Reply to “Comments on ‘Reanalyses and Observations: What’s the Difference?’”

—WENDY S. PARKER
Department of Philosophy, Durham University, Durham, United Kingdom

I would like to thank Hoffman et al. (2017) for their comments. They find that some important points were omitted from my essay: 1) that different types of geophysical data often are not interchangeable, because they represent physical quantities at different scales; 2) that how uncertainties are most usefully characterized can depend on the purpose for which the data will be used; and 3) that (re)analyses often have significant limitations, related in part to their reliance on imperfect statistical and model information. I agree that these are important points, well worth emphasizing. Nevertheless, there are some other matters on which we disagree.

Hoffman et al. object to classifying (re)analysis results as measurements or observations. I do not wish to argue about labels. As a philosopher of science, however, I am interested in understanding and characterizing scientific practices, and I find that there is a coherent and plausible way of thinking about measurement that in principle allows that both rain gauge data and (re)analysis results can be measurement outcomes. On this view, measuring is an information-gathering process that involves physical interactions with the world—which put instruments into particular states—as well as inferences from those instrument states to the values of one or more parameters that represent aspects of the world; the inferences, which sometimes involve theoretical or empirical relationships as well as statistical processing, are guided by a conceptualization of how the physical interactions can provide information about the parameters of interest, that is, by a measurement model (see Parker 2016, 2017, and references therein for details).

It is perfectly consistent with this view that there are different types of measurement. Elsewhere, for instance, I have distinguished three types, which differ in the layers of inference involved in going from instrument states to measurement outcomes (Parker 2017); many other typologies are also possible. This way of thinking about measurement thus allows us to capture what is common to many data production activities while still leaving room to recognize important differences. It also has the advantage of making very salient the fact that the reliability of data—even data produced with the help of relatively simple instruments—depends in part on the reliability of the inferential steps employed in their production, and not just on the reliability of the physical “imprinting” mechanisms emphasized by Hoffman et al.’s analogy with fossils.

Hoffman et al. contend that (re)analyses are “further removed” from reality than traditional observations, and they highlight cases in which (re)analyses were found to have misrepresented phenomena; they conclude that users should “be wary of equating analyses with observations.” The implicit view seems to be that traditional observations are generally more reliable than (re)analyses. A primary aim of my essay, however, is to discourage appeals to these type-level generalizations about reliability, advocating instead that we consider the strengths and limitations of the particular data at hand, whatever their type. After all, it would be easy to provide a list of cases in which traditional observational data misrepresented phenomena in significant ways too. We should avoid treating data type as a proxy for data reliability.

REFERENCES

1 Here I mean “parameters” in a broad sense, encompassing both physical constants and variables.

DOI:10.1175/BAMS-D-17-0192.1
Climate Conundrums: What the Climate Debate Reveals about Us
WILLIAM B. GAIL
This is a journey through how we think, individually and collectively, about humanity’s relationship with nature, and more. Can we make nature better? Could science and religion reconcile? Gail’s insights on such issues help us better understand who we are and find a way forward.

Eloquent Science: A Practical Guide to Becoming a Better Writer, Speaker, and Atmospheric Scientist
DAVID M. SCHULTZ
The ultimate communications manual for undergraduate and graduate students as well as researchers in the atmospheric sciences and their intersecting disciplines.

Midlatitude Synoptic Meteorology: Dynamics, Analysis, and Forecasting
GARY LACKMANN
This textbook links theoretical concepts to modern technology, facilitating meaningful application of concepts, theories, and techniques using real data.
©2011, PAPERBACK, 360 PAGES, ISBN 978-1-878220-10-3 LIST $100 MEMBER $75 STUDENT MEMB. $65

To order: bookstore.ametsoc.org, 617-226-3998, or use the order form in this magazine
A Scientific Peak: How Boulder Became a World Center for Space and Atmospheric Science

JOSEPH P. BASSI

How did big science come to Boulder, Colorado? Joe Bassi introduces us to the characters, including Harvard sun–Earth researcher Walter Orr Roberts, and the unexpected brew of politics, passion, and shear luck that during the Cold War era transformed this “Scientific Siberia” to home of NCAR and NOAA.

LIST PRICE: $35.00 MEMBER PRICE: $25.00

Taken by Storm, 1938: A Social and Meteorological History of the Great New England Hurricane

LOURDES B. AVILÉS

The science behind the 1938 Hurricane, which hit New England unannounced, is presented here for the first time along with new data that sheds light on the motivations of the Weather Bureau forecasters. This compelling history successfully weaves science, historical accounts, and social analyses to create a comprehensive picture of the most powerful and devastating hurricane to hit New England to date.

LIST $40 MEMBER $30

Father Benito Viñes: The 19th-Century Life and Contributions of a Cuban Hurricane Observer and Scientist

LUISE Y. RAMOS GUADALUPE
TRANSLATED BY OSWALDO GARCIA

Before Doppler radar and weather broadcasts, Spanish Jesuit Benito Viñes (1837–1893) spent decades observing the skies at Belen Observatory in colonial Cuba. Nicknamed “the Hurricane Priest,” Viñes taught the public about the weather and developed the first network of weather observation stations in the Caribbean, groundwork for the hurricane warning systems we use today.

© 2014, PAPERBACK, 156 PAGES
ISBN: 978-1-935704-75-1 LIST $25 MEMBER $20

Hurricane Pioneer: Memoirs of Bob Simpson

ROBERT H. SIMPSON AND NEAL DORST

In 1951, Bob Simpson rode a plane into a hurricane—just one of the many pioneering exploits you’ll find in these memoirs. Bob and his wife Joanne are meteorological icons: Bob was the first director of the National Hurricane Research Project and a director of the National Hurricane Center. He helped to create the Saffir–Simpson Hurricane Scale; the public knows well his Categories 1–5. Proceeds from this book help support the AMS’s K. Vic Ooyama Scholarship Fund.

© 2015, PAPERBACK, 156 PAGES
ISBN: 978-1-935704-75-1 LIST $25 MEMBER $20
Greet the Holidays

with the perfect gifts
for weather enthusiasts

Holiday Special -
20% discount*

Use code: HOLIDAY17

Coupon Valid from 11/1–12/31

Visit

www.ametsoc.org/amsbookstore
to learn more