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ABSTRACT

A numerical analysis of the nonlinear heat diffusion equation has been carried out to bring to light a
heretofore little-understood type of instability that can be encountered in many numerical modeling appli-
cations. The nature of the instability is such that the error remains bounded but becomes large enough to
prevent proper assessment of model results. For the sample problem under investigation, the nonlinearity
is introduced through a diffusion coefficient that depends on the Richardson number which, in turn, is a
function of the dependent variable. Our analysis shows that the interaction of short-wavelength and inter-
mediate-wavelength solution components can induce nonlinear instability if the amplitude of either com-
ponent is sufficiently large. Since the unstable solution may not wander far from the true solution, the error
can be difficult to detect. A criterion, given in terms of a restriction on the Richardson number, guarantees
local (short-term) stability of the numerical scheme whenever the criterion is satisfied. Numerical results
obtained using a boundary-layer model with GATE Phase III data are presented to support the theoretical

conclusions.

1. Introduction

The nonlinear transport/diffusion equation has
been the focus of various investigations dealing with
the occurrence of multiple equilibrium states in the
long-range forecasting problem. An equilibrium
state is stable if small departures from equilibrium
remain small in time and unstable if small departures
grow large in time. In this article we analyze for sta-
bility a particular finite-difference representation of
the nonlinear diffusion equation. For the discrete
problem under investigation, several steady states are
identified and all but one shown to be unstable. The
multiplicity of equilibria introduced by discretization
then can compound the problem of dealing with the
multiple equilibria that may be dictated by the
physics.

A criterion, independent of the time step, is derived
to guarantee that the solution will be stable in that
the linearized equations governing the individual
(Fourier) solution components permit only exponen-
tially damping solutions. Instability problems (grow-
ing solution components) are avoided by maintaining
sufficient distance from the unstable equilibria. The
theoretical criterion is shown to be in close agreement
with empirical results obtained with a detailed, one-
dimensional, air-sea interaction model using data
from the GATE Phase III period. When the stability
criterion is violated, the nonlinear instability appears
as an irregularly fluctuating, non-catastrophic error
that becomes graphically evident after about a one-
day time-interval of integration.
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2. Nonlinear analysis
a. The governing equation

The equation upon which we base this investiga-
tion is the nonlinear heat-diffusion equation
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for 0 <t < 1,0 < z< Z, where ¢t denotes time, z is
the (vertical) spatial coordinate, 7 is temperature and
K the diffusion coefficient. X is assumed to be a linear
function of d7/9z of the form

aT
K(T) Ko(i ¥ az) : ®)
where K,, vy are positive constants in the appropriate
units. This form for K(T) is regarded as a first ap-
proximation to a physically derived K that depends
on the Richardson number which, in turn, is a func-
tion of 47/8z.

Let T denote the finite-difference approximation
to T, z)fort=nAt,n=20,1,..., Nand z = jAz,
J=0,1,...,J, where Ar and Az are time and space
increments, respectively. For our stability analysis we

consider the two-level, implicit finite-difference ap-
proximation
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with the explicit K;* defined as

’.’+ .
L I

The nonlinear stability analysis of (3) that follows is
based upon the approach originally presented by Phil-
lips (1959) who demonstrated the manner in which
modes of different wavelength can interact to cause
instability in numerical solution of the nonlinear vor-
ticity equation. Phillips’s approach was later used by
Richtmyer and Morton (1967) to demonstrate the
same phenomenon for the nonlinear advection equa-
tion.

In the manner of Richtmyer and Morton we seek
solutions to (3) of the form

Ll
2

made up of a constant term, two-grid-interval waves
and four-grid-interval waves. The solution procedure
begins by substitution of (5) in (3) and (4). Use of the
appropriate trigonometric identities allows all terms
in the resulting equation to be written as linear com-
binations of the components appearing in (5). We
then can equate coefficients of the individual Fourier
components to arrive at the following system of non-
linear difference equations:

= C" + Cy" cosmj + G5 cos

j+ S"sin gj, (5)

Co™' = Co* = 0, (62)
C — Oy = —an, Gy
+ 2M(C"S™ + C*IS™),  (6b)
Cr — O = —20, Gy
+ 4AN(C"S™1 + C™1S ™), (6¢)
S™_ S = x5
+ 40(C"C + CCY),  (6d)
where
L= {Z"ZA)._f and A, = Alz A. (Tab)

b. Stability of equilibrium points

Before examining the overall stability of the system
(6), it is helpful to identify the equilibrium points for
which Cy"*! = Gy = Cp, C,\"! = C\" = C,, etc., and
then to examine the stability of the system in a neigh-
borhood of each such point. In equilibrium, (6) be-
comes

C, = constant, (8a)
0 = =4\, C, + 4N, G, (8b)
0 = =2)\,C, + 8\.C\S, (8¢c)
0= =2\8 + 8\C G, . (8d)
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Had we discretized only the spatial variable z and left
time as a continuous variable, we would have arrived
at a differential system, analogous to (6), having the
form

dCy

“to _ 9
= 0, (9a)
51% = —47,C, + 45,68, (9b)
& = *2X1C2 + 8XZC1S’ (9C)
dt

d_d‘§ = =208 + 8MC.C, (9d)

where A; = \;/At, i = 1, 2. The equilibrium equations
for (9) have precisely the same form as (8) but with
\; replacing A, so that the temporally continuous sys-
tem possesses the same equilibria found in the fully
discrete system. Instability of equilibria in the tem-
porally continuous case is found to carry over to the
discrete analogue to portend stability problems re-
gardless of the choice of time-differencing procedure.

The equilibrium points are easily found. Eq. (8b)
implies that

Cl = & CzS (10)
A\
Substitution of (10) in (8c) and (8d) gives
A,
0=0C, —2)\,+87S , (11a)
1
A,
0=3S —2)\1+8)\—C2 . (11b)
3

These last three relations yield the five equilibrium
solutions

©, 0, 0
(M, Yo, Yo)
(C, G, S) = :—; X (s, -, —W¥). (12)
(Y, ', —M%)
(~%, —Y, )

The character of the solution near these equilibrium
points can serve to indicate the approximate location
of the stability region, the boundary of which we wish
to precisely delineate.

Because of the difficulty in dealing with a 3 X 3
system, we shall now restrict our attention to the sub-
space of solutions (C;, C,, S') that lie in the planes
C, = xS, This will include the equilibrium points
and all solutions for which C,° = +S°. The semi-
continuous system (9) then becomes
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dCl 3 3 2

7 = _4>\1C1 + 4)\2C2 » (133')
t

dac, . .

o =2M,C; + 8M,C.C, . (13b)

The corresponding discrete system is given in (Ala,b)
in the Appendix. Since (13a,b) are of a simpler yet
more general form than are the fully discrete equa-
tions, we consider in this section the stability of the
equilibrium points for the semi-continuous case and
relegate to the Appendix the more cumbersome anal-
ysis of the fully discrete case.

To carry out the analysis we first linearize (13) to
determine the form of the Jacobian matrix associated
with the system. If €, is an equilibrium point (C\,
(), of (13), its stability then can be determined from
the sign of Re(i;), i = 1, 2 where fiy, i, are the ei-
genvalues of the Jacobian matrix evaluated at C.. If
Re(fi;) < O for i = 1, 2, the equilibrium point is stable.
In this case, any pair of solutions starting near C, will
remain close to each other and each will approach
the equilibrium point as ¢ — oo. If Re(i;) > O for i
= 1 or 2, the equilibrium point is unstable and so-
lutions starting near C, will diverge from C..

Case i: Cl = C2 =0
Here we find that
= _4}:1, f2 = —2§\1 . (14)

Since A; > 0, both eigenvalues are negative and the
equilibrium point is stable. We can show in the same

way that the origin C, = C, = § = 0 is a stable point-

for the general 3 X 3 system (i.e., without assuming
C, = +£8); this result is of considerable importance
since stability for the two-dimensional case does not
guarantee stability for the full system.

Case ii: C, = i Ak G = % L A/A,

N | =

In this case the eigenvalues of the Jacobian matrix,
with C; = S, take the form

by = =20(1 = V5). (15)

Clearly u, < 0, u_ > 0 so that the equilibria are
unstable (saddle points) and the system permits grow-
ing perturbations (diverging solutions).

Case iii: C‘ = - ii\l/xz, C2 =+ % X;/xz

Here we consider the Jacobian matrix with C,
= =S, and it follows in a manner stmilar to Case ii
that the equilibrium points are saddle points, so that
four out of the five equilibria are unstable.

It is shown in the Appendixthat a completely anal-
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ogous situation exists for the fully discrete system (6).
Perturbation of (6) leads to a linearized system of the
form

cn+l = A-IBC",

Czn

and where the amplification matrix A™'B is given in
(A9). Since the solutions to the difference equa-
tion (16) are of the form u”, (16) is stable if and only
if the eigenvalues g, u; of A™'B are <! in modulus.
It is shown that the origin of the (C,, C,) plane is a
stable point while the surrounding equilibria are
unstable in the same sense exhibited by the semi-con-
tinuous analogue. The close agreement with the semi-
continuous case suggests a stability problem of a gen-
eral nature that is not related to the particular time-
differencing scheme chosen.'

Since it is the fully discrete case that we wish to
test in the context of a numerical model, from this
point on we concentrate our analysis on determining
the stability region for the discrete system (6) and on
developing a criterion that will force the solution to
remain within this region. :

(16)
where

(17

¢. Delineation of the stability region

We have now determined the stability character-
istics of the five equilibrium points that have been
identified: in the (C,, (,) plane (a composite of the
two cases for which C, = %.5), the origin represents
a stable point positioned at the center of a rectangular
region whose four vertices are saddle points. The con-
figuration suggests that there may be some convex
region centered at the origin within which the solu-
tion to (6) will be stable and outside of which the
solution will be unstable. Because of the nature of the
eigenvalues at the equilibrium points, we have sought
a curve in the (C,, G,) plane on which g, = +1 and’
—1 < u_ < 1 as a boundary separating the stable and
unstable regions. To find such a curve we refer to the
equations derived in the Appendix and make the fol-
lowing simplifying assumption, viz. that the eigen-
values derived from the system (A3) may be approx-
imated by those derived from (A4) for C,"*' =~ C\"
= C, and C,""! =~ C," = (. For A, sufficiently small
this assumption is justified by the continuity of the
eigenvalues as functions of the elements of the matrix
(Ostrowski, 1960). Thus we proceed as for the equi-
librium case, examining the eigenvalues of the matrix
A"!B set forth in (A9).

The characteristic equation |A™'B — | = 0 for the
case C, = S takes the form

! Suggested by P. E. Long.
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[(1 + 2A; — 4NC + 160,2C2 ]
— K

detA
N [(1 + 4N+ ANC) + 160G+ 160G ]
detA K
—6402C2(1 + A (1 +
640,°Cy( )\21)( 2M) _ 0. (18)
(detA)

The discriminant D of this quadratic equation in u
then can be written as

D = (detA) 4{[X, + 40,C\(2)\, + DP?

+ 640G 2N + DN + D (19)

so that D > 0 and both eigenvalues are real, sup-
porting our conjecture as to the nature of u_ and
u+ on the boundary of the stability region and pro-
viding information as to the nature of the instability
that is expected to occur whenever the point (C,, C,)
lies outside the stability region. Any unstable solution
component of (16) will be proportional to u” where
|u| > 1. But if g is real, 4" can take on only one of
two forms, viz. |u|” or (—1)"|u|™ thus the unstable
component is locally an exponentially increasing
function that is either unmodulated or modulated by
a high-frequency, two-grid-interval wave.

It can be shown that for u, = 1, the characteristic
equation (18) will be satisfied for all points on the
curve defined by

2\,

_oen 1N
A

C = .
! 4 )\,

C2?+ (20)
This result was derived by first locating several points
on the curve, fitting a parabola to those points and
then verifying the correctness of the result. When (20)
is satisfied it can also be shown by straightforward
examination of the solution that ~1 < u_ < +1 so
that (20) does, in fact, represent a locus of neutrally
stable points. Other analytic considerations indicate
that the system will be stable for all points in the (C,
() plane to the left of the parabola and unstable to
the right of the curve on which p, = +1. Thus we
would expect an unstable solution to exhibit locally
an exponentially growing,. low-frequency error. For
the case C, = —S§ a similar parabola is obtained but
symmetric to (20) with respect to the A, axis [i.e.,
A, is replaced by —\, in (20)] and with the stable
region lying to the right of the curve. The combined
stability region (the intersection of the stable regions
for C, = £5) is indicated by the shaded area in Fig.
1. It is of interest to note that on the parabolas de-
- fined by
— _4_A2_ 22 +
1 + 4n,

1+ 2\,
4x,

C = 2n

the perturbation equations (16) are singular, corre-
sponding to the situation in which detA = 0. The loci
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of singular lines for the case A\, = 1 are indicated by
the long dashed curves in Fig. 1.

d. Numerical verification

To verify the resuits derived in the preceding sec-
tions, we have solved the system (6b-d) for various
sets of initial conditions with C,° = S° to produce a
set of trajectories in the C,, C, phase plane. The re-
sults for the case A\; = A\, = 0.01 are shown in Fig.
2. Near the saddle point it is seen that the trajectories
are hyperbolic-type curves which approach the saddle
point and then depart. Some trajectories then move
toward the origin, the stable equilibrium. The dashed
line indicates the boundary of the stability region and
the dotted line indicates the boundary of the region
in which K > 0. Accordingly, as long as the positivity
requirement on K is satisfied, nonlinear instability
can occur only in the shaded area shown in the figure.
In Fig. 2, trajectories 71 and 72 are shown with con-
necting lines to illustrate how the distance between
71 and 72 increases with the iteration index » as the
curves travel through the unstable region. Once both
solutions have passed through the shaded area and
enter the stable region, the distance between 71 and
12 approaches zero monotonically. The structure of
the system prevents nonlinearly unstable solutions
from becoming unbounded and constrains them to
realistic values. Only by violating the basic assump-
tion that K > 0O will solutions diverge from the origin.

e. A stability criterion

For practical considerations it now remains to
translate our results involving C, and C; into a useful
stability criterion for direct modeling application. We
wish to restrict the amplitudes of the two- and four-
grid-interval waves so that the point (C,, C;) lies
within the shaded region of Fig. 1. To this end it is
convenient to consider just two neighboring values
of T; and put bounds on (C;, C;) by limiting the size
of |T; — Tj-,|. Accordingly we consider AT; = T;
— T, for the case C; = S where Tj is of the form
given in (5). We have

AT,
-2C,, jodd
=1 2C + ), j= 4k, k=0,1,2,--.
2C,—-GC), j=4k+%), k=0,1,2,-
(22)

Suppose we require that |AT}| < M for each j. Then,
in particular,

max |AT) = 2|C\| + 2ICl < M,  (23)
J
or
A2 A2 1 A
2iol<-2|c)+> 32 M. 4
Clal <= 21c] + 53 24
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RG. 1. The stability region (shaded area) for the nonlinear diffusion equation (3) as a subset of the (C;, () plane
where C,, C; are the amplitudes of two-grid-interval and four-grid-interval wave components, respectively. Equi-
librium points are represented by the small circles with arrows indicating the stability characteristics of the points
(incoming arrows indicating stability, outgoing arrows instability). Long-dashed and dot-dashed lines represent lines
of singularities. Short-dashed lines delineate the stability region defined by inequality (24). Dotted lines delineate

the region corresponding to the physical constraint X >

The region defined by (24) is a diamond-shaped area
centered at the origin of the (C,, () plane. We can
make this area as large as possible and still remain
within the stability region if we choose M = Y,(\)/
A;). The resulting subset of the stability region is out-
lined by the short dashed lines shown in Fig. 1. The
criterion |AT}] < Y»(A;/X;) now can be replaced by a
convenient restriction on ‘the Richardson number
used in the calculation of XK.

In the boundary-layer model used for this inves-
tigation as in many other meteorological models (see,
e.g., Pandolfo, 1971) the functional form for K(T')
depéends upon the existing condition of the local static
stability of the physical system. In the atmosphere,
for Ri = 0, we use the formula

K = Ko(1 — |a| Ri), (25)
while for —1/(7|«l) < Ri < 0,
K = K1 + |a| Ri)™3. (26)

For Ri < —|al, the formula for K does not involve
the Richardson number and cannot be written in sim-

0.

ilar form. In the above expressions, o (= —3) is the
Monin-Obukhov constant and
AT;

Ri~T—

Az 27

where T is independent of T If we now consider (25),
the linear approximation to K corresponding to

4 is .
K ~ Ko(1 — 2|aRi), - (28)

so that v = 2|a|T. (Here, |a]|Ri] < 1.) Then the sta-
bility criterion

1 Az
AT} < > /N = 2y (29)
for this case becomes
. 1
Ri < Al (30)

For the region corresponding to (26), we obtain in
similar fashion the criterion Ri > —1/(6]a]) which is
automatically satisfied by the prescribed restriction
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FiG. 2. Trajectories of solutions to (6b~d) in the non-dimensional C,, C, phase
plane. Dashed line denotes boundary of stability region, dotted line the boundary
of the region in which K > 0. Cross marks position of saddle point while shaded
area is subset of positive-K region in which nonlinear instability occurs. Distance
between trajectories 71 and 72 increases with iteration index as curves pass through

unstable region.

on the range of Ri. Thus (30) is the appropriate non-
linear stability criterion for the model formulation
used in this study with the criterion applicable only
for the case Ri = 0. This restriction on Ri is more
stringent than the physical bound, Ri < 1/(2]a|) which
guarantees that the diffusion coefficient be positive
for the linearized K in (28). However, it is interesting
to note that for the special form of K given in (2), the
diffusion equation (1) can be written as?

(31

If (I — 2vdT/dz) is_now regarded as an effective
diffusion coefficient K, the intuitively prescribed con-
dition that this quantity be positive remarkably leads
to (30), the derived nonlinear stability criterion. The
result appears to be a coincidence since contrary to

2 Noted by one of the reviewers.

the intuitive notion regarding K, we can violate the
condition K > 0 and still maintain damping solu-
tions.? This result can be derived analytically by mul-
tiplying (1) by T and integrating over an interval (a,

b) to arrive at the relation
b b 2
—f K(g) dz. (32)
a Ya \Oz

If T or 3T/9z vanish at the end points, then the right-
hand side of (32) will be <0 for all K > 0 and the
solutions will damp in the mean. Damping will result,
in particular, for

léf” 23, = Tk L
2ar) = TR

1 aT 1
2'y<6z<;’ (33)

in which case K > 0 but K < 0.
The physical restriction Ri < 1/(2]al), correspond-

3 This viewpoint was suggested by P. E. Long.
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ing to the case M = \,/\,, implies that we always
operate within the larger diamond-shaped region out-
lined by the dotted lines shown in Fig. 1 regardless
of the stability considerations. Since the loci of sin-
gularities always lie outside this region, a singular
amplification matrix cannot be encountered for finite
values of A, and positive values of K. In the limit as
A, — +oo, the loci of singularities contract, approach-
ing the dot-dashed curves shown in Fig. 1.

f. Comments on the general case

The results thus far have been derived under the
restrictive assumption that the solutions lie on the
planes C, = +8S so that our stability diagram in Fig.
1 represents only a composite of the projections of
these two planes on the (C, () plane. Further work
is needed to provide a complete picture of the stability
region in (C;, C, ) phase space. It is our conjecture
that the stability region is a convex region centered
at the origin, perhaps composed of intersecting pa-
raboloids with axes lying along the C,-axis. Stability
then would require a bound on C; in conjunction
with some combination of the amplitudes C,, S of
the four-grid-interval waves. Such a bound then could
be translated into a restriction on the Richardson
number in the manner described in Section 2e.

The conjecture is supported by some empirical re-
sults obtained by solving the system (6b~d) for initial
conditions with C,° # +S°. Tests were performed
similar to those described in Section 2d. In each ex-
perimental run, a pair of solutions was generated us-
ing closely spaced points for initial values to deter-
mine stability or instability according to whether the
solutions converge or diverge. In qualitative terms,
it was found that larger values of C, require smaller
values of S in order to maintain stability.

3. Model experiments

A one-dimensional (vertical), air-sea interaction
model has been used to test the theoretical results
derived in the preceding sections in a practical setting.
The model is an updated version of the one described
by Pandolfo (1969) and used in a number of bound-
ary-layer experiments (e.g., Pandolfo and Jacobs,
1972). The finite-difference equations governing the
evolution of temperature and other dependent vari-
ables take the form of (3) but with adjustment for the
nonuniformity of the grid and with incorporation of
advection terms, forcing terms and appropriate ex-
change coeflicients.

In the calculation of the horizontal pressure gra-
dient, the model is known to contain a potential
source of roundoff error due to the problem of sum-
ming terms of widely differing magnitude. As a test
for our theory, we have run the model on the CRAY-
1, with and without a double-precision option just for
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calculating the pressure gradients, in order to com-
pare results from the more precise version of the
model with those from the model in which a known
source of roundoff error has been introduced. The
object of the test is to verify that the error will grow
only if our stability criterion (30) is violated, The
roundoff error is analogous to the random pertur-
bations used by Sutera (1980, 1981) in his study of
the effects of stochastic noise on the solutions to dy-
namical systems having multiple equilibria.

In the experimental runs, the model has been used
to simulate the two-day period, 0000 GMT (=t,) Sep-
tember 4 1974 to 0000 GMT September 6 1974, using
initial and boundary values derived from data gath-
ered during the GATE Phase III period. Figs. 3a,b,c
show three sets of forecast temperatures at the 25 m
level as a function of time; solution values are plotted
at 4-hour intervals (40 time steps) and the points
joined by straight lines. In Fig. 3a the stability cri-
terion is satisfied exactly and both solutions graphi-
cally coincide; Figs. 3b and 3c show the manner in
which the single- and double-precision forecasts di-
verge as the criterion is violated to greater degrees.
Analogous graphs for other height levels show qual-
itatively similar results. In all runs carried out with
Ri < 1/(4|al) (not shown), all predicted quantities in
single/double-precision comparison runs agreed to at
least five significant figures throughout the forecast
period. The dip in the temperature seen in Fig.
3b resulted from the occurrence of cloud formation
that did not happen to take place in the runs depicted
in Figs. 3a and 3c. Fig. 4 shows a detailed step-by-
step plot of the solution values for the final 20 time
steps for the runs depicted in Fig. 3c. It is seen that
the single-precision run exhibits irregular fluctuations
but does not depart far from the more accurate sol-
ution. The instability can persist for a long period of
time due to many processes (e.g., advection, radia-
tion) acting in the model to force the solution into
the unstable region.

An alternative approach toward limiting the am-
plitudes of the two- and four-grid-interval waves as
they affect the diffusion coefficient is simply to apply
a smoothing operator to the vertical profile of K.* To
test this approach, a three-point symmetric filter was
applied to the K profile at each time step in a 48-hour
run analogous to that of Fig. 3c (i.e., with the derived
stability criterion not enforced). At the 25 m level,
differences in the double- and single-precision solu-
tions were at most 0.03°C, so that the filtering di-
minished the maximum error due to nonlinear in-
stability by about an order of magnitude. At higher
levels maximum differences, though also diminished,
were still as large as 0.3°C. Thus filtering substantially
reduces but does not eliminate the error growth due
to the nonlinear instability.

4 Suggested by P. E. Long.

09/12/24 02:56 PM UTC



SEPTEMBER 1982

PHILIP S. BROWN, JR., AND JOSEPH P. PANDOLFO

1221

T T T

2718 ]
26 + 4
25 Ri < 1,0/(4]al) 1

T T T T T

27b

26
25

T (°C)
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FI1G. 3. Forecast temperatures at the 25 m level as a function of time. Solid lines
indicate solutions obtained using high precision arithmetic; dashed lines indicate
solution obtained with known source of roundoff error introduced. In (a) the stability
criterion is satisfied exactly; in (b) and (c) the criterion is allowed to be violated by

10 and 20%, respectively.

4. Summary and conclusions

Predictability problems in long-term forecasting
can be symptomatic of the presence of multiple stable
and unstable equilibria which arise in the solution of
the nonlinear advection/diffusion equations of me-
teorology. It is shown here that numerical solution
of the nonlinear heat-diffusion equation can give rise
to multiple equilibria as a result of aliasing and
thereby compound the problems of predictability. A
nonlinear numerical analysis has been performed
using a trial solution of long-, intermediate- and
short-wavelength components. Due to the limitations
imposed by the discrete nature of the finite-difference
approximation, interaction of these components can
result in growing errors through the improper transfer
of energy between different parts of the spectrum. The
instability is characterized not by the familiar explo-
sive growth of short-wavelength error but rather a
meandering of the unstable solution about the true
solution. Though not large, the error can cause con-

T
27.51 ~ .
/N
G F\\ ! \‘\
2 D Sea “~
- > N N
27.0 :
46 47 48
t - to (hrs)

FIG. 4. As for Fig. 3¢ but with step-by-step plot for
final 20 time steps.

siderable confusion in modeling efforts that involve
sequences of complex programming changes. Stabil-
ity does not depend on restricting the size of the time
increment and is independent of the exact nature of
the finite-difference scheme; stability depends instead
on restricting the size of the amplitudes of the inter-
mediate- and short-wavelength solution components.
This latter type of criterion may be translated into
a bound on the Richardson number which appears
in the functional form of the diffusion coefficient.
Alternatively, the error can be substantially reduced
by applying a filter to the diffusion coefhicients.

Further analyses of the nonlinear forecasting prob-
lem should include study of an overlay of the stability
regions for both continuous and discrete problems to
determine the extent to which the regions coincide;
i.e., work should be aimed at establishing the degree
of correspondence between the continuous predict-
ability problem and its discrete analogue.
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APPENDIX

Stability of Equilibrium Points for
the Discrete Case

We wish to examine the stability of the discrete
system (6) in a neighborhood of the equilibrium
points (12). For C;, = %S, (6) becomes

C1n+l — C]" — _4)\1Cln+l + 4>\2C2"C2n+l,
C2n+l _ Czn — _2)‘]C2n+1
+ 4A(CC + GG,

(Ala)

(AlDb)

Choosing first the (+) sign in (A1) (corresponding to
C, = S), we assume C,, C, satisfy (A1) and consider
a perturbed solution

Ci=Ci+ec, G=C+ec. (A2)
The resulting linearized perturbation equations are
ot — o = —4\ 0!
+ A0("C + G, (A3a)
™ — o = =200 + AN(e, "G
4G+ ™G + G e, (A3D)

(GetA)A-'B = (1 +2) — 4NC + 160G
8AC(1 + 2))

where
detA = (l + 4A1)(1 + 2)\1 - 4>\2C1)

— 160,2C%.  (A10)
Casei: Cy=C, =0
For this equilibrium point, the off-diagonal ele-
ments of A~'B are zero and it follows directly that
I
BT AN 1+2n
Since A; > 0, |uql, l#2] < 1 and the equilibrium point
is stable. We can show in the same way that the origin

C, = C, = S = 0 is a stable point for the general 3
X 3 system.

B2 = (All1)

e 1N
Case ii: C, i’

For this case

N[ —
kgt

C2=:L'

14+ N +40N2 =400 +)) )
+4N(1 4+ 27\) 1+ 5\ + 802
(A12)

(detA)A™'B = (
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At equilibrium we have C,"*! = C," = C, and C,"*!
= C," = C, in which case (A3) becomes

C1"+l - Cln = —4)\1C1n+l + 4A2C2(C2" + Cz"+l), (A4a)
2n+l —_ Czn = _2x1c2n+1
+ 4}\2[C2(C|n + C1n+l) + Cl(Czn + C2n+1)]. (A4b)
or in matrix form,
Ac™! = Be", (AS)
Where 1+4 4x,C
+ 4\ ~
— ( 1 242 ) , (A6)
—4NCy 1+ 20 — 4NC,
1 4N C.
8- G ), (AT)
4C, 1+ 400
Cln
"= ( ) : (A8)
C2 .

The difference equation (AS5) will be stable if and only
if the eigenvalues u,, u, of A~'B have modulus < 1.

To find u,, p, we first compute the amplification
matrix A™'B as

8MCH(1 + Ay)

1 + 4\, + 40C, + 160 NC) + 16>\22C22) ’ (A9)

where .
detA =1+ 5);. (A13)

The solutions to the quadratic characteristic equation

(the same for either choice of C,) take the form

e = (l + 5)\1)_1{1 + 3)\1 + 6)\12

+ 20[5 + 140, + 9N 2]2). (Al4)
Since the bracketed quantity [ ] is positive, both
eigenvalues are real. Since [ ] also is >1, the solution
corresponding to the positive square root satisfies the
inequalities

pe >+ 5SA)7I + 50 602 >1 (Al5)
and the system permits growing perturbations about
the equilibrium points under consideration. To put
bounds on the other eigenvalue, we write u_ as

po=(1+ 5)\1)_'{1 + 3\, + 672

5 14 2
—6>\|2|:9—>‘7+'9—>:+1] } (A16)
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Then using the fact that [ ]'2 > 1, we have
1 1+3N

<Tese<l (A17)

Furthermore,
= (l + le)_l{l + 3)\, + 6A|2

— [2002 + 56X, + 36712}, (AL8)
so that
po> (14 SA) {1+ 3\ + 62,2
— [64N% + 96X + 367,*]2}, (A19)
and ﬁnally
e i ; ::: -1. (A20)

Hence the equilibrium points are saddle points.

1A

Case iii: C, = an’

PHILIP S. BROWN, JR., AND JOSEPH P. PANDOLFO
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We consider the perturbation equations corre-
sponding to C, = —S and, by the same argument
given for Case ii, find that these equilibria are also
saddle points.
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