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Why A Competition? In a manner similar 
to the other Science and Technology Advisory Com-
mittees (STACs), the AMS’s STAC for Artificial Intel-
ligence (AI) conducts specialty scientific conferences. 
We noticed that for the most part, the AI conferences 
consisted of researchers who were not fully engaged 
in each others’ presentations. To some extent, this 
problem of people talking but not listening is unique 
to AI in meteorology, but we suspect that the dynam-
ics that make this pervasive in AI also exist in other 
specialties.

AI consists of techniques that employ computers 
to find solutions to problems that would otherwise 
have to be performed at a considerable outlay of 
time or effort by humans. AI borrows from applied 
statistics, signal processing, and computer science to 
solve problems through automation. 

In meteorology, AI has been used to address 
issues such as estimating rainfall amounts, now-
casting lightning, predicting convective initiation, 
diagnosing tornado probability, controlling radar 
data quality, and approximating computationally 
expensive models.

Speakers at AI conferences typically expound on 
the problem at hand and the approach they followed 
to solve it. Unfortunately, the researchers who would 
be knowledgeable about the problem being solved 
would more likely be at the hydrology, lightning, 
GOES, or nowcasting conferences. The audience 
at the AI conference tends to consist of researchers 

interested in AI. Accordingly, the specifics of the 
problem that motivated the particular solution would 
be outside the expertise of the audience. Yet, there is 
no way to successfully exchange scientific knowledge 
between researchers in AI without understanding 
the problem at hand, mainly because the selection of 
AI method (it was thought) depended heavily on the 
problem being solved.

Based on this supposition, we decided to have 
one session at our annual AI meetings be a ”com-
petition.” Someone would put up and explain a 
dataset. Then, a variety of researchers would apply 
different techniques to the AI dataset. At the confer-
ence, the dataset would be described in detail, and 
every speaker would recount the characteristics of 
the problem that motivated the methodology that 
was used. 

In order to pique interest and increase the number 
of techniques applied to address the problem, we cast 
it as a competition. Entries would be ranked on a 
predetermined measure of skill, with a special prize 
for the most skilled student entry. Private-sector 
companies with an interest in the problem being 
addressed—Weather Decision Technologies (WDT) 
in the first year and WSI Corporation in the second—
donated money for the prizes.

Anything goes. In the first year (2007–08) of 
the competition, the challenge was to identify the type 
of storm—supercell, convective line, pulse storm, or 
unorganized—based on attributes derived from radar 
data by a storm-tracking algorithm. The training data 
were supplied by Guillot et al. (2008) and consisted 
of the storm type of various storms as identified by a 
human researcher. Attributes of these storms were ex-
tracted by the storm-tracking method of Lakshmanan 
and Smith described in a 2009 article in the Journal 
of Atmospheric and Oceanic Technology. These at-
tributes, as well as the human categorization of the 
storms by type, were provided to the contestants. The 
contestants used this training dataset to create their 
AI models. A separate test dataset, consisting of a 
similar variety of storms, was later provided to the 
contestants but without the human storm-type cat-
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fig. 1. the particular Ai technique used did not matter 
much: winning entries in the 2007–08 competition were 
quite closely clustered together. (a) skill scores of the dif-
ferent entries, with a 95% confidence interval marked. (b) 
the better-performing entries were statistically indistin-
guishable, yielding the same answers (whether correct or 
incorrect).

egory. Instead, the contestants submitted the result of 
their AI model to the competition chairs, who scored 
each submitted result against the true classification. 
Because the AI models were scored on an independent 
dataset, this was a fair test of generalization in a real-
world meteorological scenario.

The conventional wisdom in the meteorology–AI 
community going into the competition that year was 
that the choice of AI techniques mattered a huge deal. 
In fact, the members of the STAC had collaborated on 
writing a book, titled Artificial Intelligence Methods in 
the Environmental Sciences, that laid out different ideas 
on when to choose among the various AI models.

When applied in a blind comparison on a real-
world meteorological dataset, however, we discovered 
that the choice of AI technique did not matter much. 
Once features had been computed from the dataset, 
pretty much any modern AI technique—neural 
networks, decision trees, random forests—all 
performed quite similarly. Statistically, the 
performances of the top three entries were 
indistinguishable—when presented with a set 
of inputs, the techniques would nearly always 
provide the same answer. It was impossible, 
based on just the output of the techniques, to 
identify which was which (See Fig. 1).

In other words, based on these data, it could 
be concluded that, as a research community, 
our habit of picking a problem and selecting an 
approach was not ideal. It didn’t matter much 
whether the final AI model was a neural net-
work or a decision tree: the performance would 
be quite similar. We would need to devote the 
maximum amount of care to the formulation 
of the problem—to the creation of features in 
the dataset.

Indeed, the winning entry that year com-
bined several of the features in the provided 
dataset based on a knowledge of the shortcom-
ings of radar tracking algorithms (Williams 
and Abernethy 2008). Because this combined 
statistic was better behaved (in the sense that 
it was less likely to be subject to radar sam-
pling errors) than the underlying individual 
statistics, the AI model (a random forest, as 
it turned out) that used the combined feature 
outperformed the rest. A fortuitous coincidence 
led to this conclusion—the best student entry 
(Gagne and McGovern 2008) also used a ran-
dom forest, but without the combined variable. 
The difference in performance between the 

winning entry (Williams-Abernethy) and the student 
entry (Gagne-McGovern) could be attributed wholly 
to the incorporation of the new variable.

The first year of the competition, we had begun to 
form a consensus that most of our effort in applying 
AI to the environmental sciences would have to be in 
formulating the features that fed into whichever AI 
model was selected. The actual AI model chosen was 
secondary in achieving skill. 

Of course, the consensus that the particular AI 
method did not matter was subject to common-
sense caveats such as understanding the data and 
not overfitting. The entries with poor performance 
in the first year’s competition either got the relative 
frequencies of the categories wrong or chose an im-
putation method that ignored what was known about 
the dataset.
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the 2008–09 Competition dAtA. For 
the second year (2008–09), we chose to use a dataset 
gathered by the National Severe Storms Laboratory 
Winter Precipitation Identification Near the Ground 
(W-PING) experiment, which is still ongoing. The 
classification task was to use polarimetric radar data, 
collected with the KOUN radar, along with limited 
environmental information, to develop a hydrome-
teor classification algorithm that would distinguish 
between frozen and liquid hydrometeors, or none. In 
W-PING, the public is asked to observe winter pre-
cipitation in situ and enter their observation on a Web 
site, distinguishing between the following categories: 
rain, drizzle, freezing rain, freezing drizzle, ice pellets 
(sleet), graupel, snow, hail, and none, all within a 150-
km radius from the KOUN radar. Since a cold-season 
hydrometeor classification algorithm must be able to 
distinguish between frozen, liquid, and no precipita-
tion, the above categories were amalgamated into 
the three used in the competition. Freezing rain and 
freezing drizzle were combined with rain and drizzle, 
and classed as “liquid.” Snow, ice pellets (sleet), grau-
pel, and hail were all combined into “frozen,” while 
“none” was retained as is.

The observed precipitation-type data were quality 
controlled using rather broad criteria. If an observa-
tion was clearly inconsistent with nearby observations 
in time and space, it was removed. For example, 
observations of “hail” in the midst of “snow” were 
removed. Observations well outside of the project area 
were removed, as were obvious duplicates. Around 
each ground observation, radar data for each polari-
metric radar parameter (such as specific differential 
phase, Kdp) were averaged over a 5 x 5 (range by 
azimuth) kernel centered on each ground observa-
tion. Only observations associated with radar data 
between 0.3 km and 1.2 km AGL were used. Within 
that height range, only the lowest scan was chosen. 
All data were filtered to remove observations within 
ground clutter. The data were, however, prefiltered 
in the sense that all of the included variables are a 
priori reasonable choices as predictors. No “distrac-
tor” variables were included that were at best useless 
and at worst expected to negatively affect the perfor-
mance of a technique that was not carefully crafted by 
someone understanding the meteorological problem 
to some extent.

Data were taken from three main events for which 
about 2,650 observations were initially logged. After 
the rudimentary quality control, about 2,500 re-
mained. Of these 2,500, 1,573 met all the other criteria 

stated earlier. It is important to note that, until the 
time of the competition, these data remained unique 
and had not been distributed anywhere, and so were 
unavailable from any other source. Hence, no one 
outside of the W-PING project had any access what-
soever to these data. 

The testing data was generated by sampling, with-
out replacement, from the full dataset. The testing 
data constituted 30% of the full dataset, leaving the 
other 70% for training. No attempt was made to “bal-
ance” the proportion of the various categories. The 
training data contained 58.3% frozen, 28.2% liquid, 
and 13.5% none, while the testing data contained 
56.7% frozen, 32.9% liquid, and 11.3% none.

TrusT, buT Verify

The Web page used for the reference to the peirce Skill 
Score (pSS) contained a typographic error that had 

been overlooked for years (it has since been corrected). 
the error became apparent when one entrant submit-
ted a classifier that was admittedly “hedged,” submitted 
with the belief that this formulation would result in a 
very high score. We were surprised by this, because the 
pSS was chosen specifically because it is not subject to 
hedging. that particular entry scored poorly. the entrant 
was bewildered at the skill score his entry achieved and, 
based on his analysis of the (erroneous) pSS formula, 
found that this value was not one of the numerically pos-
sible scores his entry could have received. after conferral 
between the competition chairs and the contestant, it 
was discovered that the referenced Web page possessed 
the error. the correct formulation for the multicategory 
pSS is shown in the figure. the variablies i and j here are 
equal and refer to the number of categories. the errone-
ous score had y

i
 in the denominator instead of o

i
.

the erroneous formulation leads to a score that is 
easily hedged and typically provides slightly higher val-
ues than does the correct pSS formulation. the session 
chairs conferred with the ai Stac and decided to use 
the correct score for rankings, and to use the unfortu-
nate situation as a reminder to always trust, but verify.

Fig. sB1. the Web page that contestants were 
pointed to had a typo in the formula for the peirce 
skill score.
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Fig. 2. in the 2008–09 competition, there was no significant 
difference in the peirce skill score (pss) of the better per-
forming entries. this was further verified by a bootstrapping 
test, as explained in the text.

In the second year, we chose Peirce’s Skill 
Score (PSS) for determining the winners. 
The PSS is a multicategory skill score and is 
therefore amenable to a three-category clas-
sification problem. It is also equitable and so 
not subject to hedging or gaming (creating 
forecasts that do not represent the true beliefs 
of the developer). Contestants were provided 
a Web page1, a product of the Joint Working 
Group on Forecast Verification Research, for 
the formulation of the PSS.

Figure 2 shows the resulting entrants’ 
scores along with 95% confidence intervals for 
those scores based upon bootstrap resampling 
and bootstrap tilting. As was the case for the 
2007–08 competition, there was no significant 
difference between the various entries. The 
entry by Sullivan had the highest PSS (although 
by a statistically insignificant amount) and was 
deemed the winner. The lack of statistical sig-
nificance is not so much due to shortcomings of 
particular methods as it is to natural variability 
in the dataset. Without any additional constraints, 
based on the apparent natural variability, it seems 
prudent to use whatever method is most easily un-
derstood by end users.

Hydrometeor classification algorithms have been the 
subject of extensive research, with previous classifica-
tion methods ranging from the use of pattern recogni-
tion to fuzzy logic to rules based on conceptual models. 
The machine intelligence approach pioneered in the 
competition is a fundamentally different way to address 
hydrometeor classification. In particular, it relies, first 
and foremost, on building up a dataset of observations. 
In other words, it is a data-driven approach and is 
particularly apt because the observations are of hydro-
meteors aloft, but the forecasting problem is to predict 
hydrometeors on the surface. As observing instruments 
become better and observing networks become denser, 
a data-driven approach will become feasible for many 
more problems in the atmospheric sciences.

summAry. The AMS Committee on Artificial 
Intelligence Applications to the Environmental 
Sciences has held seven sessions since its inception. 
Committee members are a mix of atmospheric scien-

tists, engineers, and computer scientists. Despite the 
breadth of expertise, members all share a keen inter-
est in AI techniques and seek to engage the broader 
atmospheric science community to illustrate how AI 
techniques can help solve real-world problems. The 
committee decided that an AI contest was an ideal 
venue to connect theorists, practitioners, and indus-
try in a meaningful dialogue. The spirited discussions 
at the two contests suggest that the format has been 
a success in engaging the audience. At times, the 
findings have been counterintuitive to conventional 
wisdom; however, they have exposed our commu-
nity to a wide array of methodologies causing us to 
reconsider the philosophy of attacking a problem. 
Such interactions have motivated many participants 
to augment their tool kits of favorite AI methods. In 
doing so, we all grow and benefit from the richness 
of a wider perspective.
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