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ABSTRACT

California Central Valley (CCV) heat waves are grouped into two types based on the temporal and spatial
evolution of the large-scale meteorological patterns (LSMPs) prior to onset. The k-means clustering of key
features in the anomalous temperature and zonal wind identiÞes the two groups. Composite analyses show
different evolution prior to developing a similar ridgeÐtroughÐridge pattern spanning the North PaciÞc at the
onset of CCV hot spells. Backward trajectories show adiabatic heating of air enhanced by anomalous sinking
plus horizontal advection as the main mechanisms to create hot lower-tropospheric air just off the Northern
California coast, although the paths differ between clusters.

The Þrst cluster develops the ridge at the west coast on the day before onset, consistent with wave activity
ßux traveling across the North PaciÞc. Air parcels that arrive at the maximum temperature anomaly (just off
the Northern California coast) tend to travel a long distance across the PaciÞc from the west. The second
cluster has the ridge in place for several days prior to extreme CCV heat, but this ridge is located farther north,
with heat anomaly over the northwestern United States. This ridge expands south as air parcels at mid-
tropospheric levels descend from the northwest while lower-level parcels over land tend to bring hot air from
directions ranging from the hot area to the northeast to the desert areas to the southeast. These two types
reveal unexpected dynamical complexity, hint at different remote associations, and expand the assessment
needed of climate modelsÕ simulations of these heat waves.

1. Introduction

Temperature extremes have large impacts on the
economy and human safety. A statistically signiÞcant
increasing trend of about 5% per year in the frequency
of billion-dollar disasters is reported in annual aggre-
gates of weather and climate disasters (Smith and Katz
2013). Among them, the adjusted damages related to
heat waves and drought total approximately $210 billion
for the 1980Ð2011 period. Heat waves also cause a large
annual number of fatalities (123) on average for the

period of 2004Ð13 in the United States (http://www.nws.
noaa.gov/om/hazstats.shtml). There are considerable
impacts of heat on morbidity as well. For instance,
hospital admissions in Kansas City increased by 5%
during the 1980 heat wave event (Jones et al. 1982).

The California Central Valley (CCV) produces half
of the nationÕs tree fruit and nut crops by both weight
and gate receipts. Fruit quality and production can be
degraded by hot spells, which causes economic losses
to farmers. In addition, the southern CCV has exten-
sive dairy production, and extreme heat reduces milk
production and cow fertility while raising cow mor-
bidity and mortality. For example, the CCV dairy in-
dustry had approximately $1 billion of economic
losses from the 2006 heat wave (Bilby et al. 2008).
Since the CCV has 8 of the nationÕs top 10 most agri-
culturally productive counties, understanding extreme
hot weather over the CCV has great economic and
social importance.
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Temperature extremes have been linked to some
large-scale teleconnection patterns since such large-
scale wave patterns can redistribute air masses having
different temperatures. Particularly during winter,
temperature extremes are modulated by the PaciÞcÐ
North American (PNA) pattern, North Atlantic (or
Arctic) Oscillation (NAO or AO), and blocking pat-
terns (Walsh et al. 2001; Wettstein and Mearns 2002;
Cellitti et al. 2006; Guirguis et al. 2011; Sillmann et al.
2011). There are substantial modulations of temperature
extremes by ocean-oriented climate modes such as the
MaddenÐJulian oscillation (MJO) (Jeong et al. 2005)
and El Ni ñoÐSouthern Oscillation (ENSO) for the lon-
ger time scale (Higgins et al. 2002; Meehl et al. 2007;
Alexander et al. 2009; Lim and Schubert 2011). Recent
studies clearly demonstrate the geographical de-
pendency of the modulation of temperature extremes by
larger-scale teleconnection patterns such as NAO, PNA,
ENSO, and the PaciÞc decadal oscillation (PDO)
(Loikith and Broccoli 2014 ; Westby et al. 2013). How-
ever, those teleconnection patterns are distinct from the
large-scale meteorological patterns (LSMPs) associated
with temperature extremes (e.g., hot spells) both in
spatial pattern and in time scale. As shown inGrotjahn
(2011), when the LSMP is present with positive sign and
sufÞcient strength (normalized circulation index . 1.6),
then CCV extreme surface temperatures usually occur
on that day, and hence sufÞcient amplitude of the LSMP
is as rare as the temperature extremes. The LSMPs as-
sociated with speciÞc temperature extremes are de-
scribed in much fewer studies (Grotjahn and Faure 2008;
Gershunov et al. 2009; Loikith and Broccoli 2012 ;
Bumbaco et al. 2013) than are studies of teleconnection
patterns. A review of statistical methods, synoptic dy-
namics, modeling, and trends relating to temperature
extremes in the LSMP context is presented byGrotjahn
et al. (2015). The LSMPs for extreme heat events are not
fully understood for different parts of North America,
including the CCV, providing a motivation for this study.

Regional-scale heat events may be inßuenced by land
conditions at the surface or below. Land-use and land-
cover change (e.g., from irrigated farm to urban area)
can amplify the area experiencing extreme heat
(Grossman-Clarke et al. 2010; Wang et al. 2013). Soil
moisture deÞcit strongly contributes to hot extremes in
some regions, such as the central United States, Aus-
tralia, and much of Europe (Fischer et al. 2007; Hirschi
et al. 2011; Yin et al. 2014). However, soil moisture
deÞcit is not a major factor for the CCV because most
farmlands in the CCV are heavily irrigated. The CCV is
geographically complex (Fig. 1), where local thermally
driven circulations caused by terrain slope (mountainÐ
valley winds) are mixed with landÐsea breezes. Because

hot spells are associated with easterly ßows (Grotjahn
2011), air moving in that direction sinks down into the
CCV, warms adiabatically, and opposes a cooling sea
breeze while also lowering the subsidence inversion and
thereby reducing the volume of air heated by surface
heat ßuxes generated by sunshine. These conditions all
favor the formation of extreme hot spells.

Prior studies found that summertime hot spells in the
CCV area are closely linked to LSMPs that are an
equivalent barotropic, nearly stationary wave train
(ridgeÐtroughÐridge pattern) across the North PaciÞc
and western North America (Grotjahn and Faure 2008;
Grotjahn 2011, 2013). Grotjahn and Faure (2008) de-
scribe the formation of the hot-spell LSMP with ap-
parent westward wave motion (in the southern part) and
eastward development from a western PaciÞc ridge to a
mid-PaciÞc trough, and then to a North American west
coast ridge (in the northern part) using composite maps
prior to onset of 18 extreme events over 22 summer
seasons.Grotjahn (2011) deÞned a metric to identify
how well a given dayÕs weather pattern matches the hot-
spell composite LSMP from 1979 to 2010. This study
extends the period of study of CCV hot-spell LSMPs and
examines them more closely.

A primary question considered in the current study
is, what is the source of the hot air present in the heat
wave? This question led the authors to calculate
backward-in-time trajectories. It was immediately ap-
parent that the trajectories of CCV hot spells are
roughly divided into two groups. The next question is, do
those two paths represent two distinct ways to generate
CCV hot-spell conditions? Using objective tools, this
paper classiÞes CCV hot spells into two types based on
the temporal and spatial evolution of LSMPs, provides
direct statistical and structural comparisons between the
two types, and uncovers some key dynamical differences
that lead to the distinct types.

The paper organization is as follows.Section 2 out-
lines the dataset and methods used.Section 3 presents
the classiÞcation of two different types of CCV heat
waves and corresponding LSMPs.Section 4provides the
dynamical differences that drive two distinct hot spells.
Last, section 5summarizes the results.

2. Data and methods

a. Synoptic and reanalysis dataset

This study uses daily maximum near-surface temper-
ature at 15 stations provided by the National Climatic
Data Center (NCDC; http://www.ncdc.noaa.gov/data-
access/land-based-station-data) (in Fig. 1). Among 23
stations, 5 stations are excluded because of their location
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in the delta, a region where weak sea breezes can pro-
vide local, short interruptions of heat waves that are not
experienced elsewhere in the CCV. Three more stations
are excluded for being close to other NCDC stations,
thereby creating a relatively even distribution of stations
over the CCV (the eight stations excluded are omitted in
Fig. 1).

This study analyzes upper-air LSMPs derived from
the National Centers for Environmental PredictionÐ
National Center for Atmospheric Research reanalysis
dataset (R-1) (Kalnay et al. 1996). Time and spatial
resolution of R-1 is 6 hourly and 2.58 longitude 3 2.58
latitude. We consider boreal summer season extending
from June through September (JJAS; 122 days) and the
time period from 1977 to 2010 (34 years). The choice of
data and time period was a compromise between having
more events (larger sample) while also maintaining
relatively high accuracy of the reanalysis data as a result
of the assimilation of satellite observations.

b. Event isolation

Space and time criteria are used to identify CCV hot-
spell events from the NCDC station data. By consider-
ing duration and spatial coverage together, this method
isolates those events in which a majority of CCV stations
experience hot weather commonly for sufÞcient time.

The method is as follows: 1) calculate 15 stationsÕ daily
maximum temperature anomalies (relative to each
stationÕs long-term daily mean), 2) normalize these
anomalies by long-term daily mean standard deviation
for each station, 3) select the 5% hottest dates for each
station, 4) retain those dates common to at least six
stations, and 5) isolate events when there are at least
three consecutive retained dates in a row within JJAS
and the interval between two events is six days or longer.
The 6-day interval was chosen based upon the autocor-
relation function being , 0.05 for all CCV stations collec-
tively and nearly all individually for lead or lag times
greater than six days (see Fig. S2 in the supplementary
material). This process identiÞed 28 heat wave events for
the CCV (Table 1). Dividing the 1977Ð2010 data into four
periodsÑthree 9-yr periods followed by a 7-yr periodÑwe
Þnd an approximately even distribution of hot-spell oc-
currences (seven, eight, six, and seven, respectively). This
space and time method detects heat waves based on ex-
treme temperatures across the CCV, but it results in a
small sample size of about one event per year. The in-
tention behind choosing such rare events is that the
dynamics responsible for these extremes will have a
stronger signal among the ÔÔnoiseÕÕ of natural variability.

Consistent with Grotjahn (2011), we assign 1200 UTC
as the onset for every event. Although 0000 UTC (the

FIG . 1. Geographic location of 15 CCV NCDC stations (marked by plus symbols) used in our
heat wave criteria. The dashed box region represents the TA area.
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next day) is closer to the local time (2300 UTC) of
highest surface temperature, upper-air charts at the
earlier time (1200 UTC) have more predictability
(Grotjahn 2011).

c. IdentiÞcation of distinct LSMPs prior to heat wave
onset

1) BACKWARD TRAJECTORIES

Prior work ( Grotjahn and Faure 2008; Grotjahn 2011,
2013) found the maximum upper-air temperature
anomaly (at 850 hPa) to be centered just off the west
coast of North America, near the CaliforniaÐOregon
border. Backward trajectories from this area of highest
temperature (plus analysis of individual terms in the
temperature equation, not shown) were calculated to
answer the question of how high temperatures develop
there. The backward trajectory calculation uses 6-hourly
reanalysis data. The procedure starts with identifying three-
dimensional wind (u1, y1, v 1) and elevation estimation z1,
hypothesizing hydrostatic balance in a homogeneous

atmosphere at six grid points [the combinations of two
longitudes (122.58and 1258W) and three latitudes (358,
37.58, and 408N)] at 850 hPa at the onset time. The three-
dimensional wind Þeld is used to estimate the distance
traveled over the prior six hours. The scheme includes
the convergence of meridians when calculating zonal
distance traveled. The scheme Þnds a Þrst guess of each
parcel location (u2, u2, p2) six hours before by sub-
tracting the longitudinal, latitudinal, and pressure dis-
tances from the original location (u1, u1, p1). Next, the
three-dimensional wind (u2, y2, v 2) is estimated at the
Þrst guess location by applying bilinear interpolation.
The Þnal location (u0, u0, p0) of each air parcel six hours
before the original time is estimated by calculating again
the longitudinal, latitudinal, and pressure distances from
the averaged three-dimensional wind [(u1 1 u2)/2, (y1 1
y2)/2, (v 1 1 v 2)/2]. These procedures are repeated for
prior times in 6-h steps totaling several days. The loca-
tions are plotted as projections onto two-dimensional
planes in a trajectory diagram. The trajectory diagram
(shown later) plots one average patch calculated from

TABLE 1. Start and end dates and duration of 28 CCV hot spells considered. Events in boldface are mixed type and could not be assigned
strongly to either cluster.

Event No. Cluster Event start date Event end date Duration (days)

1 1 5 Jun 1977 7 Jun 1977 3
2 1 6 Sep 1977 8 Sep 1977 3
3 2 5 Jun 1978 7 Jun 1978 3
4 Ñ 5 Aug 1978 9 Aug 1978 5
5 1 12 Sep 1979 17 Sep 1979 6
6 Ñ 24 Jul 1980 27 Jul 1980 4
7 1 11 Jun 1985 17 Jun 1985 7
8 1 17 Jul 1988 19 Jul 1988 3
9 2 25 Aug 1988 27 Aug 1988 3

10 2 3 Sep 1988 6 Sep 1988 4
11 2 12 Jul 1990 14 Jul 1990 3
12 Ñ 5 Aug 1990 10 Aug 1990 6
13 1 2 Jul 1991 5 Jul 1991 4
14 2 2 Jun 1992 4 Jun 1992 3
15 2 16 Aug 1992 20 Aug 1992 5
16 1 2 Jun 1996 7 Jun 1996 6
17 2 10 Aug 1996 15 Aug 1996 6
18 1 3 Aug 1998 5 Aug 1998 3
19 2 30 Aug 1998 3 Sep 1998 5
20 2 18 Sep 2000 20 Sep 2000 3
21 1 10 Jul 2002 12 Jul 2002 3
22 1 22 Jun 2006 24 Jun 2006 3
23 1 20 Jul 2006 26 Jul 2006 7
24 1 7 Jul 2008 10 Jul 2008 4
25 1 27 Aug 2008 29 Aug 2008 3
26 Ñ 5 Sep 2008 7 Sep 2008 3
27 2 25 Sep 2009 27 Sep 2009 3
28 Ñ 27 Sep 2010 29 Sep 2010 3

Cluster avg 1 Ñ Ñ 4.2
2 Ñ Ñ 3.8

Cluster std dev 1 Ñ Ñ 1.6
2 Ñ Ñ 1.1
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these six paths for each event. The individual and the
average trajectories appeared to identify two different
types of paths that lead up to a similar LSMP at the
event onset. Grouping the cases based on these two
types of paths, and after close inspection of the Þelds of
individual events, we chose portions of three anomalous
Þelds as ÔÔtarget ÞeldsÕÕ for the hot-spell classiÞcation:
700-hPa zonal wind at two days lead, 600-hPa temper-
ature at two days lead, and 700-hPa temperature at one
day lead over the domain of 208Ð608N, 1508Ð1008W.

2) CLUSTERING TECHNIQUES

Clustering analysis is able to group similar patterns
prior to onset among 28 events, therefore providing a
quantitative tool to isolate distinct origins of the heat
waves. In this study, thek-means clustering technique is
applied to the target Þelds deÞned above. Simply, this is
an iterative algorithm moving events from one group to
another until there is no additional improvement in
minimizing the overall distance between patterns among
events in resultant groups. For instance, the distance can
be deÞned as the squared Euclidean point-to-centroid
distance in a group, where each centroid is the mean of
the patterns in its cluster (Spath 1985; Seber 2009). This
method has been widely used in the atmospheric re-
search not only associated with the relationship between
LSMPs and extreme weather (Park et al. 2011; Stefanon
et al. 2012) but also for assessing the climate model
performance (Lee and Black 2013; Westby et al. 2013).
It should be noted that cluster results can be strongly
dependent on the selection of the target Þelds to be used
by the cluster analysis. (However, in a companion study
submitted elsewhere, using other levels retrieved the
same cluster memberships.) In every iteration step, the
clustering procedure creates clusters objectively, but
the process is not entirely objective, as the target Þelds
are chosen a priori and those choices make the calcu-
lation partly self-referential.

Two concerns arise when applyingk-means clustering
to atmospheric extremes: 1) there is uncertainty in
choosing an optimal number of clusters k, and 2) as-
signing an event to one cluster rather than another is less
clear when the sample size is small. To address these
concerns we used the distinctly different backward tra-
jectories to make an initial partitioning of cases. Next we
examined the composites, and very different evolutions
of the LSMPs were clearly apparent. Then we decided to
apply spatiotemporal cluster detection to a small num-
ber of variable and level combinations at times shortly
before heat wave onset. We applied an analogy of the
ÔÔdistance of dissimilarityÕÕ metric [as inStefanon et al.
(2012)] to judge the optimal number k. The number k
with an abrupt drop of intercluster distance for the next

higher value k 1 1 is considered the optimal number of
clusters. Intercluster distance of our target Þelds has a
notably abrupt drop from k 5 2 to higher k (not shown).
A larger number for k may represent less ambiguity in
the classiÞcation. However, clustering analysis aims
mainly to gain a physical insight for heat wave forma-
tion, which is possible with a minimal number of distinct
groups and not a separate group for every single event.
The distance of dissimilarity metric as well as our qual-
itative analyses of trajectories led us to choosek 5 2
clusters in this study. In addition, spatial projection
analysis is applied to assess how well individual events
sort into the two clusters. Projection coefÞcientspk,j of
the jth event against thekth cluster composite means are
calculated for the same domain of the target Þelds
above:

pk,j 5
�
N

i5 1
(xj

iy
k
i )

�
N

i5 1
(yk

i )2

, for k 5 1, 2 and j 5 1,. . . , n,

where k is a cluster,j is an event,i is a grid point, n is the
total number of events, N is the total number of grid
points, x is the Þeld of a variable of individual eventsj to
be projected, andy is the composite mean Þeld ofx for
two clusters. The projections are plotted as a scatterplot
in Fig. 2. In the scatterplot, one sees that individual
events do seem to fall into groups where the projection
on one cluster mean is much higher than the projection
onto the other cluster mean. However, some events have
LSMP structure that does not strongly favor one cluster
mean over the other. These ÔÔmixedÕÕ events were iden-
tiÞed as follows. Initially, the maps for all events were
processed with a clustering algorithm detailed above
usingk 5 2. Then cluster averages were formed from the
members of these two clusters. Using those cluster
means, each event was projected onto both cluster
means. The membership of each cluster was revised by
requiring that the new projection of an event onto that
cluster be more than twice the projection of that event
onto the other cluster mean. Events that did not satisfy
the twice-projection criterion were identiÞed as mixed
events, which tend to be a mixture of both types of
clusters. Such mixed events were then excluded from the
Þnal cluster deÞnitions, thereby isolating more strongly
the two types of clusters. Of the 28 events during this
time period, 5 mixed events were excluded. After ex-
cluding the mixed events, new cluster composites were
calculated from the two revised clusters of events, and
projection coefÞcients were calculated again with re-
spect to these new cluster composites and plotted.
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3) WAVE ACTIVITY FLUX

This study analyzes the wave activity ßux (WAF), as
deÞned byTakaya and Nakamura (2001), to track the
propagation of wave energy. Unlike the EliassenÐPalm
ßux (Edmon et al. 1980) and the wave activity ßux de-
veloped by Plumb (1986), this method allows one to
make a snapshot analysis since it does not include any
time averaging. Therefore, the time evolution is tracked
of the wave activity associated with development of each
heat wave. Under a conservation law, the wave activity
is related with the wave enstrophy and wave kinetic and
internal energy, and part of those two factors is closely
connected to the temperature. Since this method
assumes a linear geostrophic streamfunction (c 5 F /f ),
the wave activity is also related to the geopotential (F )
perturbation. Takaya and Nakamura (2001)show that
this WAF is locally parallel to the group velocity of
quasigeostrophic Rossby wave packets. The WAF vec-
tors show movement of collocated geopotential ridges
and troughs. One might approximately interpret daily
weather charts as follows: Convergence of WAF at a
ridge in geopotential height is expected to amplify the
ridge to the extent that the ridge is a deviation from a
horizontal mean Þeld. (Local change of wave activity is
proportional to convergence of WAF if one neglects

diabatic effects.) The same geopotential ridge would
decay if WAF was diverging there. Depending upon
where the WAF convergence and divergence occur
relative to the geopotential pattern, the WAF conver-
gence and divergence zones can be interpreted as driv-
ing propagation as well as amplitude changes of the
troughs and ridges. TheTakaya and Nakamura (2001)
WAF formulation has been applied to understand the
dynamics of many phenomena. For example, the con-
verging of wave activity ßux into the amplifying blocking
ridge and attendant wave activity ßux divergence up-
stream of the blocking ridge is known to inßuence the
blocking formation over Siberia ( Nakamura et al. 1997;
Takaya and Nakamura 2001). Here, the WAF is used to
interpret the temperature increase and corresponding
ridge formation along the North American west coast
that are associated with hot spells.

4) LEAD ÐLAG COMPOSITE

Another tool used to understand the time evolution is
to form composites of total and daily anomaly Þelds of
atmospheric variables and WAF for individual clusters
at Þxed times prior to the event onset time. These clearly
show differences between the clusters in temporal and
spatial development of corresponding LSMPs and related
dynamics. Although the sample size is small for each
cluster, the patterns and their evolution are consistent
among the events within a cluster. The consistency is
measured by counting the number of events with the
same sign of the anomaly at each grid point, a procedure
called sign counts (Grotjahn 2011). Sign counts are cal-
culated as follows: in a cluster, the number of events with
negative sign at a grid point is subtracted from the num-
ber of events having positive sign at that grid point; that
difference is then divided by the total number of events in
that cluster to facilitate comparison among clusters hav-
ing differing numbers of events. Hence, a sign count of 1.0
means all events in that cluster have positive anomaly at
that grid point. A sign count of 2 1/3 means2/3 of the events
have negative anomaly at that grid point.

3. Two different types of CCV heat waves

a. ClassiÞcation of CCV heat wave events

The heat wave selection criteria identify 28 events in
the period 1977Ð2010. These events can be grouped into
two types by k-means clustering techniques discussed in
section 2. The Þrst cluster has 13 members while the
second cluster has 10 events. Both clusters are spread
relatively evenly over the 34 summer seasons studied,
although the Þrst cluster (identiÞed in the second col-
umn of Table 1) is more common in the decade of 2001Ð10.

FIG . 2. Scatterplot of two projection coefÞcients for each of the
28 events. The numbers match the event numbers speciÞed in
Table 1. A dot marks each event in cluster 1, a circled number for
each event in cluster 2, and mixed events are marked with a plus
symbol. For individual events, three anomalous Þelds (2 2-day
zonal wind at 700 hPa,2 2-day temperature at 600 hPa, and2 1-day
temperature at 700 hPa) are projected onto their composites of two
clusters over 208Ð608N, 1508Ð1008W, then the average of three co-
efÞcients are plotted. Five undetermined and/or mixed events are
excluded from the analysis hereafter.
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Regarding the duration of events, the second cluster
shows shorter persistence (3.8 days) on average than
does the Þrst cluster (4.2 days), although this duration
difference is not signiÞcant at the 95% conÞdence level.
To ensure the Þdelity of the two groups, apart from the
ÔÔdissimilarity index,ÕÕ spatial projection coefÞcients of
individual LSMPs are calculated for each of the two
revised cluster composites and their distribution plotted
as a scatter diagram inFig. 2. Since the spatial projection
coefÞcient indicates similarity of the shape and magni-
tude, the Þdelity of dividing events into groups is ap-
parent because 1) individual events have a coefÞcient
that is at least more than twice as large in one cluster
composite than in the other, 2) events tend to collect in
groups, and 3) the groups are distinctly separate on the
scatterplot. The two types of heat wave grouping satisfy
these three conditions very well. However, of the 28
events, 5 events are mixtures of the two types and are
excluded from the analyses after this point.

b. Temporal and spatial evolution of anomalous
LSMPs: Temperature, horizontal wind, and omega

This study focuses on LSMPs during the two different
ways CCV heat waves develop; therefore, the focus is
upon anomalous Þelds of air temperature, horizontal
wind, and omega (equivalently the pressure velocity, or

vertical motion in isobaric coordinates) at three pressure
levels (850, 700, and 600 hPa) for several days prior to
the event onset. These time and space domains are
consistent with those used by the clustering analysis. At
onset time, both clusters (contours in right-hand column
in both Fig. 3 and Fig. 4) commonly have a peak of
temperature anomalies (TA) centered near but off the
Northern California coast and extending outward, in-
cluding over the CCV area (this region is referred to as
the TA area). The domain enclosed by the dashed lines
in Fig. 1 is the TA area. Grotjahn (2011) emphasizes the
consequences of a warm temperature anomaly in the TA
area, as it creates a thermal low at the coast and the low-
level pressure gradient opposes a sea breeze from
cooling the CCV. While there is similarity in the TA
area at onset, elsewhere the differences between clusters
in the spatial coverage and magnitude of the tempera-
ture anomalies are remarkable. In the Þrst cluster strong
warm anomalies cover mostly California with a lobe into
the eastern PaciÞc (Fig. 3). In the second cluster the
strong warm anomaly has a lobe over the northwestern
United States, including a second peak over Washington
(Fig. 4). In magnitude, this ensemble mean temperature
anomaly at 850 hPa is hotter in the second cluster than in
the Þrst cluster. At higher levels the temperature
anomaly is a bit weaker over the TA area in the second

FIG . 3. Anomalous composite of air temperature (K; contours), horizontal wind (m s2 1; vectors), and omega (pressure vertical velocity,
Pa s2 1; shading) for cluster 1. For all three Þelds, only grid points that have sign counts with magnitude over1/3 of cluster member numbers
are plotted. Vectors are plotted at the grids where either the zonal or meridional component passes the1/3 sign counts criteria. Contour
interval is 0.7 K (3.5 K for thick contours) and dashed contours are negative values. For clarity, only positive omega shadings are shown
with temperature contours.
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cluster, although the peak values are higher in cluster 2
and an anomaly is centered some distance to the
northeast of the area.

Leading up to the event onset, one main difference
between the clusters is that cluster 2 has a hot spell over
the northwestern United States before the CCV hot-
spell onset. The second cluster has very strong equiva-
lent barotropic warm anomaly through the depth of the
troposphere for several days prior to the onset. The Þrst
cluster does not have this preexisting hot anomaly but
develops it Þrst over the TA area. In the second cluster, a
part of that northwestern U.S. hot spellÕs southern tail
expands over the CCV area; as the northwestern hot
spell weakens the TA area temperature anomaly am-
pliÞes, especially in the lower troposphere.

Anomaly omega composites show a signiÞcant zonal
dipole of risingÐsinking motion in both clusters (shading
in Figs. 3and 4). The second cluster has a stronger di-
pole, which is centered at a higher latitude at a 2-day
lead, than the dipole in the Þrstcluster, which peaks at 1-day
lead. Sinking motion located over the landmass is very
important to the formation of the temperature maxi-
mum in the TA area because of adiabatic compressional
heating. The Þrst cluster shows local subsidence of air at
the north boundary of the TA area that increases over
time until just before onset. The second cluster has very
strong sinking motion covering much of inland western
North America during a 2.5Ð1.5-day lead; at onset the
sinking wanes to the north and waxes over the north and

east half of the TA area. As detailed in Grotjahn (2011),
this local sinking motion is crucial for the intensiÞcation
of the CCV hot spells because of adiabatic compression
and by lowering the climatological summertime sub-
sidence inversion.

Formation of the heat wave in both clusters is linked
to horizontal advection of the anomalously hot air. The
anomalous horizontal ßow upstream of the TA area is
generally coming from a region of anomalous sinking
motion ( Figs. 3 and 4). However, the direction of that
motion is distinctly different between the two clusters
(vectors in Figs. 3Ð6). Total Þelds (Figs. 5and 6) clearly
show the diurnal cycle in both clusters. The time 0000 UTC
(2.5-, 1.5-, and 0.5-day lead) is close to the local time of
highest surface temperature. Along with the diurnal cycle,
one might expect a seaÐland breeze. At the onset and
850-hPa level, the total Þelds show offshore or along-
shore ßow in the total Þelds (Figs. 5 and 6) with
anomalous easterlies in the TA area (Figs. 3and 4).

For the Þrst cluster, at later stages (from 1.5-day
lead to onset), winds approach the TA area from a
southwesterly direction. The wind direction then turns
northwesterly or northerly while passing through an
area of strong subsidence on the northwest side of the
TA area ( Fig. 5), incorporating the enhanced subsidence
to the north ( Fig. 3). In Fig. 3 the sinking anomaly
is strongest in the afternoon (1.5- and 0.5-day lead),
counteracting diurnal rising that otherwise might occur.
Prior to that time (2.5- and 2.0-day lead), there is

FIG . 4. As in Fig. 3, but for cluster 2.
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