncer-
tainty of the global mean estimate is 0.1 ppm), but still high (Marcott et al. 2014). The 1750 
globally averaged abundance of atmospheric CO2 based on measurements of air extracted 
from ice cores and from firn is 278 ± 2 ppm (Etheridge et al. 1996).

Examples of variables not included in the key indicators
An important characteristic of the indicators selected is that they represent variables which 
can be expressed as a single number which is scientifically meaningful as an indicator of the 
state of the climate system. Some important variables in the climate system were not selected 
for the key indicators because they are not amenable to such a “single number” expression, 
or because they lack the global coverage necessary to be considered fully representative.

To illustrate these challenges, the question of whether the world is experiencing an in-
tensification of the hydrological cycle is an important one in assessing climate change. At 
first glance, the most obvious indicator to report this would appear to be globally averaged 
precipitation, which was one of the indicators originally under consideration (WMO 2017a). 
However, whereas for most key climate indicators, most parts of the world are changing in the 
same direction, for precipitation, there are strong regional variations in the sign of observed 
changes (IPCC 2013), making regional signals of greater importance for many applications 
than an overall global signal.

Globally averaged precipitation on land is reported annually from a number of different 
datasets (Vose et al. 2018), while precipitation over the ocean, using satellite data alongside 
in situ observations is also reported from the satellite-based Global Precipitation Climatology 
Project (GPCP) dataset (Huffman et al. 2009). However, the spread between the land-based 
datasets is large in both historical (Herold et al. 2016; Gehne et al. 2016) and recent data—for 
example, the 2017 mean annual global precipitation over land reported in Vose et al. (2018) 
ranged from only slightly above average to the highest on record—while data over the ocean 
are only available during the satellite era. Reanalysis precipitation datasets also show a large 
degree of divergence (Alexander et al. 2020). Interannual variations in the distribution of 
precipitation over land and ocean are also strongly influenced by seasonal climate drivers 
(Gu and Adler 2011), such as El Niño–Southern Oscillation (ENSO), as well as longer-term 
forcings, complicating interpretation of global or semi-global means.

The seven headline indicators all reflect mean-state variables measured at seasonal and/or 
annual time scales. Many of the most significant impacts of climate change occur as a result 
of extreme events. It would be desirable, in that context, to include an indicator of the occur-
rence of extreme events as a key headline indicator. However, at present, the spatial coverage 
of routine reporting of extremes indices, such as the indices of temperature and precipitation 
extremes defined by the Expert Team on Climate Change Detection and Indices (ETCCDI), 
is limited, with recent analyses largely confined to Europe, North America, Australia, and 
parts of Asia (Perkins-Kirkpatrick et al. 2018; Tye et al. 2018; Fig. 7). This is largely due to 
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the lack of a mechanism for routine reporting of the daily temperature and precipitation data 
needed for the calculation of these indices, combined with limited exchange of historical 
daily data, and limited updating of the indices datasets developed for many parts of the 
world in the 2000s through the ETCCDI series of workshops (Peterson and Manton 2008). 
WMO has recently introduced provisions for quality-controlled daily data to be exchanged 
routinely through the monthly CLIMAT messages and it is hoped that strong uptake of this 
will improve the capacity to monitor extremes in a timely manner, opening the possibility 
of regular reporting of one or more globally measured indicators of climate extremes in the 
future. Some use is also beginning to be made of reanalyses for reporting of indices of cli-
mate extremes (King et al. 2019).

Future opportunities and challenges
Observations are important for understanding the current trajectory of climate change. Global 
mean surface temperature is a key indicator used in the Paris Agreement, while the seven 
key indicators, along with other ECVs, are widely used in assessing whether observed climate 
change is consistent with model projections.

Our capacity to observe most of the variables used for assessment of the key climate in-
dicators is improving over time. The introduction of Argo and related systems have greatly 
enhanced the monitoring of ocean-based indicators (e.g., Johnson et al. 2019), while remote 
sensing platforms have also made possible forms of monitoring which would not have been 
practical with traditional in situ measurements. Reanalyses also play an increasingly im-
portant role in operational climate monitoring products such as the WMO State of the Global 
Climate report and contribute to regular reporting of GMST. In situ measurements are still 
very important to the global observing system and are critical for assessment of global tem-
peratures and greenhouse gas concentrations.

Fig. 7. The highest daily maximum temperature (°C) of 2017 from the gridded GHCNDEX extremes indices 
dataset (Donat et al. 2013), illustrating the limited coverage for extremes data in near–real time. (Source: 
University of New South Wales, through www.climdex.org).

Unauthenticated | Downloaded 05/18/25 08:31 PM UTC



A M E R I C A N  M E T E O R O L O G I C A L  S O C I E T Y J A N UA RY  2 0 2 1 E35

Maintenance of observing platforms is a constant challenge. As noted for sea ice extent, 
important data sources can be vulnerable to individual satellites reaching the end of their 
expected lifespan or otherwise failing without adequate replacement. In situ networks are 
also regularly under pressure, especially in data-sparse regions such as Africa, parts of Asia, 
and South and Central America. Effective management of the data that are collected, and their 
transmission through channels from which they can be incorporated into global datasets, 
are also important.

In parallel with the designation of headline climate indicators, WMO is introducing a frame-
work for the assessment of the maturity of climate datasets incorporating ECVs.4 A number 
of dataset providers have submitted their datasets for assess-
ment. This process is still in the early stages of implementation 
and the fact that a specific dataset has not yet been assessed 
should not be considered as an indication that it is inferior to 
those datasets that have been assessed. There is also a need for harmonized standards for 
data reporting and metadata for balanced assessment of the indicators.
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