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ABSTRACT

We test the impact of changing numerical precision upon forecasts using the chaotic Lorenz’95 system.We

find that in comparison with discretization and numerical rounding errors, the dominant source of errors are

the initial condition errors. These initial condition errors introduced into the Lorenz’95 system grow expo-

nentially at a rate according to the leading Lyapunov exponent. Given this information we show that the

number of bits necessary to represent the system state can be reduced linearly in time without significantly

affecting forecast skill. This is in addition to any initial reduction in precision to that of the initial conditions

and also implies the potential to reduce some storage costs. An approach to vary precision locally within

simulations, guided by the direction of eigenvectors of the growth and decay of forecast error (the ‘‘singular

vectors’’), did not show a satisfying impact upon forecast skill in relation to cost savings that could be achieved

with a uniform reduction of precision. The error in a selection of ECMWF forecasts as a function of the

number of bits used to store them indicates that precision might also be reduced in operational systems.

1. Introduction

Several studies have shown that numerical precision

can be reduced significantly in atmospheric modeling

and that such a reduction in precision promises large

savings in computational costs (e.g., Düben et al. 2014;

Düben and Palmer 2014; Jeffress et al. 2017). For exam-

ple, reducing numerical precision reduces the amount of

data that must be exchanged between a computer’s CPU

and main memory, between nodes of a cluster and, de-

pending upon the hardware, can increase the number of

calculations per CPU clock cycle. All of which are po-

tential bottlenecks in a model’s performance. If compu-

tational cost is reduced, savings can be reinvested to

achieve model simulations at higher resolution or model

complexity, or more ensemble members in ensemble

forecasts to improve future predictions (e.g., Palmer

2012). The idea is to reduce numerical precision to

the minimal value that can be justified by the level

of model uncertainty and information content within

model simulations to enable models to run as efficiently

as possible.

Numerical precision can be reduced more strongly

at later forecast lead times compared to a reduction inCorresponding author: FenwickC.Cooper, fenwick@littlestick.com
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numerical precision at the beginning of a forecast

(Düben et al. 2015). This is consistent with the idea that

one can reduce precision to a level that can be justified

by model uncertainty since model error will grow with

forecast lead time. For simulations of a nonlinear and

chaotic system that start from imperfect initial condi-

tions, the expansion or contraction of errors is governed

over short time scales by the so-called singular values

and vectors (Molteni and Palmer 1993), and for typical

perturbations, at longer time scales the mean error will

grow exponentially, with the rate of error growth called

the leading Lyapunov exponent of the system (e.g.,Wolf

et al. 1985; Vannitsem 2017). Wolf et al. 1985 define the

leading Lyapunov exponent l by

l5 lim
t/‘

1

t
log

p(t)

p(0)
,

where p(t) is the separation of trajectories in phase space

as a function of time and p(0) is sufficiently small. In

practice the limit as t / ‘ is never reached and p(0) is

never sufficiently small, so an approximation, perhaps

estimated from an ensemble average, is used. Note that

the limit as t / ‘ indicates that the Lyapunov expo-

nent is not necessarily well approximated by the initial

growth of perturbations. After some time, the average

distance between the truth and a model trajectory ap-

proaches the limits of the system and the mean error

approaches a constant. This is often loosely referred to

as the forecast reaching ‘‘climatology’’. In real weather

forecasts, the growth of mean forecast error is assumed

to be a superposition of an exponential growth rate due

to the growth of imperfect initial conditions and a linear

growth due to the use of an imperfect model with limited

accuracy, for example due to limited resolution and errors

in model formulation (e.g., Magnusson and Källén 2013).

In this paper, we investigate the extent to which one

can take advantage of error growth by making a steady

reduction in numerical precision with forecast lead time.

We consider the impact of reduced precision upon both

the dynamics and forecast skill of the chaotic Lorenz’95

system (Lorenz 1995). Although the Lorenz’95 ‘‘atmo-

sphere’’ is unrealistic, it was created to share some as-

pects of the predictability of the real atmosphere, as

explained in detail in Lorenz (1995). It is a chaotic sys-

tem with solutions that decorrelate in time, which is

the property necessary to link forecast error to numer-

ical precision, and it is a high-dimensional system with

propagating solutions that decay in space, which is the

property that relates it to a more realistic atmospheric

model. Integrating the Lorenz’95 system to equilibrium

requires a tiny fraction of the computational effort re-

quired to do the same with a numerical weather model.

This enables us to complete the large number of ensem-

ble integrations required to distinguish between small

model differences.

Today, it is common to store model output in weather

forecasts at the same level of numerical precision over

the entire length of the forecast. It is straightforward to

use a reduction in precision to reduce the storage costs

of weather model output. Savings can be used to store

moremodel fields or to simply increase the rate ofmodel

outputs. A similar reduction in precision with forecast

lead time could also be performed for floating-point

arithmetic within model simulations when switching

fromdouble (64 bits) to single (32 bits) or other precisions,

for example in the network data communicated between

nodes, or when using hardware that allows the use of

flexible floating-point precision such as Field Program-

mable Gate Arrays (FPGAs), see Jeffress et al. (2017).

2. Simulations with the Lorenz model

We study the single layer Lorenz’95 system, (some-

times referred to as Lorenz’96), that is defined by

›x
j

›t
5 x

j21
(x

j11
2 x

j22
)2 x

j
1 f , (1)

where f is constant in time, j 5 1, 2, 3, . . . , K and the

system is periodic xj 5 xj1K 5 xj2K (Lorenz 1995). In a

very loose sense, theK variables are said to represent an

atmospheric quantity at equally spaced sectors around

the equator with a time unit of around 5 days. The

quadratic terms represent advection, the decay term

represents some kind of dissipation and f an external

forcing. In this paper, we choose K 5 40 and f 5 20

making the system chaotic. Equation (1) is integrated

using a fourth-order Runge–Kutta method (e.g., Press

et al. 2007) with a time step of Dt 5 0.01.

We investigate a reduction in precision using two

different methods:

1) Precision analysis using a software emulator

The 64 bits in an IEEE standard double precision

floating-point number are made up of 52 significand

bits, 11 exponent bits and a sign bit (Zuras and

Cowlishaw 2008). We perform integrations that

use different numbers of bits for the significand of

floating-point numbers. To control the precision of

calculations, we use the reduced-precision-emulator

(rpe, see Dawson and Düben 2017). This library

enables us to simulate the code as if it was run on

reduced precision hardware.

2) Precision analysis using Verificarlo

Weperform a precision analysis using theVerificarlo

compiler (Denis et al. 2016). Verificarlo is a compiler
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that automatically applies Monte Carlo arithme-

tic. By adding random noise to input variables,

Monte Carlo arithmetic tracks rounding and can-

cellation errors throughout model integrations

and enables identification of their effects.

Results

To evaluate model quality at different levels of nu-

merical precision relative to a double precision control,

we average the mean-squared error (MSE),

MSE(t)5�
K

j51

[x
j
(t)2x̂

j
(t)]2 ,

in the reduced precision xj variables with respect to the

double precision control x̂j variables, of forecasts made

using 400 independent integrations between t 5 0, after

spinup, and t 5 7, see Fig. 1. Prior to each forecast we

performed a ‘‘spinup’’ integration from t5220 to t5 0

from random initial conditions, so that our forecast ini-

tial conditions start from on, or near to, the attractor.

The kink in the curves in Fig. 1 around t 5 1 is repro-

duced in an independent set of integrations and is also

visible in the autocorrelation of xj. To check that our

conclusions are not simply an artifact of theRunge–Kutta

scheme, we verified the results using a second-order

backward differentiation formula with an adaptive

time step using the sundials ida package (Hindmarsh

et al. 2005).

In Fig. 1 the mean-squared error increases at an ap-

proximately exponential rate toward a climatological

mean value, which is somewhat independent of pre-

cision. This rate approximates the leading Lyapunov

exponent of the system. In Fig. 1 it appears that the

exponent for each line is comparable, while the lines are

separated by approximately equal values of log(MSE).

This indicates that MSE is dominated by errors in the

initial condition rather than any other errors due to re-

duced precision, such as inaccurate additions or multi-

plications. For example, consider a 50 bit and a 30 bit

significand. The initial condition error in the 30 bit sys-

tem is much larger than in the 50 bit system, but these

errors increase at approximately the same rate in time in

both systems.

The gradient of each of the log(MSE) lines in Fig. 1 is

estimated and plotted in Fig. 2. The gradient (or leading

Lyapunov exponent) hardly changes between integra-

tions with a 30 to 51 bit significand. The gradient does

change as the number of bits is reduced below 30, indi-

cating the impact of reduced precision on the chaotic

dynamics of the system; however, a reduction to a 13 bit

significand alters the leading Lyapunov exponent by less

than 10%. The final climatological error seems to be

very consistent over a large range of precision. Note that

log(MSE) in the Runge–Kutta time step, estimated by a

fifth-order method (Cash and Karp 1990, as applied in

Press et al. 2007), is approximately 229 corresponding

to a significand of about 28 bits.

The limited impact of reducing precision upon the

Lyapunov exponent suggests that both data storage and

FIG. 1. Logarithm of the mean-squared error (MSE) of reduced

precision integrations with respect to a double precision integra-

tion as a function of time. The lowest line in dark green represents

the MSE when using a 51 bit significand, the red line above it

corresponds to a 50 bit significand, the cyan line above that 49 bits,

and so on. The top line corresponds to a 3 bit significand. The

different starting points in the plot are caused by the reduction of

precision in the initial conditions.

FIG. 2. The gradient of each line in the MSE plot in Fig. 1. The

average gradient is estimated between t5 0.1 and a log(MSE) of 0

with the circle indicating the average over all 400 forecasts and the

dashed lines indicating the uncertainty in this average (the standard

deviation multiplied by 2/
ffiffiffiffiffiffiffiffi

400
p

). Note that the y axis covers a

change in the gradient of about 10% of the overall value.
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precision in the model integration can be reduced as

error grows. To test this, the 51 bit model is integrated

until its MSE, averaged over all 400 forecasts, is slightly

larger than the initial conditionMSE of the 23 bit model,

(which corresponds to IEEE single precision floating-

point format). At this point (t 5 3.5) the precision is

reduced to 23 bits and the forecast continues. When

compared with simply continuing the 51 bit integration,

the 23 bit forecast does have a slightly larger average

MSE after t 5 3.5, but the difference is small (see

Fig. 3a). To check that the MSE is in fact caused by

finite precision rounding error, these integrations were

repeated using Verificarlo with 50 ensemble members,

Fig. 3b. These results with Verificarlo confirm those

found using rpe, that the logarithm of the variance due

to initial rounding errors, increases linearly in time.

We may compute an error covariance matrix for the

short time evolution of perturbations to the linearized

governing equations (Molteni and Palmer 1993). If an

ensemble of integrations is started, each member with

a small normally distributed perturbation to its initial

condition, then the error covariance matrix describes

the initial expansion and contraction in time of the dis-

tribution of ensemble member states. Wemight suppose

that precision may be reduced in the direction of the

contracting eigenvectors of this matrix (sometimes loosely

referred to as the ‘‘singular vectors’’), because any errors

will get smaller. However, we found that in the Lorenz’95

system, the sum of the first three eigenvectors, where the

error covariance is contracting, looks rather like the sum

of the final three eigenvectors, where the error covariance

is expanding, see Fig. 4a. The overall growth or contrac-

tion of error at a grid point depends upon all of the sin-

gular vectors and may be small relative to the impact of

only the leading singular vectors.

To test if a reduction in precision in contracting error

directions is beneficial, we project the contribution of

all of the singular vectors onto the xj variables. At a

particular time step, this contribution at a particular xj
might be above one, indicating expanding error, or be-

low one indicating contracting error. For this time step

we then choose the significand (separately for each xj) to

be either 18 bits for contracting or 19 bits for expanding

errors. The MSE of this integration lies in between the

18 bit and 19 bit curves in Fig. 1, see Fig. 4b. Repeating

the experiment with 17 and 20 bits for the contracting

and expanding directions, yields a MSE curve between

the 17 and 18 bit curves in Fig. 1, also in Fig. 4b. The

reduction in forecast error due to an increase in sig-

nificand size from 17 bits to 18 bits is larger than the re-

duction in forecast error due to increasing the significand

size from 17 to 20 bits restricted to when the error is in-

creasing. These results summarize our conclusions ar-

rived at by comparing several other choices of precision,

(not shown here).

3. Evaluation of stored forecast data

We use data output from the high-resolution, opera-

tional weather forecasts of the European Centre for

Medium-RangeWeather Forecasts (ECMWF). Figure 5a

shows the MSE between 208 and 908N for geopotential

FIG. 3. (a) log(MSE) of a 51 bit model (solid black line) and a 23 bit model (dashed black line) as a function of

time. The curves are identical to their equivalents in Fig. 1. At t5 3.5 (vertical gray line) theMSEof the 51 bitmodel

is about the same value as the initial condition error of the 23 bit model. The 23 bitmodel is initializedwith the 51 bit

model state at this point (solid red line). (b) Logarithm of the ensemble variance for a model simulation integrated

with Verificarlo. The solid black curve represents the ensemble variance when the least significant bit is randomly

flipped. The dashed black curve represents the ensemble variance when the 29 least significant bits are randomly

flipped, leaving 522 295 23 bits of precision remaining. The solid red curve is identical to the dashed black curve,

except it has been moved to start at t 5 3.5.
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height at 500hPa (Z500). The errors are averaged for 12

forecasts that were initialized on the first day of each

month in 2016. The MSE is calculated in gridpoint space

for data stored at varying levels of precision on a reduced

Gaussian grid with 640 grid points between pole and

equator. At ECMWF, model data are stored in the form

of GRIB files (Dey et al. 2003) in a fixed point format,

with an equal spacing of the interval between theminimal

and maximal field value within a vertical model level.

Precision of output files can be adjusted by the user who

can adjust the number of bits that are used per variable. In

Fig. 5a, it is visible that the impact of a precision reduction

is reducing with forecast lead time, albeit over a much

smaller range of precision and much larger initial condi-

tion uncertainty than that considered here. The analysis

of the Lorenz’95 system here provides a very basic po-

tential explanation of why this is the case. As explained in

the next section, in particular Eq. (4), it is a property of all

chaotic systems. Being a much more complex model, it is

not certain, however, that the time-dependent impact of

stored precision upon the MSE here is due to the same

chaotic processes as those observed with the Lorenz’95

system. Or even that other nonchaotic processes domi-

nate the error growth. Compare with Fig. 5b, which shows

FIG. 4. (a) For a particular point in time of a single integration, the sumof the first three (expanding error) singular

vectors (black) and the last three (contracting error) singular vectors (red). The similarity of the black and red lines is

typical in the Lorenz’95 system. (b)Difference between the 19 bit log(MSE) and the 18 bit (solid black line) and 17 bit

(dashed black line) curves in Fig. 1. The red curve illustrates the case when contracting errors are represented by

18 bits and expanding by 19 bits. The blue curve illustrates the case when contracting errors are represented by 17 bits

and expanding by 20 bits. A log(MSE) difference of zero indicates the same error as the 19 bit integration.

FIG. 5. (a) MSE of 500 hPa geopotential height (Z500) data, between 208 and 908N, of ECMWF’s operational

deterministic forecast (a single integration at 9 km resolution for each forecast) with respect to the operational

reanalysis (an estimate of the true state using measurements). The errors are averaged for 12 forecasts that were

initialized on the first day of eachmonth in 2016. TheMSE is calculated in gridpoint space for data stored at varying

levels of precision (indicated) on a reducedGaussian grid with 640 grid points between pole and equator. The 10 bit

and 16 bit lines are approximately coincident. (b) MSE in the 51 bit Lorenz’95 forecast when the 51 bit output is

stored at a range of precisions. The inset plot is a zoom of the full plot, illustrating a plausible range of behavior that

the ECMWF forecast is displaying.
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the equivalent plot for the Lorenz’95 system where

double precision model output has been truncated to a

range of precisions for storage.

4. Discussion

In our Lorenz’95 experiments, forecast error due to

a reduction in precision is dominated by the reduction

in accuracy of the initial condition. The growth rate of

errors, that is described by the Lyapunov exponent, is

very similar for integrations utilizing a range of preci-

sions. Since rounding errors grow exponentially, the

number of bits of the systems state that are not per-

turbed by rounding errors reduces linearly with forecast

lead time if only unperturbed bits contain relevant in-

formation regarding the model state.

To make the final point above explicit we write the

forecast error

E’E
0
exp(lt) , (2)

where E0 is the initial condition error and l is the

leading Lyapunov exponent. If data are stored in an

integer format so that the space of possible values is

evenly divided (as in GRIB), then the smallest distance

D that can be represented is given by

D5D
0
22n , (3)

where D0 is the maximum range for which a physical

quantity is meaningful (e.g., for temperature in kelvin

230, T, 320K/D05 90) and n is the number of bits

used. If we want the numerical precision to match the

MSE, we can set D and E to be equal and obtain an

equation for the number of bits that should be used as a

function of forecast lead time:

n’
log(D

0
)2 log(E

0
)

log(2)
2

l

log(2)
t . (4)

The constants E0 and l might be estimated by curve

fitting, for example that performed for each point in

Fig. 2. Other, more sophisticated methods are also

available (e.g., Wolf et al. 1985). A similar relation-

ship to Eq. (4) has been found by Wang and Li (2014)

in a different context. The equation suggests that the

number of bits required is approximately linearly re-

lated to the forecast lead time, with the gradient de-

termined by the leading Lyapunov exponent, which

indicates that storage requirements can be halved (see

the dark gray region in Fig. 6). Note that this reduction

is in addition to the initial reduction in precision to the

initial value uncertainty (see thewhite region in Fig. 6). In

the future, customized computing hardware that works

at a reduced precision may be designed. At this hardware

level, both the area of silicon and electrical power re-

quired for a calculation (and hence monetary cost) are

approximately proportional to the number of bits of pre-

cision (e.g., Jeffress et al. 2017). It therefore seems likely

that these costs can ultimately also be approximately

halved. However, we have not considered the exponent.

In addition to the exponential error growth due to

the chaotic dynamics, the missing accuracy of a weather

model itself is a large and linearly growing source of

error (Magnusson and Källén 2013). Predictability is

also state dependent (e.g., Dawson and Palmer 2015)

and a reduction of precision, solely justified by mean

errors over all weather regimes, is likely to reduce skill

for the most predictable regimes. On the other hand, the

reduction in forecast error obtainable by increasing

the number of significand bits by one everywhere in

the Lorenz’95 system was found to be much larger

than the reduction due to changing precision accord-

ing to directions of increasing and decreasing error, ac-

cording to the ‘‘singular values.’’ Given the dominance of

the initial condition error, and the difficulty ofmaking use

of the contracting singular values, it seems that it would

be difficult to obtain further reductions in precision of

the Lorenz’95 system through considering the contract-

ing local Lyapunov covariant vectors (see, e.g., Ginelli

et al. 2013).

FIG. 6. An illustration of approximate storage (and potentially

computational) cost savings possible, as suggested by the Lorenz’95

experiments described in this paper. The x axis represents forecast

time, the y axis represents the number of bits used in a computation

and the integral of lines on this plot represents cost. Integrat-

ing at standard precision for an extended time is themost expensive

approach. By reducing precision to the initial condition error

(D5 E0) throughout the forecast, the white area may be eliminated

from the cost. Stopping the forecast when climatology has been

reached removes the light gray area. Reducing the precision opti-

mally as a function of time (D 5 E) can potentially yield a further

halving of storage cost (elimination of the dark gray area). The area

between the dashed horizontal line and the origin indicates the

additional cost of continuing the forecast at low precision, perhaps

for the collection of climatological or seasonal statistics.
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Seasonal forecasts have been shown to hold useful

information for several months (e.g., Weisheimer and

Palmer 2014). At seasonal time scales, the forecast error

will be close to climatology and Eq. (4) needs to be

modified to retain this information. Reduction in pre-

cision should be related to the meteorological informa-

tion we are interested in and the growth behavior of

forecast mean error will depend on the error metric and

the diagnostic that is considered (Orrell 2002). For

example, slightly displacing a front within forecasts

will have a strong negative impact on the MSE but not

necessarily destroy all predictive information for weather

forecasters.

The points above can be addressed by using a slower

reduction in precision than that suggested by the leading

Lyapunov exponent and by limiting the minimal level of

precision toward the end of a forecast. We have shown

evidence that it might be possible for operational fore-

castmodel fields to be stored at a low precision (;10 bits)

and still allow for their appropriate representation

of arbitrary derived quantities, given the huge uncer-

tainties. Of course, if only a small quantity of output

data are required, for example in order to plot 500 hPa

synoptic-scale weather charts of a few model variables,

then there is no advantage to storage at low precision.
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