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ABSTRACT

To improve severe thunderstorm prediction, a novel pseudo-observation and assimilation approach in-
volving water vapor mass mixing ratio is proposed to better initialize NWP forecasts at convection-resolving
scales. The Þrst step of the algorithm identiÞes areas of deep moist convection by utilizing the vertically
integrated liquid water (VIL) derived from three-dimensional radar reßectivity Þelds. Once VIL is obtained,
pseudoÐwater vapor observations are derived based on reßectivity thresholds within columns characterized
by deep moist convection. Areas of spurious convection also are identiÞed by the algorithm to help reduce
their detrimental impact on the forecast. The third step is to assimilate the derived pseudoÐwater vapor
observations into a convection-resolving-scale NWP model along with radar radial velocity and reßectivity
Þelds in a 3DVAR framework during 4-h data assimilation cycles. Finally, 3-h forecasts are launched every
hour during that period. The performance of this method is examined for two selected high-impact severe
thunderstorm events: namely, the 24 May 2011 Oklahoma and 16 May 2017 Texas and Oklahoma tornado
outbreaks. Relative to a control simulation that only assimilated radar data, the analyses and forecasts of
these supercells (reßectivity patterns, tracks, and updraft helicity tracks) are qualitatively and quantitatively
improved in both cases when the water vapor information is added into the analysis.

1. Introduction

Over the last three decades, the assimilation of radar
data into convective-scale numerical weather prediction
(NWP) models has been explored in a wide variety of

ways, including optimal interpolation, simple initializa-
tion technique and complex cloud analysis (Lin et al.
1993; Albers et al. 1996; Zhang et al. 1998; Zhang 1999;
Ducrocq et al. 2000; Weygandt et al. 2002), three- or
four-dimensional variational data assimilation (3DVAR
or 4DVAR, Sun and Crook 1997, 1998; Gao et al. 1999,
2004; Fillion and Mahfouf 2000; Hu et al. 2006a, b; XiaoCorresponding author: Jidong Gao, jidong.gao@noaa.gov
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and Sun 2007; Caumont et al. 2010; Stensrud and Gao
2010; Sun and Wang 2013; H. Wang et al. 2013a,b;
Wattrelot et al. 2014), the ensemble Kalman Þlter
(EnKF, Zhang et al. 2004; Tong and Xue 2005; Aksoy
et al. 2009; Yussouf and Stensrud 2010; Dowell et al.
2011), and hybrid variational and ensemble approaches
(X. Wang et al. 2013; Gao and Stensrud 2014; Gao et al.
2016; Wang and Wang 2017 and citations therein).
These works demonstrated that ingesting Doppler radar
data information into convective-scale NWP models
helped improve severe weather analyses and short-term
(# 6 h) forecasts. The assimilation of radar data into
convective-scale NWP, however, still bears many chal-
lenges because typical weather radars cannot directly
observe the vast majority of the variables predicted by
NWP models. Radar radial velocity observations con-
tain information about one component of the wind Þeld,
whereas radar reßectivity and dual-polarization obser-
vations provide information about the distribution of
various kinds of hydrometeors. None of the reßectivity
and dual-polarization observations, however, are ex-
plicitly predicted by the NWP models. The functional
relationships often used to diagnose radar reßectivity
from the predicted hydrometeor variables are nonlinear.

Ge et al. (2013) tested the impact of assimilating mea-
surements of different model state variables on the short-
term forecasts of supercell thunderstorm events by
performing a set of observing system simulation experi-
ments (OSSEs) using a 3DVAR cycled analysis approach.
They found that among all types of measurements, hori-
zontal wind and water vapor observations have the greatest
impact on storm-scale analyses and short-range forecasts,
followed by potential temperature measurements and
vertical velocity. Although partial wind measurements
within storms can be derived from radar data, there is far
less information related to the moisture and potential
temperature Þelds for convective-scale weather systems.
More speciÞcally, there are no direct observations/mea-
surements of water vapor mass mixing ratio (qy). An al-
gorithm using qy and in-cloud thermal adjustments has
been employed in the Advanced Regional Prediction Sys-
tem (ARPS; Xue et al. 2001, 2003) complex cloud analysis
scheme (Zhang 1999; Hu et al. 2006a; Schenkman et al.
2011). In this approach, the relative humidity (RH) is ad-
justed to 100% within cloud regions deÞned by a given
composite radar reßectivity threshold. However, rapid
forecast error growth is found in most variables with re-
ßectivity forecasts suffering from large overestimates and
positive biases (Tong 2015). The gradual insertion of water
vapor mass can quickly result in overestimates of the in-
tensity and areal coverage of convection (Fierro et al. 2016),
leading to a degradation of the forecast after just a few
cloud-analysis cycles (Schenkman et al. 2011; Schenkman

2012). In recent years, many other approaches aimed at
assimilating qy retrievals from cloud and/or precipitation
observations have been proposed (Macpherson et al. 1996;
Jones and Macpherson 1997; Haase et al. 2000; Sokol and
Rezacova 2006; Storto and Tveter 2009; Caumont et al.
2010; Wattrelot et al. 2014; Fierro et al. 2012, 2016; Carlin
et al. 2017). A few recent examples are given in detail
below.

Capitalizing on the importance of moisture in-
formation, Caumont et al. (2010) and Wattrelot et al.
(2014) implemented a 1D 1 3DVAR approach in a
mesocale model developed at Meteo-France. The ob-
served reßectivity column was used to compute the
relative humidity (RH) proÞle through a Bayesian in-
version technique, which serves as a pseudo-observation
for the subsequent 3DVAR assimilation. The applica-
tion of this method in convection-allowing ( dx # 3Ð
4 km) models showed that assimilating pseudo-observed
RH resulted in notable improvements in the short-term
forecasts of accumulated precipitation (Marécal and
Mahfouf 2002, 2003; Lopez and Bauer 2007; Caumont
et al. 2010; Wattrelot et al. 2014). H. Wang et al. (2013a)
designed a scheme to estimate in-cloudqy and cloud
water from radar reßectivity, and assimilated these
pseudo-observations into the Weather Research and
Forecasting (WRF-ARW) Model. The results indi-
cated that the assimilation of RH pseudo-observations
from in-cloud qy adjustment had a noticeable positive
impact on the short-term precipitation prediction of
summer convective events. The pseudo-qy observations,
however, were derived based on in-cloud adjustments
from cloud analysis schemes (Albers et al. 1996; Zhang
et al. 1998; Hu et al. 2006a), which often suffer from
overpredictions of moisture-derived variables such as
rainfall.

Over the past few years,Fierro et al. (2015, 2016) de-
veloped nudging and 3DVAR assimilation techniques for
pseudo-qy derived from observed total lightning density
Þelds from either the ground-based Earth Networks To-
tal Lightning (broadband) Network (ENTLN) or the
spaceborne Geostationary Lightning Mapper (GLM;
Goodman et al. 2013; Fierro et al. 2019, manuscript sub-
mitted to Mon. Wea. Rev.). Over a wide range of forecast
days, each of these methods revealed forecast improve-
ments that were overall comparable to forecasts assimi-
lating only WSR-88D data (radial velocity and/or
reßectivity). SpeciÞcally, in a 3DVAR approach, it was
found that assimilating lightning data alone through a
simple pseudo-qy observation operator notably improved
the short-term forecast of high-impact weather events in
terms of the timing and placement of the observed con-
vection (Fierro et al. 2016) as indicated by observed radar
reßectivity Þelds from the three-dimensional National
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Mosaic and Multisensor Quantitative Precipitation Esti-
mation product from National Severe Storms Laboratory
(NSSL) (Zhang et al. 2011). In contrast to radar data from
the U.S. NEXRAD network, lightning data do not suffer
from paucity in oceanic or mountainous regions, ren-
dering this assimilation method particularly useful for
such vulnerable areas in the United States. As indicated
in the Þrst study documenting this lightning data assimi-
lation method (Fierro et al. 2012), the direct insertion/
nudging of pseudo-qy observation, however, does not
address the development of spurious cells in the model
arising from biases and error in the initial conditions de-
rived or downscaled from the large-scale Þelds of oper-
ational models [e.g., North American Mesoscale Forecast
System (NAM) model]. Research is ongoing to partially
mitigate this important limitation.

Carlin et al. (2017) recently proposed an alternative,
attractive approach to assimilate pseudo-qy observa-
tions derived from dual-polarization differential re-
ßectivity (ZDR , Kumjian 2013; Snyder et al. 2015) Þelds.
Their scheme Þrst identiÞesZDR columns, as these
generally are associated with locations characterized by
deep moist convection (nearly undiluted updrafts). The
second step of their algorithm computes pseudo-qy and
temperature observations through a cloud analysis
scheme (Hu et al. 2006a). The method was evaluated for
two tornadic supercell storms and showed improve-
ments in both the analysis and forecasts for these two
cases. In particular, the analyzed updraft cores were
more coherent, and the analysis contained notably fewer
spurious cells compared to a control run not assimilating
any dual-polarization data. The 1-h short-term forecasts
exhibited a reduced northward position bias and rea-
sonable storm propagation speeds when evaluated
against observations. These forecasts, however, were
based onZDR columns derived from only one radar site.
A reliable ZDR column algorithm from multiple radars
remains to be developed in the future, which is the
subject of ongoing research.

The present study is inspired by earlier research based
on lightning and ZDR data assimilation (Carlin et al.
2017; Fierro et al. 2014, 2016), with a 3DVAR approach
in which both radial velocity and reßectivity are assim-
ilated (Gao and Stensrud 2012). Similar to the ZDR

column algorithm, the Vertically Integrated Liquid
water (VIL; Greene and Clark 1972) calculated from the
observed reßectivity Þelds is used to identify the loca-
tions of deep moist convection. We use the convectiveÐ
stratiform segregation method described inZhang and
Qi (2010) to identify convection regions, and to create
pseudo-qy observations in these regions. The pseudo-qy

observations are then assimilated into a convection-
resolving NWP model along with radar radial velocity

and reßectivity using a 3DVAR package (Gao and
Stensrud 2012). The main goal of this study is to improve
short-term (# 3 h) thunderstorm forecasts. The 3DVAR
method is chosen because of its signiÞcantly lower
computational burden compared to the more advanced
4DVAR, EnKF, and/or hybrid methods. As pointed out
in Gao and Stensrud (2012), efÞcient and fast analysis
methods are essential for prediction of storm-scale
weather systems because of the critical need for opera-
tional centers to disseminate analyses and forecasts in a
timely manner to shareholders and the public.

2. Methodology

a. The 3DVAR system

In this study, we employed a 3DVAR data assimila-
tion system that was initially developed at the Center for
Analysis and Prediction of Storms (CAPS), and sub-
sequently reÞned at NSSL. FollowingGao et al. (2004),
the 3DVAR cost function is deÞned as

J(x) 5
1
2

(x 2 xb)
T
B2 1(x 2 xb)

1
1
2

[H (x) 2 yo]TR2 1[H (x) 2 yo] 1 Jc(x) , (1)

where the Þrst term on the right-hand side deÞnes the
Euclidian distance between the analysis vector,x, and
the background,xb, weighted by the inverse of the NWP
model background error covariance matrix B. In an
earlier ARPS version of this 3DVAR system ( Gao et al.
2004, Hu et al. 2006a, b), the analysis vectorx contained
six variables: the three wind components (u, y, and w),
potential temperature (u), pressure (p), and water vapor
mixing ratio ( qy). Only radar radial velocity and surface
observations were assimilated into this system. Hydro-
meteor variables were updated by a complex cloud
analysis package (Hu et al. 2006a). In the upgraded
NSSL version (Gao and Stensrud 2012), the capability to
assimilate hydrometeor-related model variables was
added, which includes the mass mixing ratios for rain-
water (qr), snow (qs), and hail (qh). The second term on
the right-hand side is the observation term, which de-
Þnes the (Euclidian) distance between the analysis and
the observation vector, yo. In this study, yo includes ra-
dar radial velocity, radar reßectivity, pseudo-qy, and
surface data. For radar data, the forward modelH(x) is
deÞned in Gao and Stensrud (2012)and will be brießy
discussed later;R represents the observation error co-
variance matrix, which includes both instrument and
representativeness errors. The third term labeledJc(x)
represents the dynamic constraints. In the original version
of the ARPS 3DVAR code, the mass continuity equation
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was imposed as a weak constraint.Gao et al. (1999, 2004)
found that this mass continuity constraint was very useful
in providing accurate wind analyses, especially for vertical
velocity. More recently, a modiÞed mass constraint based
on the WRF model equations was included in this
3DVAR scheme. The cost function [Eq. (1)] was con-
verted into an incremental form by deÞning a new control
variable involving the square root of the background error
covariance matrix B (Gao et al. 2004), which is modeled
by a recursive Þlter (Purser et al. 2003a, b).

The radar forward observation operator for radial
velocity, which includes the effects of EarthÕs curvature
is written as follows,

yr 5
dh
dr

w 1
ds
dr

(u sinf 1 y cosf ) , (2)

where yr is the projected radial velocity, r is the slant
range (ray path distance), h is the height above the
curving EarthÕs surface,s is the distance along EarthÕs
surface, andf is the radar azimuth angle. The propa-
gation of the beams is assumed to follow the 4/3-
effective Earth radius model (Doviak and Zrnic« 1993;
Gao et al. 2008).

The forward operator for the equivalent radar reßectivity
factor in linear units (mm 6m2 3) is obtained by summing
the contributions from three mass mixing ratiosÑnamely,
rain, snow, and hailÑusing the following formulation ( Lin
et al. 1983; Gilmore et al. 2004; Dowell et al. 2011):

Ze 5 Z(qr) 1 Z(qs) 1 Z(qh) . (3)

Details behind each of these terms can be found inTong
and Xue (2005)andDowell et al. (2011). All the forecast
experiments employ the Thompson microphysics, which
predicts the number concentration for ice and rainwater
(instead of assuming a constant valueN0) and the mass
mixing ratio of Þve hydrometeor species (cloud, ice,
rain, snow, hail).

Given that the reßectivity factor is a function of three
hydrometeor variables [Eq. (3)], the assimilation of re-
ßectivity observations becomes an even more under-
determined problem. For example, it is possible to obtain a
nonzero rainwater mixing ratio in the upper levels of the
model where only snow and graupel mixing ratios are ex-
pected. To alleviate this potential limitation, a forward
reßectivity operator utilizing information from the model
background has been proposed (Gao and Stensrud 2012):

Ze 5

8
><

>:

Z(qr) 1 Z (qh) Tb . 58C
Z(qs) 1 Z(qh) Tb , 2 58C
aZ(qr) 1 (1 2 a)[Z (qs) 1 Z (qh)] 258, Tb , 58C

,

(4)

where a varies linearly between 0 atTb 5 2 58C and 1 at
Tb 5 58C, and Tb is the background temperature from a
NWP model. Gao and Stensrud (2012)found that the
modiÞed equation in Eq. (4) was more accurate and
effective in obtaining realistic hydrometeor proÞles
when the reßectivity data were assimilated.

Multiple analysis passes are used to analyze different
observation types with different Þlter scales in order to
consider the variations in the observation spacing
among different observation data. Xie et al. (2011) and
Li et al. (2010) proved theoretically that the multiple-
pass approach with a recursive Þlter is superior to the
conventional single-pass 3DVAR method. In this study,
three passes of the recursive Þlter are used. The Þrst pass
used a horizontal decorrelation length scaleL 5 24 km,
the second passL 5 12 km, and the third passL 5 4 km.
The pseudo-qy observations are only assimilated in the
third pass.

b. Pseudo–water vapor mixing ratio observations
derived from VIL

As discussed previously, among all types of mea-
surements, water vapor observations have one of the
greatest impacts on storm analyses and short-range
forecasts (Fierro et al. 2012, Ge et al. 2013). To im-
prove the short-term (0Ð3 h) forecast of high-impact
weather events at convection-resolving scales, a new
method is proposed to derive pseudo-qy observations
based on VIL. One key aspect of this method is to use
the VIL derived from reßectivity observations to iden-
tify areas of deep moist convection (Zhang and Qi,
2010), as described herein.

As a Þrst step, the radar reßectivity data from multiple
WSR-88Ds within the forecast domain are blended and
interpolated onto the model grid after being subjected
to a basic quality control (e.g., removing radar clutter
and nonmeteorological reßectivity) to yield a three-
dimensional gridded reßectivity data mosaic. If reßec-
tivity data from multiple radars exist at the same grid
point, the largest value is chosen. The quality control
(e.g., de-aliasing radial velocity) and processing of the
Doppler radar data are the same as inGao et al. (2013).

The procedure for creating the pseudo-qy observa-
tions is highlighted in Fig. 1. First, the VILs (a Þxed
constant N0 5 8 3 106m2 4 is assumed) are calculated
from the 3D gridded observed reßectivity data mo-
saicked from multiple radars (Greene and Clark 1972;
Zhang and Qi 2010) (referred to as ÔÔobserved VILÕÕ)
and the background reßectivity produced by WRF using
Eq. (4) (referred to as ÔÔbackground VILÕÕ), respectively.
The convective-stratiform segregation method ofZhang
and Qi (2010) is employed to segregate the convective
and stratiform columns. Using VIL to differentiate
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between convective and stratiform regions was shown
to be, overall, more reliable than using the reßectivity
thresholds. It is because the later has difÞculty dis-
tinguishing some regions of the trailing stratiform pre-
cipitation from regions of convective precipitation
(Zhang and Qi 2010).

If the VIL of a given model grid column exceeds a
Þxed threshold (set here to a default of 6.5 kg m2 2) in
both the observed and model background reßectivity,
the column is classiÞed as ÔÔconvectiveÕÕ and stratiform
otherwise. As indicated in Zhang and Qi (2010), the VIL
threshold is empirical, and based on subjective analyses
of composite reßectivity from several squall-line events
in the central United States during 2008 and 2009. The
RH in the identiÞed convective columns is set to 100%
between the lifted condensation level (LCL) and a Þxed
ÔÔcloud topÕÕ height deÞned by a Þxed threshold of
18.5 dBZ (Klazura and Imy, 1993), which is similar to
Fierro et al. (2016, 2019, manuscript submitted toMon.
Wea. Rev.).

Often, however, background Þelds may contain spuri-
ous convection where the observed reßectivity indicates
stratiform columns or ÔÔno-rainÕÕ echoes, especially when
invoking high-frequency radar DA cycles. To alleviate
this drawback, two scenarios are considered. If the ob-
served VIL is less than the threshold value of 6.5kg m2 2,
but the background VIL exceeds this threshold, then
spurious convection is identiÞed. In this case, the RH
from the model background is decreased to 95% of its
initial value above the LCL. If (i) both the observed and
background VIL are smaller than the threshold, (ii) the
observed reßectivity is less than 5 dBZ, and (iii) the
background reßectivity is greater than 20dBZ for a given
grid, then this grid column is classiÞed as a ÔÔno-rainÕÕ
region (Gao et al. 2018). For these no-rain areas, the
model background RH is reduced by half of the differ-
ence between the background RH and a reference RH0,
which is similar to the value used to calculate the volu-
metric cloud fraction in the cloud analysis developed by
Zhang (1999), namely, RH0 5 95% for height ( z, AGL)

FIG . 1. Flowchart highlighting the steps for deriving pseudoÐwater vapor mixing ratio. ÔÔRefÕÕ stands for reßectivity; the VIL_obs and
VIL_bkg represent the vertically integrated liquid water calculated from the observed reßectivity and simulated reßectivity of the
background Þeld, respectively. RH0 is the threshold of relative humidity whose value is dependent on height.
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below 600m, 90% betweenz 5 600Ð1500 m, 85% be-
tweenz 5 1500 and 2500 m, and 75% forz $ 2500 m. The
purpose for this approach is to hamper spurious cell de-
velopment in the domain (Fig. 1). Out of the above two
scenario, the RH from model background are not
changed due to the uncertainty of the relationship be-
tween RH and reßectivity.

It is relevant to mention tha t the derivation of the pseudo-
qy observations from the RH proÞles herein contains three
main sources of uncertainties. The Þrst is the identiÞcation/
classiÞcation of the ÔÔdeep moist convectionÕÕ areas, which
depends on the VIL threshold value and the radar obser-
vational horizontal and vertical coverage regions. The sec-
ond is the calculation of saturation water vapor mixing ratio,
whose accuracy depends on the quality of pressure and
temperatures in the background Þeld. The third is the em-
pirical variable related to relative humidity adjustment. To
reduce these uncertainties, the pseudo-observation error
can be set a relatively large value. In our experiments,
3.0gkg2 1 is used, similar toFierro et al. (2016).

3. Experimental design

To determine the impact of the assimilation of
pseudo-qy observations by the 3DVAR method on
short-term convective NWP, two tornado supercell
events were selected: 16 May 2017 over the boundary of
western Oklahoma and the Texas Panhandle (Case 1,
Fig. 2a) and the 24 May 2011 tornado outbreak in central
Oklahoma (Case 2,Fig. 2b).

The forecast model used in this study is the three-
dimensional compressible nonhydrostatic WRF Model
(version 3.7.1) with Advanced Research WRF dynamic

solver (WRF-ARW; Skamarock et al. 2008), which has
been used for a wide range of applications across scales
ranging from meters to thousands of kilometers. The
model physics conÞguration includes the Thompson mi-
crophysics scheme (Thompson et al. 2008), the Yonsei
University planetary boundary layer scheme, the Dudhia
shortwave radiation scheme (Dudhia 1989), and the
Rapid Radiative Transfer Model (RRTM) longwave ra-
diation scheme (Mlawer et al. 1997). No cumulus pa-
rameterization scheme was employed. In this study, the
model domain size for both cases was set to 750 km3
750 km, with a horizontal grid spacing of 1.5 km. The
geographical center of the model domain for the Þrst case
is at (35.848N, 99.758W) and the second at (35.848N,
98.008W). The stretched vertical grid consists of 51 levels
with a top set at 50 hPa (; 20Ð22 km SL). The time step
for the integration of the prognostic equations was set
to 6 s.

The ßowchart of the cycled data assimilation system
and forecast for the two case studies selected is shown in
Fig. 3. The model is cold started at 1900 UTC, and the
data assimilation is cycled at 15 min intervals until
2300 UTC. During the 4-h cycling period herein (Fig. 3),
3-h forecasts are launched every hour. For Case 1, the 3-km
High-Resolution Rapid Refresh (HRRR) forecast Þelds
initialized at 1800 UTC 16 May 2017 are interpolated into
the analysis and forecast domain (Fig. 2) to provide initial
background Þelds for the data assimilation cycles and
boundary conditions for short-term forecasts. Given that
the HRRR Þelds were not yet available for Case 2, the
analysis Þelds of the GlobalForecast System (GFS-ANL,
0.58) from 1800 UTC 24 May to 0300 UTC 25 May 2011 at
3-h interval are used instead.

(a) (b)

FIG . 2. Simulation domains (black square) and locations of the radar sites for (a) 16 May 2017 and (b) 24 May
2011. The maximum range of each radar is shown by a gray circle. The Þrst case utilizes 21 radars and the second
case has just 10 radars.
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The assimilation of radar data in this study includes
the radial velocity, reßectivity and pseudo-qy observations
derived from the NEXRAD Level-II data obtained from
the National Centers for Environmental Information re-
pository (https://www.ncdc.noaa.gov/nexradinv/). For Case
1 (2), data from 21 (10) radars overlapped the simulation
domain, respectively (Fig. 2). Four experiments were per-
formed: The control runs, labeled as C1Rad and C2Rad for
each case, respectively, assimilated radar data and surface
observations from the Oklahoma Mesonet. Experiments
C1RadPQ and C2RadPQ were the same as control but
added the assimilation of pseudo-qy observations. A sum-
mary of the details behind each experiment is provided in
Table 1.

4. Results

a. 16 May 2017 case

On 16 May 2017, environmental conditions favored
the development of severe thunderstorms across the
eastern Texas and Oklahoma Panhandles. Early in the
afternoon, the Þrst convective cells initiated off a dryline
near Hutchinson to Hansford, Texas, and gradually
moved northeastward, eventually reaching Beaver
County, Oklahoma (Fig. 4a). These storms produced at
least two weak tornadoes and baseball size hail north of
Beaver County. More thunderstorms initiated farther
south near the dryline in eastern Carson and Armstrong
County, Texas. These storms produced very large hail
(up to tennis ball size) and a few tornadoes as they
gradually moved eastward, toward Wheeler, Texas. One
supercell moved into Collingsworth County, and then
produced a weak tornado just west of the Texas and
Oklahoma state line 10 miles east of Collingsworth,

Texas. This storm then weakened somewhat, only to
regain strength to eventually produce the Elk City,
Beckham, Oklahoma, tornado around 0035 UTC, which
resulted in one fatality. In total, seven tornadoes to-
gether with several large hail events were reported in
Oklahoma alone (refers to the storm report, https://
www.spc.noaa.gov/climo/reports/170516_rpts.html).

The impact of assimilating VIL-based pseudo-qy ob-
servations in conjunction with radar radial velocity and
reßectivity is evaluated Þrst. The analysis increments of
qy, and an overlay comparing the observed reßectivity to
the background reßectivity exceeding 35 dBZ following
the assimilation of pseudo-qy observations at 3 km above
ground level (AGL), is shown in Fig. 4 for the analysis
times 1900, 2100, and 2300 UTC. It can be seen that, at
1900 UTC, there are two weakqy increment areas over
the north Texas panhandle with a maximum value of
; 0.9 g kg2 1 (Fig. 4a). The observed reßectivity echoes
and model forecasted background echoes are displaced
by about 25Ð50 km from each other (Fig. 4b). During
each successive data assimilation cycle, the convective
cells over the north Texas Panhandle gradually move
northeastward into the Oklahoma Panhandle and, later,
over southwest Kansas where multiple supercell mergers
(upscale growth) resulted in the formation of a meso-
scale convective system (MCS) at 2300 UTC. At
2100 UTC, most of the simulated storms are closely
collocated with the observed storms though slight dis-
placement errors between the observation and back-
ground still exist (Fig. 4d). The qy increments are
primarily seen where large (. 35 dBZ) radar echoes
exist in the observations but with a smaller areal cov-
erage because of the small decorrelation length scale
(L 5 4 km) chosen (Fig. 4c). In areas where spurious
echoes were identiÞed by the algorithm, the qy in-
crements are negative, whose primary effect is to grad-
ually weaken some of the spurious cells in the analysis.
At 2300 UTC, the three analyzed supercell storms located
at the boundary between Texas and Oklahoma de-
veloped more rapidly than observed. Similar to 1900 and
2100 UTC, the positive qy increment areas are mainly
collocated within strong radar echo regions, while the
negative qy increment areas are collocated with spurious
echoes in the analysis domain. The maximum (minimum)

FIG . 3. Illustration of data assimilation cycles and forecast cycles
used for both case studies. ÔÔOBSÕÕ represents the assimilated ob-
servations, such as radar velocity and reßectivity, surface data, and
the pseudoÐwater vapor. The observations are assimilated every
15 min, with a 3-h forecast launched every hour. The blue arrows
indicate the time at which the observations are assimilated, and the
red lines indicate the time at which the 3-h forecasts are launched.

TABLE 1. List of experiments.

Experiments Observation
Pseudo-

observation

16 May 2017 C1Rad Radar1 mesonet Ñ
C1RadPQ Radar 1 mesonet qy

24 May 2011 C2Rad Radar1 mesonet Ñ
C2RadPQ Radar 1 mesonet qy
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FIG . 4. (left) Analysis increments for qy at 3 km AGL, and (right) observed and model background reßectivity
Þelds exceeding 35 dBZ (shaded for observed reßectivity at 5-dBZ interval and black contour for background
reßectivity in 10-dBZ interval) for C1RadPQ at (a),(b) 1900 UTC, (c),(d) 2100 UTC, and (e),(f) 2300 UTC 16 May
2017. The respective county names are labeled in (a).
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value of the qy increment was 7.6 (2 0.9) g kg2 1, re-
spectively. At this time (2300 UTC), the number of spu-
rious storm cells is notably reduced compared to earlier
times (1900 and 2100 UTC).

The analyzed reßectivity Þelds at 2300 UTC for
C1Rad (Fig. 5b) and C1RadPQ (Fig. 5c) show that the
assimilation of pseudo-qy produces three well-deÞned
supercell objects near the Texas and Oklahoma border
when compared against observed composite reßectivity
Þelds in term of storm locations and storm intensity
(Fig. 5a). The southernmost supercell near the Texas
and Oklahoma border for C1RadPQ is more vigorous in
comparison with C1Rad, and is more consistent with the
observations. From the observed composite reßectivity
Þelds (Figs. 5a,d,g,j), there are several MCSs propagat-
ing east-northeastward. To better analyze and discrim-
inate the comparisons, we divide the precipitation
system into three main regions from north to south (la-
beled A, B, and C) within the simulation domain
(Fig. 5a). At the analysis time (2300 UTC), a weak
convective cell is seen in region C. A few hours later, this
cell matures further with new cells continuously de-
veloping/back building from the southern boundary of
the domain (Figs. 5g,j). A cluster of several storm cells is
seen in region A, which gradually drifts northeastward
and, ultimately, outside of the simulation domain by
0300 UTC. The northernmost and middle storms are
stronger than the ones to the south. At 0000 UTC, the
northernmost cell splits into several smaller ones, re-
sulting in the formation of two additional mature su-
percells (Figs. 5d,g). At 0200 UTC, the cells in region B
gradually weaken while moving northeastward. During
the same period, several new cells grow at/near the
boundary of the simulation domain (Fig. 5j).

At 1-h forecast valid at 0000 UTC, the southernmost
cell in region B vanishes in C1Rad (Fig. 5e); but intensiÞes
in C1RadPQ (Fig. 5f), in better agreement with the ob-
servations (Fig. 5d). At 1.5-h forecast (valid at 0030 UTC),
the middle supercell near Elk City, Oklahoma, in region
B for C1RadPQ intensiÞed quickly (Fig. 5i), which is
also more consistent with the observations indicating the
presence of an EF3 tornado there at ; 0030 UTC. Al-
though the same supercell is also well predicted at 1-h
forecast (valid at 0000 UTC) in C1Rad (Fig. 5e), this storm
weakened very quickly until completely disappearing by
3-h forecast (Fig. 5k).

The above focuses on only one 0Ð3-h forecast re-
alization. To provide a more thorough examination of the
impact of the pseudo-qy assimilation, the simulated
composite reßectivity swaths and 2Ð5-km updraft helicity
(UH) tracks initiated at four different times are overlaid
with the SPC severe storm reports (tornadoes, hail, and
damaging wind) in Figs. 6and 7 . The reßectivity swaths

and UH tracks are based on four 0Ð3-h model forecast
output every 15min. For the forecast initialized at
2000 UTC, the impact of the pseudo-qy is limited. The
predicted composite reßectivity tracks are similar in both
experiments (Figs. 6b,c) with both exhibiting notable
discrepancies relative to the observed reßectivity tracks
and the SPC reports (Fig. 6a). But for the forecast ini-
tialized at 2100 UTC, the assimilation of pseudo-qy has a
more noticeable positive impact as indicated by forecast
reßectivity tracks becoming gradually more consistent
with the observations (Fig. 6d), especially near the
Oklahoma and Texas Panhandle border (Fig. 6f vs
Fig. 6e). The forecast tracks of two main supercells near
the center of the domain improved when the forecast is
initialized at 2200 UTC as evidenced by severe weather
reports becoming better aligned with the main simulated
storms in C1RadPQ (Fig. 6i). In contrast, the C1Rad
exhibits a clear northward bias for all three major storm
tracks over the Oklahoma and Texas Panhandle border
(Fig. 6h). For the forecast initialized at 2300 UTC, the
tracks for all three major storms are well forecast with
very small phase errors in west Oklahoma for C1RadPQ
(Fig. 6l). Only two storm tracks are correctly predicted in
C1Rad. For the MCS in southwest Kansas, the embedded
supercells which produced tornadoes and severe hail re-
ports near the north central portion of the domain appear
to be reasonably well predicted in both experiments.
Also, both experiments miss the storms associated with
the hail reports in the western part of the domain and
exhibit a southward bias relative to the tornado-
producing convection. Additionally, the two supercells
located near the southern boundary of the domain pro-
duce weaker-than-observed reßectivity tracks. To prop-
erly account for these supercells in our forecast
experiments, a larger simulation domain would have
likely been needed.

As evidenced by the 2Ð5-km UH tracks initiated at
four different forecast times (2000, 2100, 2200, and
2300 UTC), the predicted rotational tracks gradually
become more consistent with the SPC storm reports;
especially when the pseudo-qy observations are assimi-
lated (Fig. 7). The UH tracks are narrower than the
maximum reßectivity tracks. These comparisons thus
demonstrate more directly the positive impact of cycled
pseudo-qy assimilation.

To evaluate the impact of assimilating pseudo-qy

more quantitatively, equitable threat scores [ETS; Eqs.
(1) and (2) in Clark et al. (2010)] are calculated for 0Ð3-h
forecasts initialized at four different times in both
C1Rad and C1RadPQ (Fig. 8). A perfect analysis or
forecast is deÞned as ETS5 1.0, and a poor analysis and
forecast are associated with ETS values close to 0. These
values are calculated for the composite reßectivity
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