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ABSTRACT

A Cartesian semi-implicit solver using the Conservative Semi-Lagrangian Multitracer (CSLAM) transport
scheme is constructed and tested for shallow-water (SW) ßows. The SW equations solver (CSLAM-SW) uses
a discrete semi-implicit continuity equation speciÞcally designed to ensure a conservative and consistent
transport of constituents by avoiding the use of a constant mean reference state. The algorithm is constructed
to be similar to typical conservative semi-Lagrangian semi-implicit schemes, requiring at each time step
a single linear Helmholtz equation solution and a single application of CSLAM. The accuracy and stability
of the solver is tested using four test cases for a radially propagating gravity wave and two barotropically
unstable jets. In a consistency test using the new solver, the speciÞc concentration constancy is preserved up to
machine roundoff, whereas a typical formulation can have errors many orders of magnitude larger. In ad-
dition to mass conservation and consistency, CSLAM-SW also ensures shape preservation by combining the
new scheme with existing shape-preserving Þlters. With promising SW test results, CSLAM-SW shows po-
tential for extension to a nonhydrostatic, fully compressible system solver for numerical weather prediction
and climate models.

1. Introduction

Semi-Lagrangian semi-implicit (SLSI) schemes have
been widely used in climate and numerical weather pre-
diction (NWP) models since the pioneering work of
Robert (1981) and Robert et al. (1985). The more le-
nient numerical stability condition in these schemes
allows larger time steps and thus increased computa-
tional efÞciency. Traditional semi-Lagrangian schemes
are not inherently mass conserving due to their use of

gridpoint interpolation, and the lack of conservation
can lead to accumulation of signiÞcant solution errors
(Rasch and Williamson 1990; Machenhauer and Olk
1997). To address this issue, conservative semi-Lagrangian
schemes, also called cell-integrated semi-Lagrangian
(CISL) transport schemes (Rancic 1992; Laprise and
Plante 1995; Machenhauer and Olk 1997; Zerroukat
et al. 2002; Nair and Machenhauer 2002; Lauritzen et al.
2010), have been developed. Although CISL transport
schemes allow for locally (and thus globally) conserva-
tive transport of total ßuid mass and constituent (i.e.,
tracer) mass, an issue related to conservation remains
when they are applied in ßuid ßow solvers: the lack of
consistency between the numerical representation of
the total mass continuity and constituent mass conser-
vation equations (J€ockel et al. 2001; Zhang et al. 2008).
The lack of numerical consistency between the two can
lead to the unphysical generation or removal of model
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constituent mass, which can introduce signiÞcant er-
rors in applications such as chemical tracer transport
(Machenhauer et al. 2009).

Our test bed for developing and testing CISL-based
ßuid ßow solvers are the shallow-water (SW) equations
on an f plane:

› u
› t

1 u
› u
› x

1 y
› u
› y

2 f y 2 g0› h
› x

5 0, (1)

›y
› t

1 u
›y
› x

1 y
›y
› y

1 fu 2 g0› h
› y

5 0, (2)

› h
› t

1 $ � (hv) 5 0, (3)

› (hq)
› t
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where v 5 (u, y) is the horizontal velocity vector, f is
the Coriolis parameter, g0is the reduced gravity,h is the
total ßuid depth (a surrogate for total ßuid mass), and
hq is the depth portion (mass fraction) of an arbitrary
constituent, where q is its speciÞc concentration. Nu-
merical consistency is satisÞed if, forq0 5 1, the dis-
cretization scheme of the constituent equation (4)
collapses to that for the continuity equation (3), also
known as free-stream preservation.

The difÞculty in maintaining consistency, as will be
discussed in more detail, can partly be attributed to the
conventional linearization around a constant mean
reference state in the semi-implicit form of a CISL
continuity equation. To eliminate the reference state,
Thuburn (2008) developed a fully-implicit CISL-based
scheme for the shallow-water equations that requires
solving a nonlinear Helmholtz equation at every time
step. The solution of the Helmholtz equation is poten-
tially problematic and expensive (Thuburn et al. 2010).
To reduce the dependence of their semi-implicit scheme
on a reference state, Thuburn et al. (2010) used an alter-
native iterative approach to solve the nonlinear system, but
it requires multiple calls to a Helmholtz solver per time
step, again making the scheme potentially expensive.

In addition to consistency and mass conservation,
another desirable property is that the new scheme should
be shape preserving. A shape-preserving scheme en-
sures that no new unphysical extrema are generated in
a Þeld due to the numerical scheme (e.g., Machenhauer
et al. 2009). For example, speciÞc concentrations of a
passive constituent should not go outside the range of
its initial minimum and maximum values. Nonshape-
preserving schemes may generate unphysical speciÞc
concentrations, such as negative concentration values
due to undershooting.

In this paper, using a shallow-water system, we pres-
ent a new SLSI formulation that uses a CISL scheme for
mass conservation and ensures numerical consistency
between the total mass and constituent-mass Þelds. The
new scheme is based on the CISL transport scheme
called the Conservative Semi-Lagrangian Multitracer
(CSLAM) transport scheme developed by Lauritzen
et al. (2010). Like other typical conservative SLSI solvers,
the algorithm requires a single linear Helmholtz equa-
tion solution and a single application of CSLAM. To
ensure shape preservation, the scheme is further ex-
tended to use existing shape-preserving Þlters.

The paper is organized as follows. In section 2, the
conservative semi-Lagrangian scheme CSLAM is de-
scribed and a discussion of the issue of consistency be-
tween total-mass and constituent-mass conservation in
its semi-implicit formulation is provided. A new con-
sistent semi-implicit discretization of the CSLAM con-
tinuity equation, including the implementation of the
shape-preserving schemes, is proposed in section 3. Re-
sults from four test cases are presented in section 4,
highlighting the stability and accuracy of the new scheme
for linear and highly nonlinear ßows, as well as showing
the shape-preserving ability of the scheme. And Þnally,
in section 5, a summary of the results and a potential
extension of the new scheme are given.

2. Mass conservation and consistency in SLSI
solvers

a. CSLAM—A CISL transport scheme

The CSLAM transport scheme is a backward-in-time
CISL scheme, where the departure gridcell areadA* is
found by tracing the regular arrival gridcell area DA back
in time one time-step Dt (Fig. 1a). The CSLAM dis-
cretization scheme for (3) is given by

hn1 1
exp DA 5 hn

* dA*,

where the superscript denotes the time level,hn1 1
exp is the

explicit cell-averaged height solution computed by in-
tegrating the height Þeld hn over dA*, which gives de-
parture cell-averaged height valueshn

* . The departure
cell area dA* in CSLAM is found through iterative
trajectory computations from the four vertices of an
arrival grid cell (unÞlled circles in Fig. 1b) to their de-
parture points (Þlled circles in Fig. 1b). The departure
cell area is then approximated using straight lines as cell
edges (dark gray regiondA in Fig. 1b). To integrate the
height Þeld over dA, CSLAM implements a remapping
algorithm that consists of a piecewise biparabolic sub-
gridcell reconstruction of the hn Þeld, and then the
integration of the reconstruction function over the
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departure cell area. The area integration in CSLAM is
transformed into a series of line integrals using the
GaussÐGreen theorem, and involves solving for a set of
weights that depends only on the departure cell bound-
ary. The use of line integrals greatly enhances the trans-
port schemeÕs computational efÞciency for multitracer
transport as the weights can be reused for all tracer
species in the model. For full details on the transport
scheme, see Lauritzen et al. (2010).

b. A discrete semi-implicit continuity equation
in velocity-divergence form using CSLAM

Lauritzen et al. (2006, hereafter LKM) developed an
SLSI SW equations solver using the explicit CISL trans-
port scheme of Nair and Machenhauer (2002). For the
momentum equations (1) and (2), they used a tradi-
tional SLSI discretization [(A1) and (A2) in the appendix
but without time off centering]. Their momentum equa-
tions are then implicitly coupled to a velocity divergence
correction term in the continuity equation. In this paper
we follow the construction of the SW equations solver
described in LKM, but we use CSLAM as the explicit
CISL transport scheme. The discrete semi-implicit CISL
continuity equation given in LKM [Eq. (31) in LKM] is

hn1 1 5 hn1 1
exp 2

Dt
2

H0[$eul � vn1 1 2 $ lag � ~vn1 1]

1
Dt
2

H0[$eul � vn 2 $ lag � vn]
dA*
DA

, (5)

where hn1 1
exp is as described above,Dt is the model time

step, H0 is the constant mean reference height,vn1 1 is
the velocity Þeld implicitly coupled to the momentum
equations, ~vn1 1 5 2vn 2 vn2 1 is the velocity Þeld ex-
trapolated to time-level n 1 1, andvn is the velocity Þeld
at time-level n. Their semi-implicit correction term [Þrst

term in brackets in (5)] is the correction to the explicit
solution hn1 1

exp from CSLAM, and the second term in
brackets in (5) is a predictor-corrector term (where the
overbar denotes the departure cell-averaged value). The
implicit linear terms are obtained, as in the traditional
approach (e.g., Kwizak and Robert 1971; Machenhauer
and Olk 1997), by linearizing the height Þeld around
a constant mean reference state, and hence (5) results in
a velocity-divergence form. The notations $eul and $ lag

denote discretized divergence operators based on the
Eulerian and Lagrangian forms, respectively. Using
notations in Fig. 2, the Eulerian divergence operator is
given by

FIG . 1. (a) Exact departure cell area (dA*, dark gray region) and the corresponding arrival grid cell (DA, light gray
region). (b) Departure cells in CSLAM ( dA) are represented as polygons deÞned by the departure locations of the
arrival gridcell vertices.

FIG . 2. DeÞnition of an Eulerian arrival grid cell, and its asso-
ciated velocities at the cell faces (ul, ur, yt, yb) and cell corners
(uc, yc)i for i 5 1, 2, 3, 4.
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$eul � v 5
1

Dx
(ur 2 ul ) 1

1
Dy

(yt 2 yb) .

The Lagrangian divergence operator [Eq. (25) in LKM]
is given by

$ lag � v 5
1

DA
DA 2 dA

Dt
, (6)

and is computed as the change in cell area in one time
step.

The form of the semi-implicit correction term in (5) is
due to the split-divergence approximation [Eq. (26) in
LKM],

$ � vn1 1/2 ’
1
2

[$ � ~vn1 1 1 $ � vn] ,

being applied to the linearized divergence term of the
semi-implicit continuity equation. The split-divergence
approximation is used to evaluate the linear divergence
term at the midpoint trajectory (at time-level n 1 ½). As
explained in LKM, this approximation stems from
their trajectory algorithm, where the trajectory is ap-
proximated as two segments: (i) from the departure
point to the trajectory midpoint (computed iteratively),
and (ii) from the midpoint to the arrival grid point
(computed using extrapolated winds; see Fig. 1 in LKM).
Since the Lagrangian divergence is calculated based on
the change of cell area over time, and departure cell areas
are computed using the split-trajectory algorithm, the
split approximation can also be applied to the divergence
term (LKM).

Ideally, to be consistent, the implicit and the extrap-
olated divergences would both be solved in a Lagrangian
fashion; however, this would lead to a nonlinear elliptic
equation instead of a standard Helmholtz equation
(Lauritzen 2005). To retain a linear elliptic equation,
LKM implemented a predictor-corrector approach to
correct for the Eulerian discretization of the implicit
divergence term, and found that this step was necessary
to maintain stability in their model. In our implemen-
tation of the LKM solver using CSLAM, we follow the
approach of LKM, where the predictor-corrector term
[second term in brackets in (5)] is evaluated by in-
tegrating the departure cell-averaged value overdA*.

c. Numerical inconsistency in semi-implicit continuity
equations in a velocity-divergence form

Numerical consistency between total mass and con-
stituent mass is difÞcult to maintain in semi-implicit
CISL schemes such as LKM. The prognostic constituent
mass variablehq is typically solved explicitly using

hqn1 1 5 hqn1 1
exp , (7)

wherehqn1 1
exp is the CISL explicit solution, h is the shallow-

water height (analogous to total air mass in a full model),
and q is the speciÞc concentration of an arbitrary con-
stituent. The cell-integrated transport equation in its ßux
form helps conserve constituent mass, analogous to the
amount of water vapor and other passive tracers in an
atmospheric modelÑan important constraint especially
for long simulations. Since the departure cell areas are the
same for both total ßuid mass and the constituent mass,
the weights of the line integrals in CSLAM will need to be
computed only once per time step, and represents one of
the advantages of this scheme.

If the discrete constituent equation is consistent with the
discrete continuity equation, the former should reduce to
the latter when q 5 1, and an initially spatially uniform
speciÞc concentration Þeld should remain so. For a di-
vergent ßow, however, the semi-implicit correction term
in (5) may become large enough such that (7), in its ex-
plicit form, is no longer consistent (Lauritzen et al. 2008).

Alternatively, one can formulate the discrete con-
stituent equation by including the semi-implicit correc-
tion and predictor-corrector terms in (5) to maintain
numerical consistency between the two equations:

hqn1 1 5 hqn1 1
exp 2

Dt
2

HQ 0[$eul � vn1 1 2 $ lag � ~vn1 1]

1
Dt
2

HQ 0[$eul � vn 2 $ lag � vn]
dA*
DA

, (8)

whereHQ 0 is a constant mean reference constituent mass,
the velocities vn1 1 are solutions from the Helmholtz
solver, and~vn1 1 and vn are the same velocities as in (5).

However, the dependence on a constant mean refer-
ence constituent massHQ 0 may create a source of nu-
merical errors for regions with little constituent mass.
For example, in regions wherehqn1 1

exp 5 0, if the ßow is
highly divergent such that the terms in square brackets
in (8) are nonzero, spurious constituent mass will be
erroneously generated as a result of a nonzero constant
mean constituent mass. Similarly, in areas wherehqn1 1

exp
is a nonzero constant, spurious deviation from constancy
can be generated by the correction terms.

The issue with an inconsistent constant mean refer-
ence state for the total ßuid mass and constituent mass
Þelds can be resolved with the formulation we present in
the next section.

3. A consistent and mass-conserving semi-implicit
SW solver

Our new scheme ensures numerical consistency be-
tween the continuity and constituent equations by formu-
lating the discrete equations, speciÞcally the semi-implicit
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correction and the predictor-corrector terms, in ßux form
instead of a velocity-divergence form. The goal is to avoid
the use of a constant reference state, such as (5). We test
this approach for the SW equations, and refer to the model
using the ßux-form scheme as CSLAM-SW. We formulate
the semi-implicit ßux-form continuity equation as

hn1 1 5 hn1 1
exp 2

Dt
2

[$eul � (hn1 1
exp vn1 1) 2 $ lag � (hn1 1

exp ~vn1 1)]

1
Dt
2

[$eul � (hnvn) 2 $ lag � (hnvn)]
dA*
DA

,

(9)

and use the explicit CSLAM solution hn1 1
exp as the refer-

ence state in the semi-implicit correction term. The
shallow-water model CSLAM-SW, like the LKM model,
couples the semi-implicit height continuity equation with
the traditional semi-Lagrangian momentum equations, as
described in the appendix, and solves the resulting elliptic
system with a conjugate-gradient Helmholtz solver.

To ensure consistency, we simply express the con-
stituent equation as

hqn1 1

5 hqn1 1
exp 2

Dt
2

[$eul � (hqn1 1
exp vn1 1)2 $ lag � (hqn1 1

exp ~vn1 1)]

1
Dt
2

[$eul � (hqnvn) 2 $ lag � (hqnvn)]
dA*
DA

,

(10)

where hqn1 1
exp is the explicit CSLAM update to the con-

stituent mass, the velocitiesvn1 1 in $eul � (hqn1 1
exp vn1 1) are

from the SLSI solution, and hqn and vn are the constit-
uent mass and velocity at time-leveln, respectively. This
scheme also resolves the problem of spurious generation
of constituent mass for regions with near-zero speciÞc
concentration (as described in the previous section). The
speciÞc concentrationq is diagnosed by decoupling the
constituent mass using

qn1 1 5
hqn1 1

hn1 1 . (11)

We note that to ensure numerical consistency, we must
eliminate machine-roundoff and convergence errors in
the Helmholtz solver. In solving for hqn1 1, we substitute
the solutions of vn1 1 derived from the Helmholtz solu-
tion hn1 1 into (10). Prior to diagnosing q using (11), we
must correct the solution hn1 1 by substituting solutions
of vn1 1 back into (9); otherwise, the values of hn1 1 can
become inconsistent with hqn1 1. The consistent hn1 1

solution is then used to solve forq using (11) and in the
next time step. To compute hqn1 1

exp , we follow Nair and

Lauritzen (2010) in separating the subgridcell recon-
structions for h and q, and then computehq(x, y) using

hq(x, y) 5 hq 1 q(h 2 h),

where h 5 h(x, y) and q 5 q(x, y) are the reconstruction
functions, and (h, q) are cell averages.

The new ßux-form conservation equations (9) and (10)
involve the computation of an Eulerian ßux divergence
and a Lagrangian ßux divergence using extrapolated ve-
locities. Using the mesh described in Fig. 2, the discrete
Eulerian ßux divergence is given as

$eul � (hv) 5
1

Dx
[(h

x
u)r 2 (h

x
u)l ] 1

1
Dy

[(h
y
y)t 2 (h

y
y)b] ,

(12)

where Dx and Dy are the grid spacing in thex and y di-
rections, and each of the ßuxes are evaluated ash

x
r ur ,

h
x
l ul , h

y
t yt, and h

y
byb, respectively.

The Lagrangian ßux divergence in (10) needs to be
consistent with the Lagrangian velocity divergence in
(6). To derive the new operator, we begin by computing
the Lagrangian backward trajectories of the arrival
gridcell vertices given in Fig. 2. We deÞne the arrival
cell corner points to be at (x1, x2, x3, x4), i.e., (x1, y1), (x2,
y2), (x3, y3), (x4, y4), and the departure cell corner
points as

xd1 5 x1 2 D t � (uc, yc)1 ,
xd2 5 x2 2 D t � (uc, yc)2 ,
xd3 5 x3 2 D t � (uc, yc)3 ,
xd4 5 x4 2 D t � (uc, yc)4 ,

where (uc, yc)i 5 (uy, yx)i denote the x- and y-velocity
components at theith vertex, where i 5 1, 2, 3, 4.

The area of the departure cell is computed as

dA 5
1
2

[xd21xd41 1 xd43xd23] ,

where xd21 5 xd2 2 xd1; xd41 5 xd4 2 xd1; xd43 5 xd4 2 xd3;
and xd23 5 xd2 2 xd3. We can then rewrite the departure
cell area as

dA 5 D xDy 2 D t[F r 2 F l 1 F t 2 F b] , (13)

where

F r 5 ur
yyDy 2 (uc2yc3 2 uc3yc2)Dt/2,

F l 5 ul
yyDy 2 (uc1yc4 2 uc4yc1)Dt/2,

F t 5 yt
xxDx 2 (uc3yc4 2 uc4yc3)Dt/2,

F b 5 yb
xxDx 2 (uc2yc1 2 uc1yc2)Dt/2.
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Using (13), the velocity divergence can be written as

D 5
1

DxDy
[F r 2 F l 1 F t 2 F b] ,

which is identical to the Lagrangian divergence in (6).
The Þrst ßux term in each of F r, F l, F t, and F b is
identical to the Eulerian velocity divergence and the
remaining terms give the geometric correction for a
Lagrangian representation (see Fig. 9 in Lauritzen 2005).
Using this velocity divergence, we now approximate the
Lagrangian ßux-divergence term in (9) as

$ lag � (hv) 5
1

DxDy
[F rh

x
r 2 F lh

x
l 1 F th

y
t 2 F bh

y
b] . (14)

Using (12) and (14) and replacingh with hq, we can
further combine each of the terms in brackets of the
constituent equation (10), which becomes

hqn1 1 5 hqn1 1
exp 2

Dt
2

[$eul � (hn1 1
exp qn1 1*

exp v0n1 1)]

1
Dt
2

[$eul � (hnqn*v0n)]
dA*
DA

, (15)

where

$eul � (hq*v0)

5
1

Dx
[h

x
r qr*( ur 2 F r /Dy) 2 h

x
l ql*( ul 2 F l /Dy)]

1
1

Dy
[h

y
t qt*( yt 2 F t/Dx) 2 h

y
bqb*( yb 2 F b/Dx)] .

The corrective velocity v0 is deÞned as the difference
between the velocity Þeld used in the Eulerian ßux di-
vergence in (12) and that derived from the Lagrangian
ßux areasF r, F l, F t, and F b, divided by the cell face
length. The corrective velocity v0n1 1 in (15) is computed
usingvn1 1 from the Helmholtz solver and the Lagrangian
ßux areas based on extrapolated winds divided by the cell
face length. The velocityv0n used in the predictor-corrector
term in (15) is computed using the velocity Þeldvn at
time-level n and the Lagrangian ßux areas based on
vn, and again divided by the cell face length. Shape-
preserving schemes (e.g., the Þrst-order upwind scheme)
or higher-order methods such as ßux-corrected trans-
port schemes or ßux-limiter schemes can then be ap-
plied to the ßuxes in (15). The Þrst-order upwind scheme
is used here, where the upstream values (denoted by the
asterisks)qn1 1*

exp
and qn* at each cell face are determined

by the directions of v0n1 1 and 2 v0n, respectively [see e.g.,
Durran (2010), his Eq. (5.109)]. The Þrst-order upwind
scheme is numerically diffusive (Durran 2010), but the

damping effect on the correction and predictor-corrector
terms should be minimal as the corrective velocitiesv0n1 1

and v0n are typically very small. To ensure shape preser-
vation in the explicit CSLAM solution, we implement a
simple 2D monotonic Þlter (Barth and Jespersen 1989)
that searches for new local minima and maxima in the
reconstruction function of q, and scales the function if
these values exceed those in the neighboring cell.

Testing of the CSLAM-SW model [based on (9) for
h, and (A1) and (A2) for the velocity components] re-
vealed an instability related to the averaging of the
C-grid velocities to the cell corner points in the conti-
nuity equation and its interaction with the rotational
modes. Following Randall (1994), we can write a gen-
eralized discretized dispersion relation for the linear-
ized shallow-water equations as

v 3 2 v (c2lylh 1 c2kukh 1 fufy) 2 ic2( fukhly 2 fykulh) 5 0,

(16)

where the terms fu and fy are the discrete Coriolis op-
erators, ku and ly are the discrete height-gradient op-
erators, kh and lh are the discrete velocity-divergence
operators in the continuity equation (the letter sub-
scripts refer to the equations in which they appear), and
c2 5 gH. In the linearized shallow-water dispersion
relation for C grid, the last two terms on the lhs of (16),
fukhly and fykulh, cancel each other and thus there are
no numerical frequencies v with imaginary parts that
amplify in time. Although the CSLAM-SW model uses
the C grid, we have found that the discretization of
the linearized Lagrangian divergence is equivalent to
taking an average of theu and y velocities to the cor-
ners of the grid cell followed by an averaging back to
the cell faces (i.e., the discretization is equivalent to
using a 1Ð2Ð1 averaging of theu velocities in the y di-
rection, and of the y velocities in the x direction, at the
Eulerian gridcell faces). This averaging leads to non-
cancellation of fukhly and fykulh, and growing modes.
We have found that using the averaging operatorsyxyxx

and uxyyy
(see the appendix for operator deÞnitions) on

the Coriolis terms in the x- and y-momentum equations,
respectively, recovers the cancellation and eliminates
the unstable mode.

4. Test cases

We present four test problems involving divergent
ßows: a radially propagating gravity wave (with two dif-
ferent initial perturbations), and two highly nonlinear
barotropically unstable jets [the Bickley and the Gaussian
jets from Poulin and Flierl (2003)]. The gravity wave
problem (section 4a) is a simple case to assess the
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stability and accuracy of the new SLSI solver (CSLAM-
SW) with respect to an imposed mean ßow speed and
the gravity wave propagation speed. We also use this
test case to highlight the issue of numerical incon-
sistency in the constituent transport scheme of LKM.
The nonlinearity of the unstable jet in the second
problem is particularly useful in testing the stability
limits of the new scheme. The Bickley jet (section 4b)
has a moderate gradient in the initial height proÞle,
while the steeper proÞle in the Gaussian jet (section 4c)
drives a more unstable jet. These strong gradients
provide a severe test for advection schemes. In addition
to those from LKM, solutions from a traditional semi-
Lagrangian formulation and an Eulerian formulation
(see the appendix) are also presented for compari-
son. We use the highly divergent Gaussian jet case to
compare the solutions between the shape-preserving
CSLAM-SW solver described by (15) and the LKM
with a shape-preserving explicit transport scheme (sec-
tion 4d).

a. A radially propagating gravity wave

A nonrotating ( f 5 0) 2D radially propagating gravity
wave is initiated by a circular height perturbation h0

and advected by a mean background ßow:

u(x, y, t 5 0) 5 u0 5 1:2 m s2 1,

y(x, y, t 5 0) 5 y0 5 0:9 m s2 1,
h(x, y, t 5 0) 5 h0 1 h0,

where

h05

8
><

>:

1
2

Dh
h
11 cos

� p r
10 km

�i
, if r # 10 km,

0, otherwise,

and h0 is the initial background height, Dh is the
magnitude of the initial height perturbation, r 5

�������������������������������������������������������������������������������

(x 2 xc)
2 1 (y 2 yc)

2
r

, and (xc, yc) is the center of a
200 km 3 200 km domain. We perform tests for two
different initial height perturbations: a linear case with
Dh 5 10 m andh0 5 990 m; and a nonlinear case with
Dh 5 500 m andh0 5 1000 m. A reduced gravitational
acceleration of g0 ’ 0.0204 m s2 2 is used, giving an
initial gravity wave speed c5

�������
g0h

p
of 4.5 and 5.5 m s2 1

for the two cases, respectively. The mean advection
speed ð

���������������������
u2

0 1 y2
0

q
5 1:5 m s2 1Þ is chosen to emulate the

speed ratio of the fastest advection of sound waves
(’ 300 m s2 1) in the atmosphere to the speed of the jet
stream (’ 100 m s2 1). The background ßow velocities
u0 6¼ y0 are also chosen to ensure that the ßow does not
align with the mesh.

The model domain consists of 4003 400 grid cells,
with a grid spacing of Dx 5 D y 5 500 m, and is periodic
in both x and y directions. Since there is no analytical
solution to the test problem, to evaluate CSLAM-SW,
we produce a Þne-resolution Eulerian reference solu-
tion with a grid spacing of Dx 5 D y 5 100 m and a time
step of Dt 5 10 s. The center of the gravity wave dis-
turbance in the reference solution is stationary (i.e.,u0 5
y0 5 0 m s2 1), and we compare the solutions by trans-
lating the gravity wave disturbance in CSLAM-SW to
the center of the domain.

In addition to CSLAM-SW, we also run the two initial
perturbation cases using LKM, the traditional semi-
Lagrangian formulation, and an Eulerian formulation.
We use thel2 norm of error as the error measure, which
for a uniform mesh is

l2 5

���������������������������������������������
�
i,j

[h(i, j) 2 href (i, j)] 2
r

����������������������������
�
i,j

[href (i, j)] 2
r ,

where i, j are the grid indices, h(i, j) is the model solu-
tion, and href(i, j) is the Eulerian high-resolution refer-
ence solution. The l2 norm of error in the height Þeld
(at time T 5 1 3 105 s) for different time-step sizes is
shown in Fig. 3 for all four models. Results from both the
linear and nonlinear initial perturbations are plotted.
The time truncation error in CSLAM-SW is very com-
parable to those in the other two semi-Lagrangian models
for both cases. Except for the Eulerian model, all model
solutions converge as the time-step size is reduced to
less thanDt 5 50 s. At this point, differences between
the errors are mainly due to the spatial discretization
schemes (more noticeably in the nonlinear case). The
Eulerian model and the traditional semi-Lagrangian
model have a commonality that they both use a ÔÔtrueÕÕ
C-grid divergence operator in the continuity equation;
whereas as discussed in section 3, the CISL computa-
tion of divergence in both CSLAM-SW and LKM con-
sists of an extra averaging operator. For this reason, one
may see a smaller spatial discretization error in the tra-
ditional semi-Lagrangian model and ÔÔcoarseÕÕ Eulerian
model when compared to an Eulerian high-resolution
reference solution than those in the CISL models, as is
the case in Fig. 3.

To evaluate the consistency in CSLAM-SW and
LKM, a constituent with an initially constant speciÞc
concentration distribution ( q0 5 1) is initialized in each
model. The CSLAM explicit transport scheme conserves
constituent mass in both models; however, as discussed
in section 2c, when numerical consistency is violated,
constancy of the speciÞc concentration is not guaranteed,
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and generation or removal of constituent mass is pos-
sible. The speciÞc concentration is diagnosed by de-
coupling the constituent mass variable using (11). A
time step of Dt 5 100 s is used. Figure 4 shows an ex-
ample of the speciÞc concentration error in LKM at
time T 5 1 3 105 s for both the linear and nonlinear
perturbation cases. The error is largest near the leading
edge of the gravity wave, where the ßow is most di-
vergent and the semi-implicit correction term is non-
zero. Figure 5 shows the variation in error with time
step size for both the linear and nonlinear perturba-
tions at the same simulation time as in Fig. 4. The error
measures used are the maximum absolute error, the
mean absolute error, and the root-mean-squared error.

Errors in the solutions from LKM and CSLAM-SW are
shown in solid and dashed lines, respectively. Since the
inconsistent semi-implicit correction in (5) is propor-
tional to Dt, errors in the scalar Þeld grow with time-step

FIG . 3. Comparison of the height ÞeldL 2 error norms for the
radially propagating gravity wave solutions. Errors are plotted at
time T 5 1 3 105 s for the (a) linear (Dh 5 10 m andh0 5 990 m)
and (b) nonlinear (Dh 5 500 m andh0 5 1000 m) test cases com-
puted on a 500-m mesh. Note the different scales in the plots.

FIG . 4. SpeciÞc concentration error (q 2 q0) in LKM for a divergent
ßow initialized with a constant q0 5 1 in the (a) linear (Dh 5 10 m and
h0 5 990 m) and (b) nonlinear (Dh 5 500 m andh0 5 1000 m) height
perturbation cases. Note the different scales in the plots.
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size, which can become a major issue for semi-Lagrangian
models that take advantage of larger stable time steps.
For the nonlinear test, the maximum absolute error from
LKM is in the order of 10 2 2 to 102 1, and is signiÞcant for
constituents like water vapor, which has a typical mixing
ratio of roughly 0.1%Ð3% in air. On the other hand,
CSLAM-SW using a consistent formulation is free-
stream preserving (up to machine roundoff) for both
cases and all time-step sizes tested.

b. Bickley jet—Ro 5 0.1

The stability of CSLAM-SW is further evaluated with
two perturbed jets; we begin with the Bickley jet from
Poulin and Flierl (2003). The Bickley jet is simulated at
the Rossby number, Ro 5 U/fL 5 0.1, whereU is the
ßow velocity scale,f is the Coriolis parameter, and L is
the length scale of the jet width. We choose the Froude
number, Fr 5 (fL )2/g0H 5 0.1. The jet is characterized
by greater heights to the left of the channel and dropping
off to smaller heights to the right, geostrophically bal-
anced by a mean ßow velocity down the channel (Fig. 6).
A height perturbation is superimposed at the initial
time, causing wave ampliÞcation and eventual breaking
of the jet into vortices, and formation of a vortex street
along the channel. These vortex streets consist of thin
Þlaments of vorticity with strong horizontal velocity
shear, making it a good test because it is challenging for
all numerical schemes. A more detailed description of

the evolution of these jets can be found in Poulin and
Flierl (2003).

The initial geostrophically balanced mean state (u0,
y0, andh0) and height perturbation h0of the Bickley jet is
given by

u(x, y, t 5 0) 5 u0 5 0,

y(x, y, t 5 0) 5 y0 5 2
g0Dh

fa
sech2

� x
a

�
,

h(x, y, t 5 0) 5 h0 1 h0,

where

h0 5 1002 D h tanh
� x

a

�
,

h05 0:1Dh sech2
� x

a

�
sin

�
2py
Y

n
�

.

The parameter Dh is the maximum amplitude of the
height perturbation and depends on Ro,g0 is the gravi-
tational acceleration, a is the jet width, Y is the length
of the channel, and n is the wavenumber mode of the
height perturbation. In our simulations, L 5 a 5 1 3
105 m, X (width of channel) 5 Y 5 2 3 106 m, f 5 1 3
102 4 s2 1, and g0 5 10 m s2 2. For the speciÞed scale of
the jet width and a ßow with Fr 5 0.1, the mean height
of h0 is 100 m. The amplitude of the height perturbation
Dh 5 1 m is determined by the scale of the initially

FIG . 5. Variation of speciÞc concentration error (q 2 q0) (maximum absolute error, mean absolute error, and root-
mean-square error) with time-step size in LKM (solid line) and CSLAM-SW (dashed line) for the (a) linear height
perturbation and (b) nonlinear height perturbation cases.
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geostrophically balanced ßow speed (U ; 1 m s2 1) for
Ro 5 0.1. We choose the most unstable mode of wave-
number n 5 3 (Poulin and Flierl 2003) for all of our jet
simulations.

Each grid domain has 2023 202 grid cells and a grid
spacing of Dx 5 D y 5 9950 m, with solid boundary
conditions at x 5 2 X/2 and x 5 X/2 and periodic
boundary conditions in y where y 2 [2 Y/2, Y/2]. A time
step of Dt 5 2000 s was used in all simulations. Based
on the initial gravity wave speed c ’ 32 m s2 1 and ini-
tial ßow speedjyj 5 1 m s2 1, the Courant numbers are
Crgw 5 6.4 and Cradv 5 0.2, respectively.

To maintain numerical stability in the Eulerian
model, we implemented a second-order explicit diffusion
term with a numerical viscosity parameter bx 5 by 5
nDt/Dx2 5 0.02 (wheren is analogous to the physical vis-
cosity). This value corresponds to the numerical Reynolds
number, Re 5 UL /n 5 102, a factor of 10 smaller than
that used in the forward-in-time Eulerian model of
Poulin and Flierl (2003). Explicit diffusion was not ap-
plied to any of the semi-Lagrangian models because the
schemes have sufÞcient inherent damping to maintain
numerical stability. For the traditional semi-Lagrangian
model, however, we found that time off centering in the
semi-implicit scheme was needed to maintain stability.

Figure 7 shows the solutions from CSLAM-SW and
the three comparison models. Although the exact form
of the initial height perturbation was not provided in
Poulin and Flierl (2003), we were able to reproduce re-
sults very similar to theirs [cf. Fig. 4c of Poulin and Flierl
(2003)]. The most noticeable difference among the dif-
ferent model solutions is in the shape and magnitude of
the relative vorticity maxima and minima. CSLAM-SW
showed very similar vortex shapes to those from LKM
and TRAD-SL. The vortices in the Eulerian results are

similar to those from the Eulerian model of Poulin and
Flierl (2003). The difference between the Eulerian so-
lution and the semi-Lagrangian solutions can be attrib-
uted to the inherent damping in the reconstruction step
of the CISL schemes and the gridpoint interpolation
in the traditional semi-Lagrangian scheme.

c. Gaussian jet—Ro 5 5.0

The third test case is the Gaussian jet with Ro5 5.0.
Similar to the Bickley jet, the Gaussian jet has Fr 5 0.1,
and has an initially geostrophically balanced mean state
with greater heights to the left of the channel and drop-
ping off to smaller heights to the right (Fig. 6). The main
difference between the two jets is that the Gaussian jet
has a slightly steeper height proÞle at the center of the
channel, and therefore, produces a more pronounced
nonlinear ßow, especially at larger Ro. The initial mean
state and height perturbation for the Gaussian jet is
given as

u(x, y, t 5 0) 5 u0 5 0,

y(x, y, t 5 0) 5 y0 5 2
2g0Dh

����
p

p
fa

exp[2 (x/a)2],

h(x, y, t 5 0) 5 h0 1 h0,

where

h0 5 1002 D h erf
� x

a

�
,

h05 0:1Dh
�

2
����
p

p exp[2 (x/a)
2
]
�

sin
�

2py
yL

n
�

,

and the notation is as before. All the parameters remain
the same, exceptDh 5 50 m for Ro 5 5.0, andDt 5 100 s

FIG . 6. Initial mean (top) height h0 and (bottom) velocity y0 proÞles for the Bickley jet
(Dh 5 1 m, Dy 5 1 m s2 1) and Gaussian jet (Dh 5 50 m,Dy 5 56 m s2 1).
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is used. With an initial gravity wave speed and maximum
ßow speed of 38 and 56 m s2 1, respectively, Crgw 5 0.4
and Cradv 5 0.56. We note that U . c (i.e., the ßow is
supercritical). Despite the existence of supersonic waves
in the solution, CSLAM-SW is stable even at larger
Courant numbers.

As pointed out in Poulin and Flierl (2003), jets in this
Rossby regime are highly unstable and of particular in-
terest is the formation of an asymmetric vortex street
with triangular cyclones and elliptical anticyclones. As
the vortex street is advected toward the deeper water,
a strong cutoff cyclone develops due to vortex stretch-
ing (adjacent to the main anticyclonic feature). All of

our models, including CSLAM-SW, were able to re-
produce these features [Fig. 8; cf. Fig. 10e in Poulin and
Flierl (2003)]. As in the Bickley jet case, we Þnd that
CSLAM-SW produced solutions similar to the other
two semi-Lagrangian models (LKM and TRAD-SL).

In addition to comparing solutions of CSLAM-SW at
time steps allowable by the Eulerian scheme, we also
tested the stability of CSLAM-SW at a much larger
Cradv 5 2.5. Figures 9aÐc show solutions at various times
from the previous CSLAM-SW simulation (Cr adv 5 0.56),
and Figs. 9dÐf show solutions at each of the correspond-
ing time for Cr adv 5 2.5, using the largest time step al-
lowable by the Lipschitz condition for this ßow. The

FIG . 7. Solutions of the Bickley jet at time T 5 5 3 106 s (after 2500 time steps) for Ro5 0.1, Fr5 0.1 and Cradv 5
0.2. Plotted are positive (solid line) and negative (dashed line) vorticity between2 13 102 5 s2 1 and 13 102 5 s2 1 with
a contour interval of 5 3 102 7 s2 1.
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solution from the Cr adv 5 2.5 simulation is almost
identical to the solution using Cradv 5 0.56.

The CSLAM-SW is numerically stable for the highly
nonlinear ßow in the Gaussian jet and at Courant num-
bers much greater than unity. To check that consistency
and shape preservation in such a highly divergent ßow
can be maintained, we repeat the Gaussian jet case using
CSLAM-SW and the shape-preserving extensions de-
scribed in section 3.

d. Gaussian jet—Ro 5 5.0 with shape preservation

The shape-preserving CSLAM-SW solver in (15) is
tested using the divergent ßow of the Gaussian jet as
described in section 4c. We also test the LKM solver

with the Barth and Jespersen (1989) Þlter implemented
in the explicit scalar transport scheme ofhqn1 1

exp . All pa-
rameters are as described in section 4c, and a time step
of Dt 5 100 s is used for results in Figs. 10 and 11.

To test for numerical consistency in the two solvers,
we repeat the consistency test described in section 4a by
initializing a constant speciÞc concentration Þeldq0 5 1.
The shape-preserving CSLAM-SW solution is able to
maintain numerical consistency betweenh and hq up
to machine roundoff for this highly divergent ßow and
the result is independent of time-step size. As for LKM,
despite the shape-preserving transport scheme in the
solver, numerical inconsistency is still an issue with a
maximum absolute error (deÞned as the deviation from

FIG . 8. Solutions of the Gaussian jet for Ro5 5.0 and Cradv 5 0.56 at timeT 5 1.83 105 s (after 1800 time steps).
Plotted are positive (solid line) and negative (dashed line) vorticity between 2 5 3 102 4 s2 1 and 5 3 102 4 s2 1 with
a contour interval of 5 3 102 5 s2 1.
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q0 5 1) of 6.793 102 3, a mean absolute error of 4.823
102 4, and a root-mean-square error of 1.063 102 3 at time
T 5 1.83 105 s (Fig. 10), and as in section 4a, the error is
a function of the time-step size (not shown).

To compare the shape-preservation ability between
CSLAM-SW and LKM, we initialize a speciÞc-
concentration distribution that varies only in the x di-
rection and has a sharp gradient that coincides with the
center of the initial jet:

q(x, y, t 5 0) 5
�

1:0, if 2 X /2# x , 0.
0:1, if 0# x , X /2.

Solutions of q diagnosed from hq from the nonshape-
preserving CSLAM-SW, LKM with shape-preserving
transport, and the shape-preserving CSLAM-SW are
presented in Figs. 11aÐc. The simulation timeT 5 1.83
105 s in the Þgure corresponds to the vorticity Þeld
shown in Fig. 8.

For the nonshape-preserving CSLAM-SW solver
(Fig. 11a), q reaches an unphysical peak value of 1.233
and an unphysical minimum value of 2 0.145 (speciÞc
concentrations cannot be negative). The LKM solver
with shape-preserving transport (Fig. 11b) has less se-
vere errors than the nonshape-preserving CSLAM-SW,
but loses its shape-preserving ability as a result of nu-
merical inconsistency. The minimum and maximum q
values are 0.099 97 and 1.0063, respectively, at timeT 5
1.83 105 s. The overshooting ofq (which may generate
spurious constituent mass) appears to be greater in
amplitude than the undershooting for this ßow. Over-
shooting occurs mostly within the strongest anticyclones
(negative vorticity centers on the left side of the channel,
highlighted in solid black lines in Fig. 11b). Using the
shape-preserving CSLAM-SW solver (Fig. 11c), mini-
mum and maximum values of q are kept within its
physical limits (0.1 and 1.0, respectively, up to machine
roundoff) and shape preservation is ensured.

FIG . 9. CSLAM-SW solutions of the Gaussian jet for Ro 5 5.0 at three different times (from left to right on each row) of the
simulation at time T 5 5 3 104, 1.03 105, and 1.43 105 s. (a)Ð(c) Solutions using a Cradv of 0.56 (same simulation as in Fig. 8) (d)Ð(f)
Solutions using a larger Cradv. of 2.5. Plotted are positive (solid line) and negative (dashed line) vorticity between 2 5 3 102 4 and 53
102 4 s2 1 with a contour interval of 5 3 102 5 s2 1.
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5. Conclusions

A conservative and consistent semi-Lagrangian semi-
implicit solver is constructed and tested for shallow-
water ßows (CSLAM-SW). The model uses a new
ßux-form discretization of the semi-implicit cell-integrated

semi-Lagrangian continuity equation that allows a straight-
forward implementation of a consistent constituent trans-
port scheme. Like typical conservative semi-Lagrangian
semi-implicit schemes, the algorithm requires at each
time step a single Helmholtz equation solution and a
single application of CSLAM.

SpeciÞcally, our new discretization uses the ßux di-
vergence as opposed to a velocity divergence that re-
quires linearization about a constant mean reference
state. For traditional semi-implicit schemes, the depen-
dence on a constant mean reference state makes it dif-
Þcult to ensure consistency between total ßuid mass
and constituent mass. When numerical consistency is
not maintained, constituent mass conservation can be
violated even for solvers that use inherently conserva-
tive transport schemes. More unacceptably, constituent
Þelds may no longer preserve their shapes (e.g., losing
constancy or positive deÞniteness).

We have shown an example of a traditional discrete
cell-integrated semi-Lagrangian semi-implicit continuity
equation (LKM), in which inconsistency can generate
signiÞcant numerical errors in the speciÞc constituent
concentration. The inconsistent semi-implicit correc-
tion term in LKM causes errors to grow proportionally
with time-step size and with the nonlinearity of the ßow.
The ideal radially propagating gravity wave tests using
the LKM solver showed a maximum absolute error in
an initially constant speciÞc concentration (q0 5 1) Þeld
ranging from an order of 102 7 to 102 3 in the linear case,
and an order of 102 4 to 102 1 in the nonlinear case. The
orders of magnitude of these errors are signiÞcant rel-
ative to the speciÞc concentration of tracers and water
vapor in the atmosphere. The consistent formulation

FIG . 10. SpeciÞc concentration error (q 2 q0) in LKM for the
Gaussian jet at timeT 5 1.83 105 s, initialized with a constantq0 5 1
Þeld.

FIG . 11. SpeciÞc constituent concentrationq at time T 5 1.83 105 s. Initial minimum and maximum q are 0.1 and 1.0, respectively.
Regions with unphysical overshooting (red) and undershooting (purple) are highlighted.
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in the new CSLAM-SW on the other hand eliminates
these errors (up to machine roundoff).

The new ßux-form solver (CSLAM-SW) is tested for
a range of ßows and Courant numbers for the shallow-
water system, and is stable and compares well with
other existing semi-implicit schemes, including a two-
time-level traditional semi-Lagrangian scheme and an
Eulerian leapfrog scheme. The Gaussian jet test (the
more nonlinear jet of the two presented) showed that
CSLAM-SW remains numerically stable when large
time steps are used.

We have also identiÞed and eliminated a compu-
tational unstable mode in CSLAM-SW and LKM, us-
ing the discrete dispersion relation of the linearized
shallow-water equations. The numerical instability, as-
sociated with the Lagrangian divergence operator on a
C grid, can be eliminated by introducing a new aver-
aging operator on the Coriolis terms in the momentum
equations.

Shape preservation in CSLAM-SW is ensured by ap-
plying a 2D shape-preserving Þlter in the CSLAM
transport scheme and the Þrst-order upwind scheme to
compute the predictor-corrector and ßux-form correc-
tion terms. As shown in the Gaussian jet case, without
any shape-preserving Þlter, unphysical negative and un-
reasonable positive speciÞc concentrations may de-
velop as a result of undershoots and overshoots. For
inconsistent formulations such as that in LKM, the use
of a shape-preserving explicit transport scheme cannot
guarantee shape preservation either because of nu-
merical consistency errors. CSLAM-SW, on the other
hand, allows for straightforward implementation of
existing shape-preserving schemes and Þlters and en-
sures shape preservation (up to machine roundoff).

The initial testing of the semi-implicit formulation in
CSLAM-SW shows promising results. We are currently
implementing the extension of CSLAM-SW to a 2D
(xÐz) nonhydrostatic, fully compressible atmospheric
solver. The desirable properties of mass conservation,
consistency, and shape preservation for moisture vari-
ables and tracers will likely be important for both
short- and long-term meteorological applications.
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APPENDIX

Numerical Schemes for Comparison

a. A two-time-level traditional semi-Lagrangian
semi-implicit model

A traditional gridpoint semi-implicit semi-Lagrangian
model on a staggered C grid is constructed for com-
parison purposes. The scheme uses a forward-in-time
off-centering parameter b for numerical stability pur-
poses. The discretized system is given by
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and h0 5 h 2 H0. The operators are deÞned as
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The Rn terms deÞne the known terms that are evalu-
ated at time level n and interpolated to the departure
point. The Rn1 1/2 term is the nonlinear term evaluated
by extrapolating values from time level n and n 2 1 to
time level n 1 1/2, and interpolated to the estimated
midpoint trajectory. The time off-centering parameter b
is set to 0.1 for all runs.

b. An Eulerian leapfrog semi-implicit advective
model

The Eulerian C-grid staggering model uses the semi-
implicit leapfrog time-stepping scheme and momentum
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equations in the advective form. The model has an
Asselin time Þlter and a time off-centering parameter
(b 5 0.1) to eliminate spurious oscillations. Numerical
viscosity is also applied for certain test cases (see section
4b). Using the same notations as for the traditional semi-
Lagrangian model, the discretized system is given by

un1 1 5 D t(1 1 b)( f yxy 2 g0dxh)n1 1 1 Ru,

yn1 1 5 D t(1 1 b)(2 f uxy 2 g0dyh)n1 1 1 Ry,

hn1 1 5 2D t(1 1 b)H0(dxu 1 dyy)n1 1 1 Rh ,

where

Ru 5 un2 1 2 2Dt(udxu 1 ydyu)n

1 D t(1 2 b)( f yxy 2 g0dxh)n2 1,

Ry 5 yn2 1 2 2Dt(udxy 1 ydyy)n

1 D t(1 2 b)(2 f uxy 2 g0dyh)n2 1,

Rh 5 hn2 1 2 D t(1 2 b)H0(dxu 1 dyy)n2 1

2 2Dt(h0dxu 1 h0dyy)n1 1/2 .
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