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ABSTRACT

Arctic sea ice extent (SIE) has decreased over recent decades, with record-setting minimum events in 2007

and again in 2012. A question of interest across many disciplines concerns the extent to which such extreme

events can be attributed to anthropogenic influences. First, a detection and attribution analysis is performed

for trends in SIE anomalies over the observed period. The main objective of this study is an event attribution

analysis for extrememinimumevents inArctic SIE.Although focus is placed on the 2012 event, the results are

generalized to extreme events of othermagnitudes, including both past and potential future extremes. Several

ensembles of model responses are used, including two single-model large ensembles. Using several different

metrics to define the events in question, it is shown that an extreme SIE minimum of the magnitude seen in

2012 is consistent with a scenario including anthropogenic influence and is extremely unlikely in a scenario

excluding anthropogenic influence.Hence, the 2012Arctic sea iceminimumprovides a counterexample to the

often-quoted idea that individual extreme events cannot be attributed to human influence.

1. Introduction

Sea ice extent (SIE) in the Arctic has decreased

throughout the satellite record (Vaughan et al. 2013a).

Loss of Arctic sea ice has implications in many areas

(IPCC 2014; Serreze et al. 2007), such as ecosystems,

transportation, fisheries/commerce, and Arctic commu-

nities. Arctic SIE reached a minimum of 4.28 3 106km2

in September 2007 (Stroeve et al. 2008), during a period

of strong Arctic sea ice decline (Stroeve et al. 2007;

Comiso et al. 2008; Serreze et al. 2007). Although the rate

of sea ice loss decreased subsequently, both short-period

trends were within the range of natural variability plus an

all-forcing (natural and anthropogenic) signal (Swart

et al. 2015). A new minimum was reached in 2012, with

the Arctic experiencing a September average SIE of only

3.62 3 106km2 (Fetterer et al. 2002, a continuously up-

dated sea ice index). To what extent can these extreme

minimum events in Arctic SIE be attributed to anthro-

pogenic influence on the climate?

Climate change detection and attribution methodol-

ogies have been widely used to detect changes in climate

variables and attribute these to anthropogenic in-

fluences (Stott et al. 2010; Hegerl and Zwiers 2011;

Bindoff et al. 2013). According to Hegerl et al. (2010),

climate change detection aims to determine if observed

changes are inconsistent with internal variability, while

attribution goes a step farther in showing an observed
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change is only consistent with a certain forcing scenario

(e.g., natural plus anthropogenic).

Recent focus has been on the attribution of extreme

events, especially those of particular societal interest

(Peterson et al. 2013; Herring et al. 2015; Christidis et al.

2015). Event attribution aims to determine if a specific,

usually extreme, event can be attributed to anthropo-

genic influences. A commonmetric of event attribution is

the fraction of attributable risk (FAR; Stott et al. 2004;

Stone and Allen 2005), which quantifies the additional

risk of an event’s occurrence due to anthropogenic forc-

ings from that due to natural forcings alone by comparing

the probabilities of that event under each forcing sce-

nario. Reviews of event attribution are found in Stott

et al. (2016) and Hulme (2014) and in a new report from

the National Academies of Science, Engineering, and

Medicine (NASEM 2016) that summarizes the method-

ology and current state of the science of event attribution.

Arctic temperatures have been increasing (Hartmann

et al. 2013) for the last several decades and will likely

continue to increase at a greater rate than at lower lat-

itudes because of Arctic amplification (Serreze and

Barry 2011). Gillett et al. (2008) attributed recent trends

in Arctic temperatures to anthropogenic influences.

Najafi et al. (2015) distinguished between the separate

effects of greenhouse gases (GHGs) and other anthro-

pogenic forcings (OANT; including aerosols) on Arctic

temperature. They detected a signal from both GHG

and OANT in the observed trend and demonstrated

that OANT can act against GHG-induced warming,

offsetting this warming by about 60%. Understanding

the attribution of Arctic temperature changes allows

for a more robust attribution of Arctic sea ice changes,

as SIE is strongly influenced by the temperature of

the region.

In regards to Arctic sea ice, Vinnikov et al. (1999)

demonstrated that observed and modeled trends in

Arctic sea ice were unlikely to be the result of internal

variability alone. Gregory et al. (2002) found modeled

SIE trends (from a single model), when including an-

thropogenic forcing, were consistent with observations,

while simulations with only natural forcing exhibited no

significant trend. In an observation-based analysis, Notz

and Marotzke (2012) showed that both trends and ex-

trememinima inArctic SIE are inconsistent with internal

variability alone and that the observed trend shows a

strong correlation to the trend in atmospheric CO2, a

main component of anthropogenic forcings. Through

a detection and attribution analysis, Min et al. (2008)

found an anthropogenic influence on the time series of

annual Arctic sea ice anomalies beginning in the 1990s;

for individual months, both anthropogenic and all-forcing

signals were detected from May through December.

It has been shown that internal variability can strongly

influence decreasing trends in SIE, especially on shorter

time scales (Kay et al. 2011) and mostly in the form of the

Atlantic multidecadal oscillation (Day et al. 2012). Spe-

cifically, for the 2012 record minimum of Arctic SIE, it has

been shown that this event is inconsistent with internal

variability alone (Zhang andKnutson 2013) and was likely

influenced by warmer surface air temperatures and sea ice

memory, which includes ice thinning (Guemas et al. 2013).

To our knowledge, an event attribution analysis of the

2012 minimum and other such extreme events in Arctic

SIE has not yet been done. This would be useful because it

would provide a quantitative assessment of whether an-

thropogenic forcing was necessary for the event to occur

and whether it is sufficient for such events to continue to

occur repeatedly in the future. Characterizing the causes

and implications of climate change through specific events

provides policymakers with another way in which to un-

derstand the implications of the continuing greenhouse gas

increases. In addition, an event attribution analysis could

be of interest to those studying impacts of the 2012 mini-

mum and other such extremes.

This study focuses on attribution of extreme events in

Arctic SIE after first performing a detection and attri-

bution analysis for the time series. In particular, large

ensembles from the SecondGeneration Canadian Earth

System Model (CanESM2; Arora et al. 2011) and the

Community Earth System Model, version 1, (CESM1;

Kay et al. 2015) are used. An advantage of a large en-

semble is the ability to generate many realizations that

allow for a robust sampling of internal climate vari-

ability as simulated by that model under transient con-

ditions. As event attribution results can be very sensitive

to the framing of the question (NASEM2016; Stott et al.

2016; Shepherd 2016; Otto et al. 2012), several metrics

are used to define the extreme minimum in 2012. This

paper is organized as follows. Section 2 includes a dis-

cussion of the observations and model ensembles used

for the analysis. In section 3, a description of the attri-

bution methodology is presented, including analyses of

temporal patterns and specific events. The results are

presented in section 4, followed by a discussion and

conclusions in section 5. The main goal of this study is to

quantify the extent to which extreme events in Arctic

SIE (such as that in 2012) can be attributed to anthro-

pogenic influences. Furthermore, the analysis will set up

an attribution assessment of future extreme minima.

2. Data

a. Observations

Observations of Arctic SIE were acquired from the

National Snow and Ice Data Center (NSIDC). NSIDC
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calculates a sea ice index (Fetterer et al. 2002) that

represents the SIE north of 30.988N. Data are available

beginning in November 1978. Two satellite datasets are

used to create the product based on observations from

several passive microwave sensors. A brief overview of

the use of satellites in monitoring sea ice can be found in

Vaughan et al. (2013b).

In calculating the sea ice index, Fetterer et al. (2002)

first convert satellite brightness temperatures to sea ice

concentrations (SICs) for each grid box. Then mean

monthly SICs are calculated. Grid boxes are designated

as ‘‘ice’’ or ‘‘no ice’’ using an SIC threshold of 15%,which

is commonly used for the calculation of SIE (Vaughan

et al. 2013a). The sum of areas of the ice grid boxes in

the Northern Hemisphere is calculated for each month.

The resulting SIEs are presented in millions of square

kilometers.

b. Models

1) CANESM2 LARGE ENSEMBLE

CanESM2 (Arora et al. 2011) is a coupled Earth sys-

tem model developed and run by the Canadian Centre

for Climate Modelling and Analysis (CCCma) and used

in phase 5 of the Coupled Model Intercomparison

Project (CMIP5). The CMIP5 submission included five

ensemble members run with historical forcings from

1850 to 2005. A large-ensemble project expanded this

initial ensemble by branching each of the original five

simulations into 10 ensemble members each in 1950,

resulting in a total of 50 ensemble members. Different

realizations were generated by changing the seed of a

randomnumber generator in the cloud parameterization.

Simulations were run with both natural forcings (NAT),

which include solar and volcanic influences only, and

combined natural and anthropogenic forcings (ALL). The

anthropogenic forcings include human influences, such as

greenhouse gases, aerosol emissions, and land use. The

CanESM2 large ensemble has data through 2100 for ALL

simulations, with years beyond 2005 utilizing representa-

tive concentration pathway 8.5 (RCP8.5) simulations (van

Vuuren et al. 2011), while NAT simulations were run

through 2020. An assessment of the standard deviation

across the 10 realizations branched from the same simu-

lation (Fig. S1 in the supplementary material) indicates

that eliminating the first 10 years of data is more than

sufficient for SIE in the ensemble members to diverge.

Note that other climate elements may take longer or

shorter times to diverge (e.g., ocean heat content vs at-

mospheric water vapor content) and that SIE does not

require the divergence of the full ocean variability. SIE is

calculated as the sum of the areas of all grid boxes north of

308N with an SIC exceeding 15% during that month.

Figure 1a shows time series of SIE for the ensemble

means of ALL (blue) and NAT (green) responses,

compared to the observations in black. For each forcing

scenario, the shading represents the area between the

5th and 95th percentile values across the ensemble

members. It is apparent that the CanESM2 ALL data

are biased low relative to the observations. This bias is

stronger during the boreal summer and autumn months

(Fig. 2) and is associated with model sea ice that is too

thin and thus melts away too quickly with seasonally

warming temperatures (Shu et al. 2015; N. Swart 2015,

personal communication).

For the following analysis to be more relevant to re-

cent values of Arctic sea ice extent, the CanESM2 out-

put was adjusted such that the ALL simulations better

matched the observations during the common period.

Without bias correction, it would be difficult to assess an

event of the magnitude of the observed record. Since

anomalies relative to the 1981–2010 period compared

well between the ALL ensemble mean and observations

(Fig. 3b), a simple offset was used for the adjustment.

The difference (bymonth) between the 1981–2010mean

of the observations and the mean of the ALL ensemble

mean was added to each ensemble member from both

ALL and NAT simulations. The resulting ensemble

means are shown in darker colors in Fig. 1a. Thismethod

of bias correction, while changing the magnitude of the

SIE values, maintains the ensemble spread and the dif-

ferences between the ALL and NAT results. As an al-

ternative method, the SIC threshold was decreased, but

the resulting SIE values are still biased low relative to

the observations, and thus the mean-adjustment method

was chosen as a simple approach for making bias ad-

justments. A caveat, however, is that this approach does

not account for the relationship between variability

and the mean state (Fig. 4). The dependence of vari-

ability on the mean state will be discussed in more detail

in a subsequent section.

2) CESM1 LARGE ENSEMBLE

A large ensemble of the CESM1 simulations is also

available, branching off their CMIP5 ensemble sim-

ulations in 1920 (Kay et al. 2015). The output is a

30-member ensemble for ALL forcings with useable data

covering 1930–2080. Forcings from the RCP8.5 simula-

tions are used for years beyond 2005. Figure 1b shows the

CESM1 ensemble spread compared to observations.

Although the magnitude of September SIE fromCESM1

agrees well with observations during the earlier period,

the declining trend in SIE is weaker. Nevertheless, the

difference between the trends in the model’s ensemble

mean and in the observations is consistent with internal

variability as the observed trend falls within the 5th to
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95th percentile range of trends across the individual

CESM1 ensemble members. Note that the phases of in-

ternal multidecadal variability in observed (Zhang 2015)

and model simulated realizations of Arctic sea ice are

likely different, such that the effect of natural internal

multidecadal variability would be averaged out in the

ensemble mean, whereas it is present in the observations.

The seasonal cycle from CESM1 (Fig. 2) shows fairly

good agreement with the observed seasonal cycle, al-

though themodel SIE decreases less through the summer

months than observed. This assessment is similar to that

presented by Jahn et al. (2012) for a related version of this

model (CCSM4).

The CESM1 large ensemble does not include runs

with only NAT forcings, so the preindustrial control

(PIC) simulation will be used for comparison instead. If

the 1000-yr PIC run is divided into segments of a length

similar to the observations, the result is about six fewer

ensemble members than the ALL simulation. As an

extended period is plotted here, there are about half as

many ensemble members for the PIC, although the

event attribution analysis will use a PIC ensemble of the

same size as the ALL ensemble for the slightly shorter

period required. However, the spread of the PIC ensem-

ble changes very little with increased ensemble size.

3) IPSL ENSEMBLE

As the CanESM2 shows a low bias relative to obser-

vations and the CESM1 agrees fairly well, a third model

showing a high bias was chosen from the CMIP5 ar-

chives. The IPSL-CM5 model (Dufresne et al. 2013)

from the Institute Pierre-Simon Laplace (IPSL) was

chosen from those showing a high bias of September SIE

relative to the observations during the overlapping pe-

riod because of the size of its ensemble and the avail-

ability of simulations with NAT forcings. The full model

name is IPSL-CM5A-LR, but this ensemble will simply

be referred to as IPSL hereinafter. IPSL provides only

three ensemble members. However, the accompanying

preindustrial control run is long and should sufficiently

sample the internal variability. IPSL data beyond 2005

are forced with the RCP8.5 simulations.

FIG. 1. Time series of September SIE from the large ensembles of (a) CanESM2 and (b) CESM1 and (c) for the CMIP5 ensemble. The

solid lines indicate the ensemble mean, and the shaded regions represent the 5th–95th percentile range across the ensemble. Observations

are shown by the thick black lines. For CanESM2, the mean-adjusted ensemble means are also plotted. In (c), the vertical dashed lines

indicate the timing of major volcanic eruptions from an updated dataset of Sato et al. (1993).

FIG. 2. Seasonal cycle of SIE for eachmodel averaged over 1981–

2010. Solid lines represent the ensemble mean from the ALL

forcings scenario, and the shaded region indicates the 5th–95th

percentile range.
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Because of its small ensemble, IPSL is excluded from

Fig. 1, but a comparison of its ensemble means with

observations can be found in Fig. 3a. Similar to that of

CESM1, the SIE trend from IPSL is weaker than that in

observations, although, again, this could be influenced

by internal variability. Using a similar method to that for

CanESM2, the IPSL data were bias corrected using a

simple shift so that the mean for the 1981–2010 period

for the ALL ensemble mean matches that from obser-

vations. This bias adjustment results in shifting the IPSL

data down by approximately 1 3 106 km2 in September.

4) CMIP5 ENSEMBLE

Finally, an ensemble from the collection of models

included in CMIP5 is also utilized. Historical simula-

tions are available through 2005, and RCP4.5 simula-

tions are used to extend the results through 2012.

Choosing RCP4.5 over RCP8.5 allows for a larger en-

semble. As the NAT data limit the analysis through

2012, the choice of RCP would make little difference;

the radiative forcings for RCP4.5 and RCP8.5 begin

diverging from each other around 2020 (van Vuuren

et al. 2011). All models that submitted historical,

RCP4.5, and natural-forcing simulations for the desired

time period(s) are included. All models with NAT

simulations ending in 2005 were excluded. The resulting

ensemble has 40 members in total from nine different

models (see Table S1 in the supplementary material).

However, for most of the subsequent analyses, a

35-member ensemble is used, after removing the CSIRO

model. The Arctic sea ice from the CSIRO model is a

clear outlier and differs greatly from the observations

(Massonnet et al. 2012); the CSIRO model also greatly

underestimates SIE variability (Fig. S2 in the supple-

mentary material). The effects of including this model

will be discussed in section 4. An overview of the CMIP5

models’ performance for sea ice can be found in Shu

et al. (2015). Only one of the models selected (IPSL-

CM5A-MR) is included in the IPCC’s selection of the

best five models for sea ice based on a multifaceted

comparison to observations (Collins et al. 2013); un-

fortunately, most of these models did not provide the

NAT simulations required for subsequent analyses. It

should be noted that the CMIP5 ensemble includes

FIG. 3. Time series of four methods to characterize SIE events: (a) absolute values, (b) anomalies relative to the

1981–2010 mean, (c) the fraction of the 1979–89 mean, and (d) nonoverlapping 5-yr averages. The observations are

shown in black, and the ensemble mean from each of the four ensembles and each of the two forcing scenarios are

shown by colors. The shaded regions in (b) and (c) depict the reference period. NAT or PIC anomalies and fractions

are calculated relative to the mean from the corresponding ALL forcing simulations.
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contributions from two of the three models discussed

above: CanESM2 and IPSL.

An illustration of the CMIP5 ensemble spread and a

comparison to observations are shown in Fig. 1c. The

CMIP5 ensemble shows considerably more spread than

either of the single-model ensembles (Figs. 1a,b). Some

of the models included in this ensemble exhibit strong

high or low biases relative to the observed values. The

spread of biases is also evident in Fig. 2, where the

CMIP5multimodel ensemble shows amuch wider range

of seasonal patterns across the ensemble than the single-

model ensembles. There is also large variability across

ensemble members in the magnitude of trends in sea ice

extent (Fig. 1c). The ensemble mean for CMIP5 is cal-

culated with weights such that each model lends equal

weight to the mean value. For absolute values, the

CMIP5 ensemble mean shows a low bias, although the

anomalies agree fairly well with observations (Fig. 3).

The models included in CMIP5 present improved rep-

resentations of observed SIE values and trends over the

earlier model set of CMIP3 (Flato et al. 2013).

5) COMPARISON OF ENSEMBLES

Figure 3a displays the ensemble mean from the two

scenarios for each model and the observations. The low

bias from CanESM2 is strong, whereas the high bias of

IPSL is weaker. The CESM1 ensemble mean compares

fairly well to the observations in terms of SIE magni-

tude, while the CMIP5 ensemble mean is biased low.

The CanESM2, CMIP5, and CESM1 time series in Fig. 3

show greatly reduced variance compared to the obser-

vations, as they represent ensemble averages over 50, 35,

and 30 realizations, respectively. Figure S2 compares the

standard deviation of the observed time series to the

standard deviation from each ensemble member from

all models. Most models show slightly greater variability

of SIE across the time series compared to the observa-

tions, although there is good agreement among the

ALL, NAT, and PIC forcing scenarios within each

model. CESM1 and a couple of CMIP5 models un-

derestimate the variability compared to observations.

For each model, the NAT and ALL responses show

similar SIE values during the earlier period, but the ALL

results begin to deviate from the NAT responses around

1990 (Fig. 3a). The separation of the ALL and NAT re-

sponses can be seenmore distinctly by viewing time series

of anomalies. Figure 3b shows the ensemble means from

each set as anomalies relative to theALL ensemblemean

from the 1981–2010 period. The observations and ALL

responses show decreasing trends, with the Arctic losing

roughly 23 106km2 of sea ice extent over a 30-yr period,

although this value differs by ensemble and ensemble

member (not shown). In contrast, the NAT (and CESM1

PIC) responses show no obvious trends in SIE but do

exhibit some evidence of low-frequency variability and a

response to individual volcanic forcing events (see Fig. 1c).

3. Methodology

a. Detection and attribution of the temporal evolution

Although the goal of this study is an event attribution

analysis, a preliminary detection and attribution analysis

is performed for the SIE time series as the detection and

attribution of long-term change in SIE or a closely related

variable, such as surface air temperature (Najafi et al.

2015), strengthens event attribution findings (NASEM

2016) by demonstrating that external forcing has dis-

cernibly changed the background state against which

extreme events occur. Separate detection and attribution

analyses were performed for the time series of the annual

SIE values and for the time series of September SIE

values. Most detection and attribution studies follow the

total least squares (TLS)methodology presented inAllen

and Stott (2003). The TLS problem is set up as follows:

y5 y*1 «
0
,

x
i
5 x

i
*1 «

i
, and

y*5 �
m

i51

b
i
x
i
*, (1)

where y represents the observations, y* the true climate

response to all acting forcings, each xi the modeled re-

sponse to one of m forcings, and xi* the noise-free re-

sponse to that forcing that is anticipated by climate

FIG. 4. Mean vs standard deviation calculated across the en-

semble for each September in 1960–2080 for CanESM2 and

CESM1. Numbers in parentheses in the legend indicate the num-

ber of ensemble members.
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models. The noise on y, denoted by «0, is assumed to

represent internal climate variability, while the noise on

xi, denoted by «i, is a result of both internal variability

and the finite ensemble used to estimate the model re-

sponse. It is the inclusion of «i that is the difference

between TLS and a simpler, ordinary least squares

approach.

The TLS coefficients bi are also referred to as scaling

factors and are determined via a method described in

Van Huffel and Vandewalle (1991):

b̂5 (XTX2s2
m11I)

21(XTY) , (2)

where s2
m11 is the square of the last singular value of the

matrix Z5 [X, Y]. Here,

X5C21/2
r (

ffiffiffiffiffiffiffiffi

n
ens

p
X
0
) and

Y5C21/2
r Y

0
, (3)

where prewhitening of the ensemble mean responses

X0 and the observed valuesY0 is achieved bymultiplying

by the inverse square root of the regularized covariance

matrixCr of a climate noisematrix. Prewhitening rotates

and scales the observations and mean responses so that

noise in the transformed vectors consists of uncorrelated

components with unit variance (thus the analogy to

white noise). Prewhitening simplifies the fitting of the

TLS regression model (Allen and Stott 2003) and opti-

mizes the detection problem by maximizing the signal-

to-noise ratio in the ordinary least squares sense (e.g.,

Mitchell et al. 2001). The use of Cr is based on the

methodology of Ribes et al. (2013) and will be discussed

inmore detail subsequently. The firstm columns of Z are

the prewhitened mean model response patterns, and the

final column (m1 1) holds the prewhitened observations.

Furthermore, as an ensemble mean possesses a damped

variance compared to a single realization (and the ob-

servations), the variance of the ensemble mean response

is first rescaled using the square root of the ensemble size

nens (Allen and Stott 2003; Ribes et al. 2013). As an ex-

ample, for September, Y0 is the time series of observa-

tions (black line in Fig. 1), and X0 includes the ensemble

mean time series responses from ALL and/or NAT

forcings (see Fig. 1). Both Y0 and the columns of X0 are

expressed as anomalies relative to the period mean.

One-signal analysis involves comparing the model

response to a single forcing (m5 1) to the observations.

A scaling factor different from 0 indicates the signal is

‘‘detected,’’ while a scaling factor consistent with unity

implies the simulated and observed patterns are con-

sistent in magnitude, which provides evidence that may

contribute to attribution (Mitchell et al. 2001). Under

the assumption of a linear combination of responses to

forcings (Gillett et al. 2004; Hegerl and Zwiers 2011;

Tett et al. 1999), a two-signal analysis (m 5 2) can be

used. Here, scaling factors are fit jointly for xALL and

xNAT that can then be used to derive the scaling factors

for the combination of ANT and NAT forcings using

b̂
ALL

5 b̂
ANT

1 b̂
NAT

. (4)

A combination of the scaling factors is used to assess the

ANT influence instead of combining the responses di-

rectly, as the TLS methodology assumes independence

between the errors «i (Ribes et al. 2013).

It is common to use the prewhitening operator of

Allen and Stott (2003) and Allen and Tett (1999), which

often involves a dimension reduction based on the EOFs

of internal variability from control simulation(s). In

contrast, Ribes et al. (2013) present a method that pro-

duces an improved, full-rank estimate of the covariance

matrix of internal variability, which makes it possible to

derive the prewhitening operator without resorting to

EOF truncation. This method, called regularized opti-

mal fingerprinting (ROF), will be used here. The ROF

method also includes slightly different methods for

performing the residual consistency test (RCT; Allen

and Tett 1999) and calculating the confidence intervals

for the scaling factors (Ribes et al. 2013). The RCT is

used to check that the estimate of «0 from the TLS analysis

is consistent with the simulated internal variability.

An estimate of the covariance matrix representing

internal variability is required for this analysis, to be

used in calculation of the prewhitening operator and in

the RCT, with separate estimates used for the two pur-

poses. These covariance matrices are typically con-

structed by dividing the model’s control run into

segments of the same length as the observations and

then dividing the collection of segments into two sam-

ples. However, it has been shown that the internal var-

iability of SIE can be dependent on the mean state

(Swart et al. 2015). Figure 4 plots the standard deviation

across the ensemble for each year’s September value

against the ensemble mean for that month [cf. Fig. S6 in

Swart et al. (2015)]. For both CanESM2 and CESM1,

September SIE values at the high and low ends of the

SIE spectrum show decreased standard deviation com-

pared to the midrange SIE values. This pattern is season

dependent. Using a preindustrial control run that sees

only larger values of SIE may therefore underestimate

the internal variability. An alternate method is to sub-

tract the ensemble mean from each ALL member and

calculate the internal variability covariance matrix from

this set of realizations. (Note that one member must be

removed here to maintain an independent set.) IPSL

was not included in Fig. 4 because of its small ensemble
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(threemembers). Instead, the IPSL analysis will utilize its

1000-yr control run to calculate the covariance matrix.

The CMIP5 ensemble was also excluded from Fig. 4 be-

cause of its large ensemble spread. The use of multiple

models may also mask the relationship investigated here.

It was found that, when applicable, using the difference

from the ensemble mean instead of control simulations

resulted in only small differences in the detection/

attribution results that did not alter the conclusions.

These scaling factors can be used to rescale the model

response(s) to better resemble the observed values (Sun

et al. 2014; Christidis et al. 2012). One set of subsequent

event attribution analyses will be performed using

model responses that have been adjusted using the

September scaling factors:

x
ALL,b,j

5 x
ALL,j

2 x
ALL

1 b̂
1,ALL

(x
ALL

2 «̂
1
) and

x
NAT,b,j

5 x
NAT,j

2 x
NAT

1 b̂
2,NAT

(x
NAT

2 «̂
2
) , (5)

where x represents the ensemble mean and j distin-

guishes the ensemble members. Individual ensemble

members and the ensemble means are expressed as

anomalies relative to the mean of the ALL ensemble

mean over the common period between models and

observations. To be consistent with the calculation of

the scaling factors, the NAT ensemble mean has had its

time mean removed, and both ensemble means are

multiplied by the square root of the ensemble size to

rescale the variance. Furthermore, xALL,b,j, xNAT,b,j, xALL,

and xNAT are prewhitened using the regularized co-

variance matrix, again for consistency with the ROF

procedure used to fit the scaling factors. Then the ap-

propriate ALL or NAT ensemble mean is subtracted

from each member. Next, the ALL ensemble mean is

scaled by b̂ALL from the one-signal analysis, while the

NAT ensemble mean is scaled by b̂NAT from the two-

signal analysis (ANT/NAT), taking into account the

error in the response from the TLS analysis, «̂. The re-

scaled ensemblemeans are added back to eachALL and

NAT ensemble member, and the inverse of the pre-

whitening operator is used to return to the regular space.

Because the scaling factors were fit using anomalies,

the b-adjusted data will only be used with anomalies

in subsequent analyses. Although the reference pe-

riod for the calculation of the anomalies is slightly

different (1979–2014 instead of 1981–2010) in order

to match the procedure for calculating b̂, we expect

this to have minimal influence over the comparison

of results.

b. Event attribution of extremes

Event attribution is used to assess the influence of

anthropogenic forcings on the magnitude or frequency

of occurrence of a particular event. It is typical to

choose extreme events with notable impacts (NASEM

2016). While the TLS method above is used for de-

tection and attribution of the temporal pattern of the

response to a specific forcing using a full time series

record, a different approach is utilized for event attri-

bution. The ensemble of responses can be used to de-

termine the probability of a specific event occurring

under each forcing scenario. Two metrics are typically

used to assess the differences in probability with dif-

ferent forcings. The first is called the fraction of at-

tributable risk (Stott et al. 2004):

FAR5 12
p
0

p
1

. (6)

The FAR represents the fraction of the risk for the

occurrence of a particular event that is due to the in-

clusion of additional forcing from one scenario to the

next. Typically, p1 represents the probability of the

event under ALL forcing and p0 the probability under

NAT forcing. An alternate metric is the risk ratio

(RR), a simple ratio that describes how many times

more likely the occurrence of a specific event is under

ALL forcing than under NAT forcing alone:

RR 5
p
1

p
0

. (7)

Hannart et al. (2016) present event attribution in

terms of necessary and sufficient causation. According

to their definitions, requiring the presence of a particular

forcing scenario for an event to occur would be neces-

sary causation. In contrast, if the particular forcing sce-

nario always produces the event in question, this would

be sufficient causation. Under certain assumptions

(monotonicity and exogeneity), the probability of nec-

essary causation [PN, using the notation of Hannart

et al. (2016)] is equivalent to the FAR described above.

The probability of sufficient causation (PS) can be cal-

culated by

PS5 12
12 p

1

12 p
0

. (8)

Both PN and PS will be calculated in the following an-

alyses. It should be noted that the equations presented

here only apply as PN or PS if the resulting values are

greater than 0; if negative, the PN or PS is assigned a

probability of 0.

These metrics will be analyzed for decadal periods.

Values from each year in the period and each en-

semble member will be combined into a pool of data.

Through the use of a kernel density estimator
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(a nonparametric method for estimating a probability

density function), the p1 and p0 values for specific

situations can be assessed. A Gaussian kernel will be

used, as it was determined that the results show little

sensitivity to this choice. For the event in question, p0
and p1 of experiencing an event equal to or more ex-

treme than this threshold can be calculated by in-

tegrating the density function. To calculate the

uncertainty on the FAR, PS, and RR, a resampling

method similar to that of Stott et al. (2004) will be

used. The pool of data from each month in the de-

cade and from each ensemble member is resampled

with replacement to reproduce a set of data of the

same size to use for the fitting of the kernel densities

and calculation of the probabilities. With 1000 esti-

mates of the density curves, a nonparametric 90%

confidence interval for each of the metrics can be

determined.

Event attribution can be sensitive to the framing of

the question (NASEM 2016; Otto et al. 2012), which

includes the definition of the event. As such, we use

several different metrics to define the extreme SIE

events. These include the absolute values from each

model simulation and anomalies calculated relative

to the 1981–2010 period, as discussed previously.

Additionally, the event will be represented as a

fraction of the 1979–89 climatology; this period was

chosen as the earliest period before the influence of

anthropogenic forcings becomes strongly apparent

and was limited by the observations. Finally, 5-yr

means will also be analyzed; with the constraint from

the IPSL and CMIP5 NAT forcing scenarios, the

period of interest will be the mean of 2008–12. Time

series of these four metrics for each ensemble mean

are shown in Fig. 3.

4. Results

a. Detection and attribution of temporal patterns

The scaling factors and corresponding 90% confi-

dence intervals (CIs) for each model are displayed in

Fig. 5 for both the annual time series and September

alone. The annual time series is calculated as the sum of

individual monthly means. For the one-signal analysis,

scaling factors are shown for theALL forcing, and filled

squares imply a passing of the RCT. Consequently,

open squares imply the RCT failed, which in this case

indicates the model’s estimate of internal variability is

too low. (None of the cases shown failed the RCT with

model internal variability too high.) The estimates of

bALL for the annual one-signal analysis for all four

models are inconsistent with zero, implying the signal is

detected, and consistent with unity, which indicates

good agreement between the observed and simulated

SIE changes. All but CESM1 pass the RCT for the

annual one-signal analysis, although both CESM1 and

IPSL show wide confidence intervals. As the scaling

factors are fitted based on SIE anomalies, any biases

discussed previously should not affect the detection/

attribution results.

In general, similar results are seen for the September

one-signal analysis (Fig. 5c) as for the annual time se-

ries. One exception is that the wide confidence interval

for IPSL’s scaling factor does not include unity,

implying a trend in the forced response that is smaller

in magnitude than that observed. For CMIP5, the CI

FIG. 5. Scaling factors and 90% confidence intervals for (a),(c) ALL one-signal analysis and (b),(d) the two-signal analysis of ANT (red)

and NAT (green) for each model. Results are shown for annual values in (a),(b) and September values in (c),(d). Filled squares across the

top of the panels indicate a passing of the residual consistency test, while open squares imply model variability is too low.
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just barely includes 1.0; a value of b̂ALL greater than 1.0

would imply a smaller trend in the ensemble mean for

September, and this is consistent with the results in

Figs. 1c and 3.

For the two-signal analysis (Figs. 5b,d), the linear

combination of ALL and NAT forcings is used to de-

rive the scaling factors for ANT (red) and NAT

(green). Two-signal results are not shown for CESM1,

as this model does not have NAT forcing simulations.

The CIs for bNAT are generally wider than those for

bANT or the one-signal bALL, expressing larger un-

certainty on this estimate of bNAT. All three models

pass the RCT for the two-signal analyses. The ANT

signal is detected for both CanESM2 and CMIP5 with a

scaling factor consistent with 1. CanESM2 shows a very

tight CI around b̂ANT, although the CI for bNAT includes

both 0 and 1. While we cannot state that the signal is

detected, we also cannot state that it is different in

magnitude from the NAT signal that may be present in

the observations. Thus, the best interpretation of this

scaling factor range would be that the signal is not

detected but there is large uncertainty in the estimate

(as in Christidis et al. 2012). Thus, it would be deduced

that the observed signal is almost entirely explained by

anthropogenic forcings using this model. For CMIP5,

the NAT signal is also detected for both September and

the annual time series, and b̂NAT is larger than b̂ANT

with a CI that includes 1.0 but does not include 0, im-

plying detection of this signal of a magnitude possibly

similar to the observations. The detection of a NAT

signal is likely influenced by the effect of volcanic

forcing (see Fig. 1c). For IPSL, the CIs for both ANT

and NAT in the annual time series are unbounded,

which inhibits any detection or attribution inferences.

For IPSL in September, the NAT signal is detected,

even though greater than 1, while b̂ANT is consistent

with unity and exhibits a narrower CI. All three models

pass the RCT for the two-signal analyses. Note that the

bANT and bALL estimates are identical in the case of the

two-signal analysis [see Eq. (4)].

The results of this detection and attribution analysis

indicate that the CanESM2 large ensemble is the most

suitable for an analysis of the attribution of extreme

events in the SIE time series because of its strong

detection of the anthropogenic signal and passing

of the RCT. The CMIP5 ensemble is also fairly suit-

able, although the September ALL response is slightly

smaller in magnitude than observed. CESM1 shows

the necessary detection results for the one-signal

analysis but fails to pass the RCT; variability in the

residuals that is significantly larger than the model’s

internal variability decreases the credibility of the at-

tribution result. IPSL passes the RCT for all cases, and

its wide CIs are likely due to the small size of its

ensemble.

b. Event attribution

1) RESULTS FOR GENERAL THRESHOLDS

The attribution of a specific event involves the com-

parison of the probability of occurrences of that event

under different forcing scenarios. This process is dem-

onstrated through Fig. 6 for the adjusted CanESM2

data. Figure 6a uses the first of the four metrics for de-

fining SIE events (Fig. 3), the absolute values, which are

expressed in millions of square kilometers. The three

left panels of Fig. 6 are density curves for ALL (blue)

and NAT (green) from the model response for each

decadal period. These curves are estimated from 10 yr3
50 ensemble members. For this model, the NAT curve

changes very little with time, while the ALL curve shifts

farther to the left (to smaller SIE values) with each

subsequent decade. Similar plots from previous decades

(not shown) exhibited only small differences between

the ALL and NAT curves; separation of the forced

signals beginning in the 1990s agrees with the result of

Min et al. (2008).

The second panel from the right in Fig. 6a displays the

FAR curves for each decade (1990s in red, 2000s in

yellow, and 2010s in purple), providing the fraction of

the risk of experiencing a September SIE value at or

below the given threshold that is attributable to the

anthropogenic forcing included in the ALL scenario

beyond the forcings in the NAT scenario. Note that

more extreme (smaller) SIE values are found to the

right. The FAR curves all saturate to 1.0 by the time SIE

declines to 53 106 km2, indicating that any SIE less than

this value is entirely attributable to the inclusion ofANT

forcing (i.e., such SIE values could not occur with only

NAT forcing). The observed 2012 SIE value (vertical

bar) is smaller than the value at which the FAR reaches

1.0. Comparing to the density plots (Fig. 6a, left panels),

the SIE thresholds where the FAR saturates to 1.0 are

also where the NAT curves reduce to near-zero proba-

bilities. The larger FAR values during earlier decades

for larger SIEs are a result of the sensitivity to the shape

of the density curves; because of the saturation of the

FAR, the shift in the ALL curve with decade has little

influence on this metric.

The far-right panel in Fig. 6a presents the RR curves

for each of the three decades. The RR is only calculated

within the realized range of values in the two responses

for that decade, hence the greater extent of the latter

decades’ curves. By 5 3 106 km2, this event is approxi-

mately 104 timesmore likely to occur underALL forcing

than under NAT forcing alone. The RR values can get
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FIG. 6. Event attribution analysis using the adjusted CanESM2 ensemble for four different event definitions: (a) absolute values,

(b) anomalies relative to 1981–2010, (c) fraction of the 1979–89 mean, (d) and 5-yr means. Kernel densities by decade for ALL (blue) and

NAT (green) for September SIE are shown in the three left panels. Number of values into each curve is 500 from the number of ensemble

membersmultiplied by 10 yr. FARof an SIE extentmore extreme than the given value is shown in the second panels from the right. RR of

a more extreme SIE is shown in the right panels; an upper limit of 106 is applied. Vertical lines represent the observed 2012 event.
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very large for small SIEs, and as p1 approaches zero and

p0 is near zero, the RR can be sensitive to the estimation

of the density curve and its integration. We will only

consider RR values up to 106, the inverse of which was

determined to be a reasonable error when integrating

a Gaussian distribution with single precision (e.g.,

Cody 1993).

Figure 6 also shows the same analyses for the other

three metrics to define SIE events: anomalies relative

to 1981–2010 (Fig 6b), fraction of the 1979–89 mean

(Fig. 6c), and 5-yr means (Fig. 6d). No matter how SIE

events are characterized, the more extreme events have

increased probability in the world with ALL forcings in

later decades, while no significant changes by decade

are seen in the world with NAT forcings. As a result,

the FAR equals 1.0 for events of extreme magnitude,

and the RR implies such events are much more likely

with ALL forcings. Additionally, the 2012 event is a

rare event with each metric (based on the density

curves), even under ALL forcings, although an event of

this magnitude or more extreme is considerably more

likely to occur under ALL forcings than under NAT

forcings alone.

Similar analyses for the other models and the un-

adjusted CanESM2 responses are included in the sup-

plementary material (Figs. S3–S8). It should be noted

that, because of the constraints from the availability of

NAT forcings, IPSL (Figs. S5 and S6) and CMIP5

(Figs. S7 and S8) results are presented on slightly shifted

decades (1983–92, 1993–2002, and 2003–12) from the

CanESM2 (Fig. 6 and Fig. S3) and CEMS1 (Fig. S4)

results for 1990–2000, 2001–10, and 2011–20. Instead of

using the same decades, CanESM2 and CESM1 results

are presented using a more current, and more relevant,

time period. All models and all metrics show increasing

separation of the density curves of ALL and NAT with

each subsequent decade. Furthermore, the FAR satu-

rates to 1.0 within the realized range of all models.

However, this saturation occurs at SIE values much

greater than the 2012 event for somemodels (e.g., CESM1

and IPSL) and at SIE values more extreme than the

2012 event (e.g., the nonrelative metrics for CanESM2

and CMIP5). FAR values less than 1.0 for the 2012

event are likely due to the low bias of CanESM2 cli-

matological SIE and the low bias and large ensemble

spread of CMIP5.

Because of its much greater ensemble spread, the

density curves for the CMIP5 results (Fig. S7) cover a

wider range of values than those for the single-model

ensembles. This increased spread results in smaller RR

values than are seen with the other models and FAR

curves that do not reach 1.0 until more extreme SIE

values. Regardless, the conclusions are consistent with

those using other models. The uncertainty for the IPSL

curves (Figs. S5 and S6) is much larger than that seen for

other models as a result of the small ensemble size.

Additionally, the 2012 event is outside the range of ab-

solute values in both the adjusted and unadjusted IPSL

responses. Even though the 2012 event is very rare ( p1 is

very small), the FAR and RR results indicate the

probability of such an event occurring is greater under

ALL forcing than under NAT forcing.

To facilitate the comparison between models, Fig. 7

presents plots of the FAR (or PN), PS, and RR using

the anomaly metric for all four ensembles. Because of

the nature of the adjustment procedure, adjusted

and unadjusted results will be the same for the

anomaly metric. The decade from 2003 to 2012 is

used for all models here, so the curves for CanESM2

and CESM1 are slightly different than those in Fig. 6

and Fig. S4. CanESM2, CESM1, and IPSL show FAR

curves that reach 1.0 just before an anomaly of 21 3
106 km2. The CMIP5 FAR curve increases at a slower

rate than the other models because of the wider range

of SIE values found in this ensemble. CMIP5 also

presents smaller values of the RR, remaining below 106

until after the observed 2012 value of almost233 106km2.

BothCanESM2 andCESM1presentmuch greater values,

well over this threshold.

The PS curves in Fig. 7b present large values for

positive-anomaly thresholds and generally decrease

rapidly with decreasing anomalies. The positive anom-

aly values are either common in the ALL forcing re-

sponses or more likely to occur with NAT forcing alone,

resulting in PS values near 1.0, indicating that the in-

clusion of ALL forcing is sufficient for such events to

occur, effectively guaranteeing the occurrence of an

event of the given magnitude, or more extreme. Very

small PS values, such as those for larger negative

anomalies, imply such an event is rare, even under ALL

forcing. Comparing the PS curves with those for PN

(Fig. 7a), shows that for an extreme event in the current

climate, such as that in 2012 (vertical bars), the inclusion

ofANT forcing is necessary (PN5 1.0) but not sufficient

(PS is small). That is, the inclusion of ALL forcing is

required for such an event to occur but does not guar-

antee the event’s occurrence.

The PS curve for the CMIP5 ensemble has slightly

lower values for positive anomalies and shows a more

gradual decrease, not reaching a PS value of 0 until

values more extreme than243 106 km2. The difference

between the PS results from the multimodel CMIP5

ensemble and from the single-model ensembles is pre-

dominantly due to the larger spread across the CMIP5

ensemble. With the inclusion of models with high and

low biases, events in the tails of the single-model
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ensembles carry more probability in the multimodel

ensemble distribution. This disparity is much more

pronounced when the CSIRO model is included in the

CMIP5 ensemble (Fig. S9 in the supplementary mate-

rial). In addition to smaller RR values and amore slowly

increasing FAR curve, the PS curve shows a very dif-

ferent shape. With the inclusion of the CSIRO model,

the ensemble contains more large, positive anomalies,

and the greater ensemble mean leads the negative

anomalies to be more extreme (Fig. S9). The wider, and

multimodal, distribution results in smaller values of PS

on either end.

The CMIP5 ensemble represents an ‘‘ensemble of

opportunity’’ (Tebaldi and Knutti 2007). Several studies

address the interpretation of these ensembles (e.g.,

Goldstein and Rougier 2009; Rougier et al. 2013), and,

in practice, multiple methods are utilized for choosing

an ensemble of a subset of the available realizations

(e.g., Lutz et al. 2016; Cannon 2015; Collins et al. 2013).

The differences between the CMIP5 results in Fig 7 and

Fig. S9 demonstrate a potential disadvantage to using

the ensemble of opportunity. Including a model deemed

to have a very poor representation of the observations

can produce a distinct difference in the results and

conclusions.

2) FOCUS ON THE 2012 RECORD EVENT

To analyze the 2012 event specifically, Table 1 pres-

ents values of PN (FAR), PS, and RR from each model

for an event as extreme as or more extreme than that

observed in 2012. For comparison, the 2012 values of

each model and metric are also presented, although the

statistics are calculated using model response values

from the 2003–12 decade. The 2012 values are taken

from the ALL ensemble mean and are thus less extreme

than observed, even for a dataset that compares well

with the magnitude of observations. Calculating the

mean across a large ensemble greatly reduces variabil-

ity, so while none of these ensemble means see a 2012

value near as extreme as that observed (Fig. 3b), many

of their individual members may.

The PN results are consistent across all scenarios, with

values at or very close to 1.00 for all models and metrics.

Thus, for all four metrics used to define SIE events, es-

sentially all of the risk of the 2012 extreme event is at-

tributable to the combination of anthropogenic and

natural forcings (ALL), as opposed to natural forcing

alone. Alternatively, a PN value of 1.00 indicates that

ALL forcing is required for the 2012 event to occur

(compared to only NAT forcings). Most model–metric

combinations exhibit RR values greater than 106,

indicating that the probability of experiencing an event

more extreme than that observed increases substantially

under ALL forcing compared to under NAT forcing.

Even those models, such as the CMIP5 ensemble, that

present RR values less than 106 still show a considerable

increase in event probability with ALL forcing.

The PS values are very small for many of the models

and metrics, which is because, in these cases, the 2012

event was rare, even in the ALL forcings scenario, and

the inclusion of ALL forcings does not guarantee the

occurrence of an event of this magnitude. If ALL

forcings guaranteed the occurrence of such an event, it

would not be ‘‘extreme’’ in the observations or simu-

lations of the current climate. Larger values of PS in-

dicate the 2012 event is more commonly realized in

the ALL responses. For example, the 5-yr means for

CanESM2 are significantly smaller than the observa-

tions (Fig. 3d), and all values from the ALL ensembles

during the chosen decade are smaller than the ob-

served 2012 value. This results in a PS value of 1.00,

indicating that the inclusion of ALL forcings is suffi-

cient to guarantee an event more extreme than the

observed 2012 value in these simulations. In contrast,

the 2012 event was rare with most other models and

metrics, and the PS values are much smaller. While

ALL forcings are necessary for an extreme event of

2012 magnitude to occur (see PN), they are generally

not sufficient.

For CanESM2 and IPSL, both the original and

adjusted results are shown in Table 1. Unlike IPSL,

CanESM2 shows slightly different results between the

original and bias-corrected responses. The RR values

increase considerably with the bias correction. The bias

correction was applied to both the ALL and NAT re-

sponses, and, prior to this adjustment, theNAT response

overlapped with the observations during the latter de-

cades (Fig. 1). Thus, the bias correction results in a shift

of the density curves such that the NAT curve no longer

contains the observed 2012 value, greatly decreasing the

value of p0. The decrease in the PS values from the un-

adjusted to the adjusted response reflects the shifting of

the ALL density curve such that the 2012 event became

even more rare.

Table 1 also includes values of PN, PS, and RR for the

b-adjusted response anomalies for each model. By re-

scaling the model responses using the scaling factors

from the detection and attribution analysis of trends in

the time series, response patterns that more closely

match the observations are produced. For a model, such

as CanESM2, with scaling factors very close to 1, the

effect of this adjustment is minimal. Even for a model,

such as IPSL, whose anomaly for the 2012 event is

considerably more extreme than the realized anomaly

from the unadjusted response, the conclusions drawn

from the PN, PS, and RR values remain largely the
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same, although slightly weaker. Consistency between

the results for the original and b-adjusted responses

lends further robustness to the conclusion that the 2012

event is consistent with a scenario including anthropo-

genic influences and is very unlikely to occur with nat-

ural forcing alone.

3) FUTURE EXTREMES

To assess the implications of the event attribu-

tion analysis for future SIE events, the CanESM2 and

CESM1 large ensembles provide model responses

through 2100 and 2080, respectively. Figure 8a shows

the ensemble mean anomalies (relative to 1981–2010)

for this extended time period. Given the base period

means of 4.33 106 km2 for CanESM2 and 7.03 106 km2

for CESM1, the anomaly curves level off around ice-

free conditions in the model. To calculate the event

attribution statistics for a future decade, the period

2031–40 is chosen as the last decade during which

both models still show annually varying September

SIE values.

Density curves for each model during this decade are

shown in Fig. 8b. For comparison, thirty 10-yr segments

are extracted from CESM1’s adjusted PIC and the

FIG. 7. For each model, (a) FAR (PN), (b) PS, and (c) RR of experiencing a September SIE value more extreme

than the given threshold. The probabilities are calculated from densities fit to data from 2003–12 for anomalies

relative to 1981–2010. These statistics are calculated only for values within the realized range of the ensemble for this

period. Vertical lines represent the observed 2012 event. The RR plot in (c) is cut off at 106.

TABLE 1. Values for 2012 from observations and four different ensembles (106 km2), as well as the PN (FAR), PS, and RR for expe-

riencing a valuemore extreme than observed. Four differentmetrics are used to calculate the SIE: the values for the anomalies, anomalies

relative to 1980–2010, the fraction of the 1979–89mean, and the 5-yr mean event ending in 2012.Models with biases (CanESM2 and IPSL)

also include mean-adjusted data (adj), and all models include a version for the anomalies that has been adjusted by scaling factors (b;

Fig. 5). Large RR values exceeding 106 are indicated.

Values Anomalies Fraction 5-yr mean

2012 PN PS RR 2012 PN PS RR 2012 PN PS RR 2012 PN PS RR

Observed 3.62 — — — 22.89 — — — 0.49 — — — 4.65 — — —

CanESM2 2.47 0.98 0.708 45 21.79 1.00 0.031 .106 0.48 1.00 0.261 104 2.86 0.89 1.000 8.9

CanESM2 (adj) 4.71 1.00 0.031 .106 21.79 1.00 0.031 .106 0.64 1.00 0.032 .106 5.09 1.00 0.100 .106

CanESM2 (b) — — — — 21.49 1.00 0.013 .106 — — — — — — — —

CESM1 5.81 1.00 0.000 .106 21.24 1.00 0.003 .106 0.77 1.00 0.000 .106 6.07 1.00 0.000 .106

CESM1 (b) — — — — 23.63 1.00 0.223 .106 — — — — — — — —

IPSL 6.73 1.00 0.000 .106 20.86 1.00 0.000 .106 0.84 1.00 0.000 .106 6.87 1.00 0.000 .106

IPSL (adj) 5.64 1.00 0.000 .106 20.86 1.00 0.000 .106 0.82 1.00 0.000 .106 5.79 1.00 0.000 .106

IPSL (b) — — — — 23.31 0.75 0.133 3.9 — — — — — — — —

CMIP5 4.21 0.99 0.61 87 22.53 1.00 0.420 104 0.48 1.00 0.496 102 3.16 0.93 0.733 13

CMIP5 (b) — — — — 23.98 0.97 0.698 36 — — — — — — — —

566 JOURNAL OF CL IMATE VOLUME 30

Unauthenticated | Downloaded 05/15/25 10:49 PM UTC



lighter purple density curve is fit. As CanESM2 only

has NAT responses through 2020, the NAT curve from

2011–20 will be used as reference (the light blue curve

in Fig. 8b). Considering the inconsequential changes

in the NAT curve by decade shown in Fig. 6, the choice

of NAT period should make little difference here.

Figure 6 and Fig. S4 showed diverging density curves

with each subsequent decade through the 2010s,

and Fig. 8b shows that, by the 2030s, the ALL and

NAT curves are almost completely separated for

both models.

The FAR, PS, and RR were calculated for a range

of anomaly thresholds for both CanESM2 and CESM1

for the 2031–40 period, and the results are also shown

in Figs. 8c–e, respectively. The FAR curves look very

similar to those seen in Fig. 7, with a saturated FAR by

an anomaly of 21 3 106 km2 for CanESM2 and around

1 3 106 km2 for CESM1. The PS curves exhibit values

close to 1.0 for smaller anomalies, implying that negative

anomalies less extreme than 23 3 106 km2 (the 2012

extreme event) are almost guaranteed with the inclusion

of the additional ALL forcings in this decade. The RR

values increase rapidly and reach 106 at an anomaly just

less than 0 for CESM1 and around 22 3 106 km2 for

CanESM2. Extending beyond the previous conclu-

sions, any negative anomalies relative to the 1981–2010

mean in future decades are extremely unlikely to have

occurred in a NAT-forcing-only scenario and can be

almost entirely attributed to the addition of anthro-

pogenic forcings.

FIG. 8. (a) Anomalies relative to 1981–2010 for CanESM2 and CESM1 extending through 2060. (b) Kernel density estimates for the

2031–40 period for ALL data (darker colors), compared to a selection of the PIC for CESM1 and NAT from 2011–20 for CanESM2

(lighter colors). The resulting (c) FAR, (d) PS, and (e) RR comparing 2031–40 to 2011–20 are plotted only over the realized range of

values, and, additionally, an upper limit of 106 is applied to the RR plot in (e).
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4) THE 2015 RECORD MINIMUM IN MARCH

MAXIMUM SIE

Finally, although we have focused on September SIE

minimum events, extremes in the March maximum are

also of interest. Analyses similar to those presented

above but looking at theMarch extremes are included in

the supplementary material (Figs. S10–S13). As the

current record minimum in the March maximum SIE

occurred in 2015, only CanESM2 and CESM1 are used.

Both models show decreasing trends in March SIE un-

der ALL forcings (Fig. S10) that correspond well with

the observed trend, and the simulated ensemble mean

ALL forcings responses from both models can be de-

tected in the observations (Fig. S12). For the 2011–20

period, both CanESM2 and CESM1 show FAR curves

that saturate to 1.0 before the magnitude of the 2015

event (Fig. S13). The RR values, while smaller than for

September, imply an event more extreme than the cur-

rent record is still considerably more likely to occur

under ALL forcing than under NAT forcing alone. The

models disagree on the PS value for the 2015 event, and

this is likely a result of the difference in themagnitude of

the trends (Figs. S10 and S12) such that the 2015 event is

more common in the CanESM2 responses while re-

maining rare in those from CESM1. In general, the

broad conclusions found for September are also valid for

the March results.

5. Discussion and conclusions

There are several potential sources of uncertainty in

an event attribution analysis. Christiansen (2015) dis-

cusses the situation where both p0 and p1 are very small,

which inhibits the interpretation of the FAR andmay be

due to the rarity of the particular event under both

forcing scenarios, a poor calculation of the probabilities

using a distribution with tails that are too light, and/or an

inappropriate definition for the event in question. Re-

garding the second explanation, we have limited as-

sumptions regarding the distribution by using kernel

densities and have shown the probabilities to be robust

to the choice of kernel. Christiansen (2015) mentions

that a common problem with event definitions comes

from the spatial region chosen. The choice of area for

our study should not be an issue in this regard, as we

use a single time series of SIE over an unambiguously

defined region. We avoid the other concern with de-

fining the event in question by using multiple metrics to

quantify the extreme event. Although the 2012 event is

chosen from observations, the model response proba-

bilities are calculated using the containing decade and

do not require each model to have observed its record

minimum in the same year. It was shown that the 2012

record minimum Arctic SIE was a rare event, even

under the ALL forcing scenarios for all models.

However, even though the event in question was rare,

it was also shown to be very unlikely to occur with NAT

forcing only. The rarity of the 2012 event in the ALL

forcing simulations demonstrates the role of internal

variability in the occurrence of such an event; while an

extreme event like this one was shown to be much

more likely to occur under ALL forcing, its occur-

rence still depends on a particular setup from natural

variability.

Both Christidis et al. (2013) and NASEM (2016) em-

phasize the importance of first assessing a model’s

ability to reproduce the events in question before per-

forming an event attribution analysis. Although the

models used do not perfectly characterize Arctic SIE

and related processes, large ensembles allow for a more

thorough representation of internal variability. Fur-

thermore, using models with negative (CanESM2) and

positive (IPSL) SIE biases, models with underestimated

(CMIP5 multimodel ensemble) and well-captured

(CanESM2) trends, and ensembles with large spread

(CMIP5) or with few ensemble members (IPSL)

strengthens the conclusions when results are consistent.

No single model captures all observed aspects of Arctic

sea ice evolution perfectly; for example, one model

with a low bias in the climatology reproduces the trend

well (CanESM2). The fact that our results are not

strongly sensitive to biases and consistent results are

obtained when using a range of models strengthens our

conclusions. Although the scaling factors and their ac-

companying uncertainty ranges may differ between

models, the general conclusion is an attribution of trends

in Arctic SIE anomalies to the inclusion of anthropo-

genic influences beyond natural forcings alone. Addi-

tionally, although the exact values of the statistics may

differ, there is general agreement among models (in-

cluding the original, mean-adjusted, and b-adjusted

responses).

Through a detection and attribution analysis, it was

demonstrated that the observed trends in annual and

September Arctic SIE anomalies are consistent with the

inclusion of anthropogenic forcings and are very un-

likely to have occurred under the combined influence of

natural forcings and internal variability alone. The event

attribution showed agreement among models of a FAR

value near 1.0, a small PS value, and a very large RR

value for the 2012 event. This means that an event of the

magnitude of the 2012 record minimum in Arctic SIE or

more extreme is generally entirely attributable to the

combination of anthropogenic and natural forcings and

that such forcings are likely necessary for the occurrence

568 JOURNAL OF CL IMATE VOLUME 30

Unauthenticated | Downloaded 05/15/25 10:49 PM UTC



of the event (FAR near or equal to 1.0); that the 2012

event is extreme in the current climate, so the inclusion

of anthropogenic forcings is not sufficient for event oc-

currence (small PS); and the event wasmuchmore likely

to occur under ALL forcings than under NAT forcings

alone (very large RR).

It was also shown that, for an event of the magnitude

of the 2012 extreme minimum, the inclusion of an-

thropogenic forcings is a necessary but not a sufficient

cause. That is, an event of this magnitude requires an-

thropogenic influences to occur, but the inclusion of

these forcings alone is not enough to guarantee the

occurrence of the event. Given that the occurrence of

the 2012 event was extremely unlikely in its decade

under natural forcings alone, combined with de-

creasing trends in SIE, it is virtually certain that future

September minimum events more extreme than that in

2012 will be attributable to anthropogenic influences

and that the inclusion of anthropogenic forcings will

become a sufficient cause for events of the magnitude

of the 2012 record event.

Acknowledgments. This work was supported by the

NSERCCanadian Sea Ice andSnowEvolution (CanSISE)

Network (NSERC Grant RGPCC-433874-12). We

thank Neil Swart, Xuebin Zhang, three anonymous

reviewers, and the editor, John Walsh, for providing

constructive comments that helped to improve the man-

uscript. We would also like to thank Neil Swart for his

assistancewith calculating SIE for theCMIP5models and

Reza Najafi for his help with the application of the de-

tection and attribution methodology. The detection

and attribution scripts were adapted from publicly

available code from both Yang Feng andAurélien Ribes.

REFERENCES

Allen, M. R., and S. F. B. Tett, 1999: Checking for model consis-

tency in optimal fingerprinting. Climate Dyn., 15, 419–434,

doi:10.1007/s003820050291.

——, and P. A. Stott, 2003: Estimating signal amplitudes in optimal

fingerprinting, part I: Theory. Climate Dyn., 21, 477–491,

doi:10.1007/s00382-003-0313-9.

Arora, V. K., and Coauthors, 2011: Carbon emission limits re-

quired to satisfy future representative concentration pathways

of greenhouse gases. Geophys. Res. Lett., 38, L05805,

doi:10.1029/2010GL046270.

Bindoff, N. L., and Coauthors, 2013: Detection and attribution of

climate change: From global to regional.Climate Change 2013:

The Physical Science Basis, T. F. Stocker et al., Eds., Cam-

bridge University Press, 867–952. [Available online at https://

www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_

Chapter10_FINAL.pdf.]

Cannon, A. J., 2015: Selecting GCM scenarios that span the

range of changes in a multimodel ensemble: Application to

CMIP5 climate extremes indices. J. Climate, 28, 1260–1267,

doi:10.1175/JCLI-D-14-00636.1.

Christiansen, B., 2015: The role of the selection problem and

non-Gaussianity in attribution of single events to clim-

ate change. J. Climate, 28, 9873–9891, doi:10.1175/

JCLI-D-15-0318.1.

Christidis, N., P. A. Stott, G. S. Jones, H. Shiogama, T. Nozawa,

and J. Luterbacher, 2012: Human activity and anomalously

warm seasons in Europe. Int. J. Climatol., 32, 225–239,

doi:10.1002/joc.2262.

——, ——, A. A. Scaife, A. Arribas, G. S. Jones, D. Copsey, J. R.

Knight, and W. J. Tennant, 2013: A new HadGEM3-A-based

system for attribution of weather- and climate-related extreme

events. J. Climate, 26, 2756–2783, doi:10.1175/JCLI-D-12-00169.1.

——, G. S. Jones, and P. A. Stott, 2015: Dramatically increasing

chance of extremely hot summers since the 2003 European

heatwave. Nat. Climate Change, 5, 46–50, doi:10.1038/

nclimate2468.

Cody, W. J., 1993: Algorithm 715: SPECFUN—A portable

FORTRAN package of special function routines and test

drivers. ACM Trans. Math. Software, 19, 22–32, doi:10.1145/

151271.151273.

Collins, M., and Coauthors, 2013: Long-term climate change:

Projections, commitments and irreversibility. Climate Change

2013: The Physical Science Basis, T. F. Stocker et al., Eds.,

Cambridge University Press, 1029–1136. [Available online at

http://www.climatechange2013.org/images/report/WG1AR5_

Chapter12_FINAL.pdf.]

Comiso, J. C., C. L. Parkinson, R. Gersten, and L. Stock, 2008:

Accelerated decline in the Arctic sea ice cover.Geophys. Res.

Lett., 35, L01703, doi:10.1029/2007GL031972.

Day, J. J., J. C. Hargreaves, J. D. Annan, and A. Abe-Ouchi, 2012:

Sources of multi-decadal variability in Arctic sea ice extent.

Environ. Res. Lett., 7, 034011, doi:10.1088/1748-9326/7/3/034011.

Dufresne, J.-L., and Coauthors, 2013: Climate change projections

using the IPSL-CM5 Earth System Model: From CMIP3

to CMIP5. Climate Dyn., 40, 2123–2165, doi:10.1007/

s00382-012-1636-1.

Fetterer, F., K. Knowles, W. Meier, and M. Savoie, 2002: Sea Ice

Index. National Snow and Ice Data Center, accessed 16 Sep-

tember 2015, doi:10.7265/N5QJ7F7W.

Flato, G., and Coauthors, 2013: Evaluation of climate models.

Climate Change 2013: The Physical Science Basis, T. F. Stocker

et al., Eds., Cambridge University Press, 741–866, doi:10.1017/

CBO9781107415324.020.

Gillett, N. P., M. F. Wehner, S. F. B. Tett, and A. J. Weaver, 2004:

Testing the linearity of the response to combined greenhouse

gas and sulfate aerosol forcing. Geophys. Res. Lett., 31,

L14201, doi:10.1029/2004GL020111.

——, D. A. Stone, P. A. Stott, T. Nozawa, A. Y. Karpechko, G. C.

Hegerl, M. F. Wehner, and P. D. Jones, 2008: Attribution of

polar warming to human influence. Nat. Geosci., 1, 750–754,

doi:10.1038/ngeo338.

Goldstein, M., and J. Rougier, 2009: Reified Bayesian modelling

and inference for physical systems. J. Stat. Plann. Inference,

139, 1221–1239, doi:10.1016/j.jspi.2008.07.019.

Gregory, J. M., P. A. Stott, D. J. Cresswell, N. A. Rayner,

C. Gordon, and D. M. H. Sexton, 2002: Recent and future

changes in Arctic sea ice simulated by the HadCM3AOGCM.

Geophys. Res. Lett., 29, 2175, doi:10.1029/2001GL014575.

Guemas, V., F. Doblas-Reyes, A. Germe, M. Chevallier, and

D. Salas y Mélia, 2013: Discriminating between sea ice

memory, the August 2012 extreme storm, and prevailing

15 JANUARY 2017 K I RCHME IER -YOUNG ET AL . 569

Unauthenticated | Downloaded 05/15/25 10:49 PM UTC

http://dx.doi.org/10.1007/s003820050291
http://dx.doi.org/10.1007/s00382-003-0313-9
http://dx.doi.org/10.1029/2010GL046270
https://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_Chapter10_FINAL.pdf
https://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_Chapter10_FINAL.pdf
https://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_Chapter10_FINAL.pdf
http://dx.doi.org/10.1175/JCLI-D-14-00636.1
http://dx.doi.org/10.1175/JCLI-D-15-0318.1
http://dx.doi.org/10.1175/JCLI-D-15-0318.1
http://dx.doi.org/10.1002/joc.2262
http://dx.doi.org/10.1175/JCLI-D-12-00169.1
http://dx.doi.org/10.1038/nclimate2468
http://dx.doi.org/10.1038/nclimate2468
http://dx.doi.org/10.1145/151271.151273
http://dx.doi.org/10.1145/151271.151273
http://www.climatechange2013.org/images/report/WG1AR5_Chapter12_FINAL.pdf
http://www.climatechange2013.org/images/report/WG1AR5_Chapter12_FINAL.pdf
http://dx.doi.org/10.1029/2007GL031972
http://dx.doi.org/10.1088/1748-9326/7/3/034011
http://dx.doi.org/10.1007/s00382-012-1636-1
http://dx.doi.org/10.1007/s00382-012-1636-1
http://dx.doi.org/10.7265/N5QJ7F7W
http://dx.doi.org/10.1017/CBO9781107415324.020
http://dx.doi.org/10.1017/CBO9781107415324.020
http://dx.doi.org/10.1029/2004GL020111
http://dx.doi.org/10.1038/ngeo338
http://dx.doi.org/10.1016/j.jspi.2008.07.019
http://dx.doi.org/10.1029/2001GL014575


warm conditions [in ‘‘Explaining Extreme Events of 2012

from a Climate Perspective’’]. Bull. Amer. Meteor. Soc., 94,

S20–S22.

Hannart, A., J. Pearl, F. E. L. Otto, P. Naveau, and M. Ghil, 2016:

Causal counterfactual theory for the attribution of weather

and climate-related events. Bull. Amer. Meteor. Soc., 97, 99–

110, doi:10.1175/BAMS-D-14-00034.1.

Hartmann, D. L., and Coauthors, 2013: Observations: Atmosphere

and surface. Climate Change 2013: The Physical Science Basis,

T. F. Stocker et al., Eds., Cambridge University Press, 159–

254. [Available online at http://www.climatechange2013.org/

images/report/WG1AR5_Chapter02_FINAL.pdf.]

Hegerl, G. C., and F. Zwiers, 2011: Use of models in detection and

attribution of climate change.Wiley Interdiscip. Rev.: Climate

Change, 2, 570–591, doi:10.1002/wcc.121.

——, and Coauthors, 2010: Good practice guidance paper on de-

tection and attribution related to anthropogenic climate

change. Meeting Report of the Intergovernmental Panel on

Climate Change Expert Meeting on Detection and Attribution

of Anthropogenic Climate Change, T. F. Stocker et al., Eds.,

9 pp. [Available online at http://www.ipcc-wg2.gov/meetings/

EMs/IPCC_D%26A_GoodPracticeGuidancePaper.pdf.]

Herring, S., M. Hoerling, J. Kossin, T. Peterson, and P. Stott, Eds.,

2015: Explaining extreme events of 2014 from a climate per-

spective. Bull. Amer. Meteor. Soc., 96 (Suppl.), S1–S172,

doi:10.1175/BAMS-ExplainingExtremeEvents2014.1.

Hulme,M., 2014: Attributing weather extremes to ‘climate change’: A

review. Prog. Phys. Geogr., 38, 499–511, doi:10.1177/

0309133314538644.

IPCC, 2014: Climate Change 2014: Impacts, Adaptation, and Vul-

nerability. Part B: Regional Aspects. Cambridge University

Press, 688 pp.

Jahn, A., and Coauthors, 2012: Late-twentieth-century simulation

of Arctic sea ice and ocean properties in the CCSM4.

J. Climate, 25, 1431–1452, doi:10.1175/JCLI-D-11-00201.1.

Kay, J. E.,M.M.Holland, andA. Jahn, 2011: Inter-annual tomulti-

decadal Arctic sea ice extent trends in a warming world.

Geophys. Res. Lett., 38, L15708, doi:10.1029/2011GL048008.

——, and Coauthors, 2015: The Community Earth System Model

(CESM) Large Ensemble Project: A community resource for

studying climate change in the presence of internal climate

variability.Bull. Amer.Meteor. Soc., 96, 1333–1349, doi:10.1175/

BAMS-D-13-00255.1.

Lutz, A., H. ter Maat, H. Biemans, A. Shrestha, P. Wester, and

W. Immerzeel, 2016: Selecting representative climate models

for climate change impact studies: An advanced envelope-

based selection approach. Int. J. Climatol., 36, 3988–4005,

doi:10.1002/joc.4608.

Massonnet, F., T. Fichefet, H. Goosse, C. M. Bitz, G. Philippon-

Berthier, M.M. Holland, and P. Y. Barriat, 2012: Constraining

projections of summer Arctic sea ice. Cryosphere, 6, 1383–

1394, doi:10.5194/tc-6-1383-2012.

Min, S. K., X. Zhang, F. W. Zwiers, and T. Agnew, 2008: Human

influence onArctic sea ice detectable fromearly 1990s onwards.

Geophys. Res. Lett., 35, L21701, doi:10.1029/2008GL035725.

Mitchell, J. F. B., D. J. Karoly, G. C. Hegerl, F. W. Zwiers, M. R.

Allen, and J. Marengo, 2001: Detection of climate change and

attribution of causes. Climate Change 2001: The Scientific

Basis, Cambridge University Press, 697–738.

Najafi, M. R., F. W. Zwiers, and N. P. Gillett, 2015: Attribution of

Arctic temperature change to greenhouse-gas and aerosol

influences. Nat. Climate Change, 5, 246–249, doi:10.1038/

nclimate2524.

NASEM, 2016: Attribution of Extreme Weather Events in the

Context of Climate Change. The National Academies Press,

186 pp., doi:10.17226/21852.

Notz, D., and J. Marotzke, 2012: Observations reveal external

driver for Arctic sea-ice retreat. Geophys. Res. Lett., 39,

L08502, doi:10.1029/2012GL051094.

Otto, F. E. L., N. Massey, G. J. Van Oldenborgh, R. G. Jones, and

M. R. Allen, 2012: Reconciling two approaches to attribution

of the 2010 Russian heat wave. Geophys. Res. Lett., 39,

L04702, doi:10.1029/2011GL050422.

Peterson, T. C., M. P. Hoerling, P. A. Stott, and S. C. Herring, Eds.,

2013: Explaining extreme events of 2012 from a climate per-

spective. Bull. Amer. Meteor. Soc., 94 (Suppl.), S1–S74,

doi:10.1175/BAMS-D-13-00085.1.

Ribes, A., S. Planton, and L. Terray, 2013: Application of regu-

larised optimal fingerprinting to attribution. Part I: Method,

properties and idealised analysis.ClimateDyn., 41, 2817–2836,

doi:10.1007/s00382-013-1735-7.

Rougier, J., M. Goldstein, and L. House, 2013: Second-order ex-

changeability analysis for multimodel ensembles. J. Amer.

Stat. Assoc., 108, 852–863, doi:10.1080/01621459.2013.802963.

Sato, M., J. E. Hansen, M. P. McCormick, and J. B. Pollack, 1993:

Stratospheric aerosol optical depths, 1850–1990. J. Geophys.

Res., 98, 22 987–22 994, doi:10.1029/93JD02553.

Serreze, M. C., and R. G. Barry, 2011: Processes and impacts of

Arctic amplification: A research synthesis. Global Planet.

Change, 77, 85–96, doi:10.1016/j.gloplacha.2011.03.004.

——, M. M. Holland, and J. Stroeve, 2007: Perspectives on the

Arctic’s shrinking sea-ice cover. Science, 315, 1533–1536,

doi:10.1126/science.1139426.

Shepherd, T. G., 2016: A common framework for approaches to

extreme event attribution. Curr. Climate Change Rep., 2, 28–

38, doi:10.1007/s40641-016-0033-y.

Shu, Q., Z. Song, and F. Qiao, 2015: Assessment of sea ice simu-

lations in the CMIP5 models. Cryosphere, 9, 399–409,

doi:10.5194/tc-9-399-2015.

Stone, D. A., and M. R. Allen, 2005: The end-to-end attribution

problem: From emissions to impacts. Climatic Change, 71,

303–318, doi:10.1007/s10584-005-6778-2.

Stott, P. A., D. A. Stone, and M. R. Allen, 2004: Human contri-

bution to the European heatwave of 2003. Nature, 432, 610–

614, doi:10.1038/nature03089.

——, N. P. Gillett, G. C. Hegerl, D. J. Karoly, D. A. Stone,

X. Zhang, and F. Zwiers, 2010: Detection and attribution of

climate change: A regional perspective. Wiley Interdiscip.

Rev.: Climate Change, 1, 192–211, doi:10.1002/wcc.34.

——, and Coauthors, 2016: Attribution of extreme weather and

climate-related events. Wiley Interdiscip. Rev.: Climate

Change, 7, 23–41, doi:10.1002/wcc.380.
Stroeve, J., M. M. Holland, W. Meier, T. Scambos, andM. Serreze,

2007: Arctic sea ice decline: Faster than forecast. Geophys.

Res. Lett., 34, L09501, doi:10.1029/2007GL029703.

——, M. Serreze, S. Drobot, S. Gearheard, M. Holland,

J. Maslanik, W. Meier, and T. Scambos, 2008: Arctic sea ice

extent plummets in 2007. Eos, Trans. Amer. Geophys. Union,

89, 13–14, doi:10.1029/2008EO020001.

Sun, Y., X. Zhang, F. W. Zwiers, L. Song, H. Wan, T. Hu, and

H. Yin, 2014: Rapid increase in the risk of extreme summer

heat in eastern China. Nat. Climate Change, 4, 1082–1085,

doi:10.1038/nclimate2410.

Swart, N. C., J. C. Fyfe, E. Hawkins, J. E. Kay, and A. Jahn, 2015:

Influence of internal variability on Arctic sea-ice trends. Nat.

Climate Change, 5, 86–89, doi:10.1038/nclimate2483.

570 JOURNAL OF CL IMATE VOLUME 30

Unauthenticated | Downloaded 05/15/25 10:49 PM UTC

http://dx.doi.org/10.1175/BAMS-D-14-00034.1
http://www.climatechange2013.org/images/report/WG1AR5_Chapter02_FINAL.pdf
http://www.climatechange2013.org/images/report/WG1AR5_Chapter02_FINAL.pdf
http://dx.doi.org/10.1002/wcc.121
http://www.ipcc-wg2.gov/meetings/EMs/IPCC_D&A_GoodPracticeGuidancePaper.pdf
http://www.ipcc-wg2.gov/meetings/EMs/IPCC_D&A_GoodPracticeGuidancePaper.pdf
http://dx.doi.org/10.1175/BAMS-ExplainingExtremeEvents2014.1
http://dx.doi.org/10.1177/0309133314538644
http://dx.doi.org/10.1177/0309133314538644
http://dx.doi.org/10.1175/JCLI-D-11-00201.1
http://dx.doi.org/10.1029/2011GL048008
http://dx.doi.org/10.1175/BAMS-D-13-00255.1
http://dx.doi.org/10.1175/BAMS-D-13-00255.1
http://dx.doi.org/10.1002/joc.4608
http://dx.doi.org/10.5194/tc-6-1383-2012
http://dx.doi.org/10.1029/2008GL035725
http://dx.doi.org/10.1038/nclimate2524
http://dx.doi.org/10.1038/nclimate2524
http://dx.doi.org/10.17226/21852
http://dx.doi.org/10.1029/2012GL051094
http://dx.doi.org/10.1029/2011GL050422
http://dx.doi.org/10.1175/BAMS-D-13-00085.1
http://dx.doi.org/10.1007/s00382-013-1735-7
http://dx.doi.org/10.1080/01621459.2013.802963
http://dx.doi.org/10.1029/93JD02553
http://dx.doi.org/10.1016/j.gloplacha.2011.03.004
http://dx.doi.org/10.1126/science.1139426
http://dx.doi.org/10.1007/s40641-016-0033-y
http://dx.doi.org/10.5194/tc-9-399-2015
http://dx.doi.org/10.1007/s10584-005-6778-2
http://dx.doi.org/10.1038/nature03089
http://dx.doi.org/10.1002/wcc.34
http://dx.doi.org/10.1002/wcc.380
http://dx.doi.org/10.1029/2007GL029703
http://dx.doi.org/10.1029/2008EO020001
http://dx.doi.org/10.1038/nclimate2410
http://dx.doi.org/10.1038/nclimate2483


Tebaldi, C., and R. Knutti, 2007: The use of the multi-model en-

semble in probabilistic climate projections.Philos. Trans. Roy.

Soc. London, A365, 2053–2075, doi:10.1098/rsta.2007.2076.

Tett, S., P. Stott,M.Allen,W. Ingram, and J.Mitchell, 1999: Causes

of twentieth-century temperature change near the Earth’s

surface. Nature, 399, 569–572, doi:10.1038/21164.

Van Huffel, S., and J. Vandewalle, 1991: The Total Least Squares

Problem: Computational Aspects and Analysis. Society for

Industrial and Applied Mathematics, 300 pp.

van Vuuren, D. P., and Coauthors, 2011: The representative con-

centration pathways: An overview. Climatic Change, 109, 5–

31, doi:10.1007/s10584-011-0148-z.

Vaughan, D., and Coauthors, 2013a: Observations: Cryosphere.

Climate Change 2013: The Physical ScienceBasis, T. F. Stocker

et al., Eds., Cambridge University Press, 317–382, doi:10.1017/

CBO9781107415324.012.

——, and Coauthors, 2013b: Observations: Cryosphere supple-

mentary material. Climate Change 2013: The Physical Science

Basis, T. F. Stocker et al., Eds., 4SM-1–4SM-10. [Available

online at https://www.ipcc.ch/pdf/assessment-report/ar5/wg1/

supplementary/WG1AR5_Ch04SM_FINAL.pdf.]

Vinnikov, K. Y., and Coauthors, 1999: Global warming and

Northern Hemisphere sea ice extent. Science, 286, 1934–1937,

doi:10.1126/science.286.5446.1934.

Zhang, R., 2015: Mechanisms for low-frequency variability of

summer Arctic sea ice extent. Proc. Natl. Acad. Sci. USA, 112,

4570–4575, doi:10.1073/pnas.1422296112.

——, and T. R. Knutson, 2013: The role of global climate

change in the extreme low summer Arctic sea ice extent

in 2012 [in ‘‘Explaining Extreme Events of 2012 from a

Climate Perspective’’]. Bull. Amer. Meteor. Soc., 94,
S23–S26.

15 JANUARY 2017 K I RCHME IER -YOUNG ET AL . 571

Unauthenticated | Downloaded 05/15/25 10:49 PM UTC

http://dx.doi.org/10.1098/rsta.2007.2076
http://dx.doi.org/10.1038/21164
http://dx.doi.org/10.1007/s10584-011-0148-z
http://dx.doi.org/10.1017/CBO9781107415324.012
http://dx.doi.org/10.1017/CBO9781107415324.012
https://www.ipcc.ch/pdf/assessment-report/ar5/wg1/supplementary/WG1AR5_Ch04SM_FINAL.pdf
https://www.ipcc.ch/pdf/assessment-report/ar5/wg1/supplementary/WG1AR5_Ch04SM_FINAL.pdf
http://dx.doi.org/10.1126/science.286.5446.1934
http://dx.doi.org/10.1073/pnas.1422296112

