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ABSTRACT

The problem of matching the nonlinear, frictional flow in a simple western boundary layer to a specified
interior flow is considered. Two problems are discussed, using streamfunction as a coordinate across the boundary
layer. First, a unidirectional flow is considered. The dissipation is considered to be some positive quantity, and
it is shown that for a simple form of this, many different amounts permit a smooth match to the interior. The
magnitude of the dissipation can be determined absolutely at the dividing point between in- and outflow. The
dissipation south of this point must be smaller and north of this point must be larger; a simple equation describes
the relationship between dissipations north and south of the dividing point. Second, a bidirectional boundary
layer is permitted. A specific form of dissipation (a linear drag) is applied, with a constant coefficient. It is
shown that in this case it still remains possible to match to a specified interior flow, although inertial overshoot
occurs both into the next gyre polewards as well as equatorwards into the inflow region, if the drag is small
enough. Thus, taken together with published results on Laplacian dissipation, these simple models suggest that
western boundary layers are passive and can match to a specified interior flow without modifying that flow in
any way (although this may not be the case for very low friction).

1. Introduction

The precise role played by a western boundary layer
in the gyre in which it is embedded is far from clear.
Early studies by Stommel (1948) and Munk (1950)
demonstrated that a narrow dissipative western region
was necessary to remove the continuous input of vor-
ticity by the wind over the gyre (for example, cf. Ped-
losky 1987). However, when the dissipative term takes
only a small value, the western boundary layer must
take a convoluted form in order that the dissipation
can occur over a sufficient length of streamline to
achieve the correct energy balance. This leads inevitably
to the requirement for a strong recirculation region
(e.g., Cessi et al. 1990). If the dissipative term is some-
what larger there is no need for a recirculation region,
and a simple unidirectional western boundary current
can occur.

The formal difficulty with such a boundary current
is that the predominant momentum balance is inertial,
that is, nonlinear. Steady, nonlinear, dissipationless
boundary-layer theories were developed by Charney
(1955) and Morgan (1956). These theories are capable
of giving a good description of the southern haif of an
anticyclonic gyre—that is, the part that involves an
inflow from the interior of the gyre to the western
boundary current. Because of the necessity to balance
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vorticity input with dissipation, these theories fail in
the northern half of the gyre where the flow leaves the
western boundary current in an eastward direction and
rejoins the interior. The failure manifests itself most
clearly in the inability of the solutions to maintain two
conserved quantities simultaneously on the same
streamline: a Bernoulli functional and potential vor-
ticity. In the simplest case, the Bernoulli functional is
just the upstream pressure head and is related to a layer
depth, while the potential vorticity is related to both
the Coriolis parameter and the layer depth. Clearly both
cannot be conserved simultaneously if a latitude change
1s involved except in unusual circumstances {e.g., uni-
form potential vorticity solutions pioneered by Fofon-
off 1954).

These difficulties have meant that most studies of
western boundary layers have been numerical in some
form. Such studies have usually, by necessity, included
the solution of the essentially dissipation-free interior
as well as the western boundary layer.

Dissipation is caused by a variety of effects: time-
dependent barotropic-baroclinic eddying and inter-
actions with the ocean floor and walls. Only recently
have basin-scale eddy-resolving numerical models been
able to resolve the eddy structure of a western boundary
current (Bryan and Holland 1989), so that most studies
have continued to parameterize the effect of eddies in
some way. These parameterizations are ad hoc, partly
because the numerical models fail without such terms;
they include linear drag (Stommel) terms, Laplacian
drag (Munk), and biharmonic and higher terms. The
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boundary conditions required for such terms (no-slip,
free-slip, superslip, etc.) become equally ad hoc and
the subject of debate. Many parameterizations imply
a downgradient transfer of the property being mixed—
usually momentum, but more properly potential vor-
ticity—yet there is little direct evidence for the direction
or size of mixing in, say, the Gulf Stream. The behavior
of different physical systems, for example, the strong
boundary current separation of quasigeostrophic mod-
els versus the tendency for primitive equation models
to separate rather less, is also under investigation.

For the near future, then, we must continue to study
western boundary layers using simple frictional forms.
We do so not because we have confidence in them, but
because we have nothing better to date (and, also, be-
cause their effects are somewhat simpler to under-
stand).

There is another linked problem. Studies of the in-
terior geostrophic thermohaline circulation (cf. We-
lander 1971 for a survey) were wind and buoyancy
driven and explicitly ignored the role of the western
boundary layer. This neglect has continued, both with
layered models (Luyten et al. 1983) and continuously
stratified models (Killworth 1987; Huang 1986). In all
cases the western boundary layer was presumed entirely
passive and capable of accepting and returning any
fluid sent into it from the interior.

This assumption is both necessary and worrying for
such models: necessary because geostrophy precludes
the dynamics appropriate to the boundary layer and
worrying because there is as yet little proof that the
boundary layer is capable of behaving in the manner
required by the theories. Specifically, how easily can
the western boundary layer match onto an arbitrary
geostrophic interior?

The question partly depends on the form of dissi-
pation employed. Cessi et al. (1990) use a small La-
placian dissipation in a highly idealized study and find,
as in Moore’s (1963) model, that their solution can
eventually match to a specified interior flow, together
with standing planetary waves. In this case the along-
boundary component of the boundary-layer flow is al-
ternately positive and negative as one moves eastward
towards the interior. The “interior” here is only (part
of) the region of outflow from the western boundary
layer; the inflow portion of the interior is assumed to
have created a specified boundary layer. Has the fourth-
order nature of Cessi et al.’s equation set given enough
degrees of freedom so that the match with the interior
1s successful? What if the dissipation term took another
form, for example, a simple linear drag? If the coeffi-
cient of this drag is sufficiently large, then the planetary
wave regime disappears and the alongboundary flow
is of one sign everywhere. Can solutions in this case
match onto an arbitrary interior?

We examine two linked questions in this paper, using
a simple model. We let the dissipation be a positive
definite quantity, defined as the first term in a Taylor
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series from a value of zero in the fluid interior (but
otherwise not linked to flow variables in any way). We
examine various forms for the coefficient of this quan-
tity and show that values in the outflow region are
specified, while values in the inflow region can be freely
chosen. Accordingly, many different amounts of dis-
sipation permit a western boundary current to match
with a specified interior flow structure. This is rather
surprising: even within the simple dynamics, the so-
lutions permits a nonunique western boundary current.

However, this could be a product of the free form
permitted for the dissipation. This will be shown not
to be the case. We then (section 5) specify that the
dissipation takes the form of a linear drag with a con-
stant coeflicient. It turns out that the western boundary
current can still be matched to a specified interior, for
any dissipation, although when the dissipation becomes
small, two new features occur: the boundary-layer flow
becomes bidirectional and inertial overshoot occurs
both into the next gyre polewards and into the west-
ward-flowing interior to the south. This latter effect
causes unresolved difficulties in defining what is meant
by the “interior” circulation.

2. The problem

For simplicity we choose a steady 1%-layer model,
driven by an Ekman pumping w;. Taking axes x east-
ward and y northward, the momentum and mass
equations are, respectively,

uu, + vu, — fo = —g'h, (1)
uv, + vv, + fu = —g'h,— D 2)
(hu)x + (hv), = —wg, (3)

where the velocity field is (u, v), g'is areduced gravity,
and the depth of the fluid is denoted by /. The Coriolis
term is f( ¥) = fo + By. The dissipation is denoted by
D. Suffixes denote partial differentiation, although later
a prime will be used when the quantity concerned is
only a function of a single variable.

The scaling for the problem is traditional. The in-
terior fluid (i.e., that away from the western boundary
layer) is assumed in geostrophic balance. Thus, if L is
a typical length scale, we find that in the interior

1/2 !
h~H=h(TE) R @
Bg

In the western boundary layer the balance is semi-
geostrophic. Here the northward velocity is of order
(g'H)'?» U, whereas the eastward velocity is of order
U as before. The thickness of the boundary layer is the
deformation radius a = (g'H)'/?/ fo. [ This can also be
written as (UL f ¢')'/? ~ (UB™')!/2, which is the more
familiar form due to Charney (1955).] To leading or-
der, then, the momentum and mass equations become
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—fv=—gh, (5) Johnson 1991; Killworth 1992; the choice is convenient

o, because y is a conserved quantity). The technique has

uvx + vvy + fu = —g'h, — D (6)  the (apparent) disadvantage of precluding a recircu-

(hu), + (hv), = 0, (7) lation region and, therefore, requires that the solution

where the omitted terms are all small, as can easily be
verified. Notice that the dissipation has been retained
only in (6); in (5), it is of order (a/L) < 1 compared
with the geostrophic terms. Also, the form of the dis-
sipation has not been specified. These equations can
now be nondimensionalized using the above scalings.
Explicitly, put u = Uu', v = (g'H)"*', h = HK', y
= Ly', x = ax’, D = (g'H/L)D’, and then drop the
primes. This yields

(1 +e)v=—hy (8)
uvy+ oo, + (1 +e)u=—-h,— D 9)
(hu)x + (), = 0, (10)
where
BL
= — 11
7 ()

is the small—but not very small—variation in Coriolis
parameter and

f=1+e (12)

is the Coriolis parameter itself. As typical values, we
takewz~ 10°ms™ !, g ~001ms™! fo~10%s7},
B~ 107" m ' s, and L ~ 2000 km. This yields H
~ 450 m, U ~ 0.02 ms~!, and € ~ 0.2. The scaling
for the northward boundary-layer velocity v is then 2
m s~ and for the dissipation D is 107% m s 2. (If the
dissiGpatilon took the form «v, a scaling for « would be
107°s7%)

From these equations we can deduce that the po-
tential vorticity

[t
Tk

is conserved apart from dissipative effects:

(13)

D
uqx+vqy=—7x. (14)

We may define a streamfunction ¢ from (10) by
uh = —y,, vh= +y,. (15)

However, the set (8), (9), and (15) remains fully non-
linear and solutions are difficult to obtain. For this and
the next two sections, we shall simplify the problem
by making the assumption that the northward velocity
v in the boundary layer is everywhere positive (so that
¥ is monotonically increasing with x). In this case, we
may use ¥ as an independent variable in place of x
(this Von-Mises technique has been used in many
problems—e.g., Foster 1985; Huang 1990; Page and

in the limit of large x, as the interior is approached,
must possess a monotonic v velocity. This in turn con-
strains the form of the dissipation used (cf. the Ap-
pendix for details). However, a technique employed
by Page and Johnson (1991) permits small dissipations
and bidirectional v fields; this is postponed to sec-
tion 5.

We thus use y and y as independent variables. Then
(15) are transformed into

Xy

uh = (16)
Xy
1

vh=—, (17)
Xy

while cross-stream geostrophy (8) yields

h

fo==. (18)
Xy

Equation ( 16) merely defines ¥ when other quantities
are known. Equations ( 17) and ( 18) may be combined
to give

hhy = f (19)
or, integrating, we obtain an expression for A
h* = hi(y) + 2f1¥ — wi(»)]. (20)

Here we have made implicit use of the boundary con-
ditions for the problem. These are that x = 0 when
= () (at the western boundary), and that

x—>o00, v=>0, h—=>h(y) as ¢ = ¢(y). (21)

The quantities 4; and ; are specified by the interior
solution and are assumed known. They are connected
by the geostrophic relations

Ju(y) = —hy, (22)

Vi, = —huy. (23)

Here we shall assume that the region of interest is a
single gyre, indicated schematically in Fig. | in both x
and ¢ coordinates. The gyre is assumed to have a
southern boundary at y = y,, where ¢ vanishes. There
is inflow from the interior up to y = y,, at which point
u; vanishes. At this point y; and 4; take their maximum
values, ¥, and 4, say. Northward of y,, u; is positive,
representing outflow to the interior; ¢, now decreases
with y, reaching zero at the northward extent of the
gYIC, ¥ = Vu.

There is an interesting deduction to be made from
(20). Differentiation w.r.t. y, and use of (22), (23),
gives

hhy, = (¥ — ¥1) <0,
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FiG. 1. The configuration used in the first part of this study. The
left-hand diagram shows the situation in (x, y) space; the right-hand
diagram shows the same situation, but in (y, y) space. The thick
lines show streamlines in each coordinate system. The right-most
dashed line indicates the boundary with the interior (in the x-coor-
dinate case this boundary is formally at infinity).

so that /& decreases northwards on al/ streamlines (de-
spite the fact that 4, takes both signs). In other words,
“water flows downhill.”

Conversion of the potential vorticity equation (14)
gives

ay=—Dy (24)

after a little manipulation, so that g only changes along
a streamline when D is both nonzero and varying with
¢. The final equation to be converted is the y-momen-
tum equation (9), which becomes

vo, + h,+ D =0. (25)

[ Thus, if there were no-slip boundary conditions at x
= ¢ = 0 then (25), plus the fact that 4, is negative,
shows that D would have to be positive definite on the
western boundary. We shall not consider this case fur-
ther.] Let us write

D=E, (26)
so that (25) is immediately integrable, to give conser-
vation of energy

%vz+h= —E + B(Y), (27)

where B(¢) is the (as yet unknown ) Bernoulli function.
The definition of E needs a little care, since by (24)
and (27) we can write

g+ E,=B({), (28)

where a prime denotes differentiation w.r.t. the only
dependent variable. Thus, in the absence of friction g
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= B'(Y) as usual. In fact, it turns out that there is
sufficient freedom to choose the integration constants
in E so that it can be defined for our purposes as

y
E=| Ddy,

Yo

(29)

where
D=0, y<y(y)

D=0, ¢>¢i(y).

Equation (27) then serves as a definition of v, once the
form of B is known, and together with (18), defining
Xy, and (17), defining u, mean that for any given dis-
sipation D, the problem is completely solved. Note
that E, the integrated drag, appears as an effective to-
pographic term in (27), so that too large a drag means
that the fluid cannot pass over the “topography” E in
a hydraulic sense.

We must now determine B(y¥) and, hence, find out
what restrictions must be placed on the form and size
of D. Here, B will be set by the boundary conditions
imposed at the boundary layer-interior junction where
¥ =¥i(y).

First, consider the southern half of the gyre y < y;.
We define the inverse of ¥ = y;(y) to be y = j(¥) as
indicated in Fig. 1 (note that this functional refers to
the southern of the two values of y with that value of
¥), for later convenience. At such a point, E is iden-
tically zero, since D vanishes in the interior. The
northward velocity v also vanishes since this is the edge
of the boundary layer. Then (27) reduces to

h(y) = B(¥u(»)), (30)

which defines B(y) completely, since ¢;(y), y <
takes all permissible ¢ values. From (30) we may dif-
ferentiate w.r.t. y to find

B'(Yn)-¥i(y) = hi(y)
or
(31)

B’(\bl)=hi=(b()")a ng’b

1

where the interior potential vorticity g; has its linear
value. So in a sense, the southern half of the gyre (the

.inflow) sets the boundary conditions, and the friction

plays no role in this.
In the northern (outflow) part of the gyre, (27) gives
at the junction with the interior

hi(y) = —Ei(y), ) + B(u(y)).
From its definition,

y
EWi(»),y) = fy DWi(y), yhay'

(32)

Y
= J“ D(wl(y)’ y,)dy"
yi(»)
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since D vanishes for the intermediate values of y. Sub-
stitution into (27), and differentiation w.r.t. y gives,
using the fact that D vanishes at the boundary with the
interior,

'y
hi(y) = —¥i(y) fw )D¢(¢1(y), yhay'

+ B'(yn¥i(y), (33)

where ¥; = ¥i1(y).

Equation (33) is an integral equation for the dissi-
pation D. Its limits are interesting. They are, for any
given ¢ [i.e., any ¥,(y)], precisely the two endpoints
of the streamline within the boundary layer. Imagine
that we have solved (33) for values of y near the max-
imum y,,, which involves only a small range of y values.
Then as ¢ decreases (i.e., moving westwards), values
of D are introduced simultaneously at two new values
of y. This suggests that values of D at one of these
positions are somehow arbitrary: that it is only the
combination of the two values that has a dynamic effect
on the flow. We shall see below that this is indeed the
case.

3. The solution for linear D

To proceed further, we need to specify the form of
D. In this section we shall assume that D is given by a
form general enough to permit solutions, but one that
does not depend directly on other flow variables, for
example, v. Now D vanishes as ¢ = {,, so thata natural
form is the first term in a Taylor expansion, namely,

D(Y, y) = a()(i(¥) —¥), ¥ <¥u(y), (34)

and D vanishes otherwise. Here a(y) is a coefficient to
be determined. For more general forms of friction, (34)
remains the first term in the Taylor series, and so the
discussion below would remain valid at least “near”
the interior, providing the western boundary current
was unidirectional. Substituting (34) into (33) yields

y h'
f a(y)dy' == — B' (Y1) = hi, — B'(¥1),

) Vi
y>y (35)

(note that when y < y, both sides are identically zero).
Thus, if o y) is specified for y < yi, (35) defines a(y)
for y > y; (or vice versa).

It is possible to calculate a(y;) directly. Differen-
tiating (35) w.r.t. yat y ~ y;, we have

d
o(y) = VWi P) = [d_y (hi, - B'(xl/z))] .
V=1
(36)

Now ¥'(¥1(y)) = 1/¢1(¥) from the definition of ¥.
Also, as y nears y; the solution varies quadratically
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about y;, and we have ¢(y) ~ —¥1(¥), so that (36)
becomes ’

2a(y1) = [di‘i (h11 - Bw,))] .
y=y1

The first term on the rhs is merely ¢/#,,. The second
term, — B”(¥m)¥(31), is apparently zero since ¢ is
zero there. However, B” has a square root singularity
at ¥, [This is clear from differentiating (31) at y
= y,.] It is straightforward to show that

(37)

B"(y) ~ as ¥ > ¥m

€
Bl 21951 (U — )T

which means that

d €

— (B =—— - Y.

G BU == as wi—y
Put together, this gives

oy) = (38)

€
I -
after a little algebra.

This result shows that whatever the form of the dis-
sipation, it must take the known value (38) at y;. This
value increases with the beta effect (¢), which is to be
expected since a stronger beta term means that the
value of g on the outflow will have changed more
markedly from its value on the inflow, necessitating
more friction.

We now need to find « for other values of y. Either
the integral equation (35) can be used, or else its dif-
ferential. The latter case yields

Yi(y) _ _d_(i
i) dy\h

a(y) — o) - B’(sl/z)) s Y>>

(39)

In this equation the y; are all known, as are the Aj;.
Hence (39) provides a linear relation between a(y)
and a(§).! One of these two may be chosen arbitarily
(although one would surely wish for continuity in «),
but the other is then specified.

It is straightforward to see that under almost all con-
ditions, the rhs of (39) increases with y, from a value
of 2a(y,) when y = y,. Further, —1 < ¥1(»)/¥1(J)
< 0. Thus, (39) becomes

a(y) + o) > 204¥1), V> D1

where 0 < o < 1. So, one or both of a(y), () must
be greater than a(y;). Now (A9) shows that for a so-
lution well behaved for large x, a(y) < a(y) for y
< yy. Thus, we have immediately that

1 There are many other ways to write this relation.
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a(y) > aly1), ¥> i, (40)

so that the friction in the outflow region must be larger
than in the inflow region. Accordingly, it is easier to
choose a(y) for y < y, and use (39) to set a(y) for y

> V.
4. A numerical example

As an example, we shall assume that «(v) is chosen
arbitrarily for y < y; and use (39) to predict « when y
> y,. We consider three different specifications for

a(y), y <y

(1) a(y)=aon), y<y;

. _ Y=o .
(i) a(y) a(J’l)(y _— ) s Y<Wi;
_ y =\
(iit)  oly) a(.Vl)(y_y]): y<y.

(The last of these is taken as a rough approximation
to the case of zero friction in the inflow region.) In all
cases, we take a simple quadratic form for /,;(y):
2
-y
() =ty + (i — hm)(f——‘) . (41)
Yo — W

where A, is the value taken at y = y,. (This is not
the minimum value of A;, which occurs at the northern
end of the gyre due to the asymmetry produced by ¢.)
We take fmin = 1, A, = 1.2, € = 0.1 (the form of the
results does not depend qualitatively on the values
chosen, as will be seen), and y, = 0, y, = 1. This choice
gives y, = 2.07.

Figure 2 shows the results for case (i). The dissi-
pation coefficient o (Fig. 2a) varies between 0.083 for
y < y1 and 0.32 at the northern end of the gyre; pro-
gressively more friction is necessary the farther north
one moves in the boundary layer. Figures 2b,c show 4
and v as functions of ¢ at five different values of y.
Note that for these parameters, v is everywhere quite
small, although increasing #,, — /i, by a factor of 2
increases v by more than a factor of 4. Both 4 and v
remain remarkably linear in y for all parameters tested.
As functions of x (Figs. 2d,e) the situation changes; v
in particular has an exponential-like behavior. In fact,
the behavior of most quantities for large x is indeed
exponential, as the Appendix shows.

This implies that had we chosen a D of the form «v
(to be discussed in the next section), then x would be
approximately independent of x but would vary with
v. In particular, a constant « would not yield results
matched to the specified interior. Figure 2f shows this
clearly, by plotting the ratio D/v. Except near the center
of the gyre, D/v is fairly uniform with x; but its value
varies with the north-south coordinate.

Figures 2g,h show the integrated dissipation E and
the potential vorticity g. Note that g increases mono-
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F1G. 2. Solutions for scheme (i). Shown are (a) the dissipation
coefficient a( y), (b) £ as a function of ¢ for five values of y marked,

tonically with y everywhere, and along the western
boundary it takes values that do not lie on any incom-
ing streamline (it is for this reason that ¥, and not g,
is a useful coordinate in the frictional case). The po-
tential vorticity is approximately a linear function of
¥ over most of the boundary layer for this case. Figure
2i then shows the circulation in the interior and
boundary layer. The boundary layer appears to be nar-
rower in the outflow region than farther south; but in
both regions the nondimensional x extent is quite large.

Figure 3 shows some of the equivalent features for
scheme (ii); those not shown are very similar to scheme
(i). Decreasing « for y < y, by using this scheme pro-
duces an increase in « for y in the outflow region, but
the changes are mostly small. There is an increase in
the northward velocity v by up to 50% (Fig. 3a) and a
narrowing of the boundary layer. The variation of D/
v with x is now everywhere small; but its variation
north-south is considerably stronger than in scheme
(i); cf. Fig. 3b. The ¢ field is now less linear, as Fig. 3¢
shows. Scheme (iii) gives very similar results to scheme
(ii), and is not shown.

The detail of these results is less important than the
conclusion, which can be drawn from them: many dif-
Jerent amounts of dissipation are capable of yielding
boundary layer flows that match with a specified inte-
rior, providing that the dissipation obeys a suitable
equation.

The results apply qualitatively, even when param-
eters are varied. For example, the amplitude of the
incoming u; field was increased by setting 4,, = 1.5;
the differences are in the direction expected (e.g., the
dissipation has increased, because the flow is more
energetic). Another variation was to increase the beta
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FiG. 2. (Continued) (¢) v as a function of ¥ for five values of y marked, (d) 4, and (e) v as functions of x for the
five values of y marked; (f) the ratio D/v as a function of x at the five values of y marked, (g) contours of the integrated
dissipation E as a function of ¢ and y, (h) contours of the potential vorticity ¢ as a function of ¢ and y, and (i)
contours of the streamfunction y as a function of x and y.
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FIG. 2. (Continued)

term (i.e., €) to 0.3, which had the interesting effect
(cf. Fig. 4) of making the incoming potential vorticity
be almost uniform; however, this had little effect on
the solutions.

5. Solutions for a specified form of dissipation

We have seen that various distributions of the
amount of dissipation produce a boundary layer that
can match a specified interior flow. However, whatever
the dynamics acting in a real, or a model, western
boundary layer the dissipation will be related in some
fashion to the flow in the boundary current. So now
we ask whether, for a specific form and amount of dis-
sipation, the solution can still match a specified interior
in the outflow region. (If the answer to this question
is affirmative, we cannot, of course, necessarily deduce
that the interior circulation must be independent of
boundary layer details; for example, there are changes
to the interior circulation in quasigeostrophic theory
as friction parameters are modified; cf. Harrison and
Stalos 1982.)

We maintain the problem at its simplest, by choosing

a linear drag for the dissipation, that is,
= —kv, (42)

where « is now a specified constant (the case of a dis-
tributed drag — «v/ A is similar). To solve the problem,
we first consider the inflow region y < y,. Now £ is

known as before, by (20), and v satisfies (25), which
can be rewritten as

VO, + KD = € (43)

;-

h 3
which is an o.d.e. for v, since 4 and ¥, are known as
functions of y in this region. An initial condition is
needed for (43). This is clearly that v = 0 when ¢
= y;; that is, v = 0 when y = y(¢). This does not
directly permit an integration since (43) is formally
singular there, but the well-behaved solution is found
by differentiating (43) w.r.t. y, so that
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1/2
—) ] y=3(). (44)

We can thus integrate v [and hence also find x, by
(17)] northward until y = y,.

If « is sufficiently large that the v component of the
flow is everywhere northward, then (43) may be in-
tegrated further, until v vanishes at a value of y where
¥/(¥) = ¢. The solution can then be constructed by
integrating (17) to give x, as before.

However, this procedure is incomplete if « is suffi-
ciently small, because the N-S flow reverses in sign
infinitely many times, qualitatively like the solutions
of Cessi et al. (1990). The Von-Mises transformation
is still valid, but its interpretation needs care. We adopt
the approach of Page and Johnson (1991) and define
a timelike variable 7, such that

_

V= par (45)

stronger beta effect).

Equation (43) then becomes a second-order d.e. in 7
for the northward position of a fluid parcel:

Py b dh-Y)_
dr? dr h

This can be integrated forward with pseudo-initial
conditions dy/dt = v(y;), y = y, at 7 = 0. (Note that
the integration cannot start at y = ¥, since all terms
and derivatives are zero there; the particle takes an
infinite time to start and end its motion.)

Typical trajectories for large, medium, and small «
(0.5, 0.1, and 0.01) are shown in Figs. 5, 6, and 7. In
the high-friction case (Fig. 5), the circulation pattern
would closely resemble Fig. 2i [it would be arduous to
compute enough (v, y) trajectories to derive the x field,
and this has not been done here]. Each trajectory
moves northward and becomes asymptotic to its in-
terior value.

In the medium friction case (Fig. 6), the more ener-
getic trajectories (those with smaller y; i.e., those ini-

eh,. (46)
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FIG. 5. Values of y and v (i.e., dy/dr) as functions of 7 for a high friction case (x = 0.5), showing a unidirectional boundary layer.
Scheme (i) is used for the interior solution, with standard parameter values. Shown are (a) y and (b) v. The values of streamfunction y are

indicated.

tially at the southern end of the gyre) overshoot their
asymptotic positions and oscillate several times (with,
therefore, both northward and southward velocities)
before attaining their asymptotic position. These os-
cillations resemble damped standing planetary waves
(cf. the Appendix ). Finally, the low-friction case (Fig.
7) shows strong oscillations that are only weakly
damped.

Provided that the oscillations are not large, the mo-
tion is damped simple harmonic motion, since the rhs

of (46) can be approximated, for y near the value y,,
where ¥,(y.) = ¥, as Y1 (¥ )(¥y — va)/hi(ya). The
extent of the oscillations north—south can be estimated,
when « is small, by neglecting it to leading order. Then
(43) integrates to (27), with E zero, so that v is O(1)
when y reaches its interior value. Accordingly, the
north-south extent is also O(1) (i.e., of order L di-
mensionally) independent of «.

This is in direct contrast to the findings of Cessi et
al. (1990), who found the northward overshoot

25 .
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FIG. 6. As in Fig. 5 but for a medium friction case (x = 0.1). Note the flow reversals.
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FIG. 7. As in Fig. 5 but for a low friction case (x = 0.01).

lengthened as » "%/ as lateral viscosity » became small.
Their interpretation was that the main dissipation oc-
curred in the overshoot in their model, and not in the
“loops” as the fluid approached the interior. In our
linear drag case, the dissipation occurs instead in the
(possibly unidirectional and possibly oscillatory) ap-
proach to the interior, and not in the overshoot. Thus
the manner in which the low potential vorticity carried
by the fluid adjusts to the interior occurs in the current
model rather more as Pedlosky’s (1987) suggestion.

Despite the differences in the dynamics, however,
both Cessi et al. (1990) and this study suggest that an
inertial boundary layer can match to a specified interior
flow for a given form (and value) of dissipation. How-
ever, neither our study, Cessi et al. (1991) or Page and
Johnson (1991) prove this completely; a lengthy ba-
sinwide numerical study similar to that of Harrison
and Stalos (1982) would be necessary to close the ar-
gument; such a study is beyond the scope of this paper.

An overestimate for the overshoot for any ¥ can be
found from (27). Equation (46) is well behaved as «
becomes small; it resembles nonlinear undamped sim-
ple harmonic motion. The approach to « = 0 is linear,
as can easily be shown (the same is true for the Page
and Johnson analysis). For zero «, v vanishes at a value
of y when

h(P) = h(y, ¥), (47)

which will not be the interior in general. Now the (4,
¥) relationship (20) holds even for oscillatory flow,
(when ¢ may be greater than y;), so we can scan y
values until (47) is satisfied. For the streamline in Fig.
7, this yields y = 2.54, which is in excellent agreement.

In Figs. 6 and 7, the overshoot takes fluid particles
beyond the northern boundary of the gyre and hence,
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into the next gyre poleward, which is assumed to have
the same analytic form as before (values of y that make
h; negative are not achieved by the solution). The in-
teraction with this gyre will involve a patching of several
boundary layers [see Page and Johnson (1991) for a
simpler case] and is not considered here. At the very
least, there will be modifications to many of the path-
ways found by this method. '

In Fig. 7, also, the southward overshoot implies that
there will be decaying oscilations in the inflow region.
This problem is more awkward and has been avoided
by the papers cited here. We have assumed that the
approach to the boundary layer from the interior in
the inflow region is a gradual monotonic change. If
large-amplitude oscillations from the outflow region
intrude into the inflow region, then the interior inflow
solution is no longer known. The situation is unclear
and will not be discussed here.

6. Conclusions

In this paper two related aspects of the role of friction
in an inertial western boundary current are investi-
gated. First, we have shown that many different
amounts of dissipation can yield a unidirectional
boundary current that can match a specified interior
flow; all that is necessary is that the dissipation be suit-
ably small in the inflow region and suitably large in
the outflow region. Second, even if the dissipation has
a specified form, solutions remain possible. When the
size of the dissipative coefficient becomes small, inertial
overshoot occurs and the flow becomes bidirectional,
qualitatively similar to the solutions of Cessi et al.
(1990). However, in their solution the overshoot
lengthened as the friction decreased, so that the relevant
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amount of dissipation had time to occur; in the solution
here, there is a limit on the length of overshoot that is
independent of dissipation. As a result, the dissipation
must act in the damped oscillatory part of the solution
as the interior is approached.

Using either approach, we have found, in agreement
with Cessi et al. (1990), that the nonlinear boundary-
layer solution, with the addition of eddy friction terms
in various forms, is capable of matching to a specified
interior solution. The evidence from this work, then,
is that the simple western boundary layer structures
considered here do not require that the ocean interior
be related to the dynamics of the boundary layer itself.
Put another way, it appears that the western boundary
layer can be entirely passive as far as interior ther-
mocline dynamics are concerned (it has not been
proven that the western boundary layer is passive,
however). The damped planetary wave can extend an
appreciable distance into the interior; in both the Cessi
et al. idealized calculation and this model, the length
scale for the planetary wave distance is (U/8)'/? (cf.
the Appendix).

These similarities and differences with Cessi et al.
demonstrate that the polite fictions used to model the
effects of turbulence in a western boundary current
can have important effects on the dynamics; it is clear
that more research into the parameterization of the
turbulence is necessary.

The Von-Mises technique of using a streamfunction
as an independent coordinate means that the problem
of semigeostrophic flow with a prescribed inflow con-
dition is essentially solved for the 1'2-layer problem,
since the cross-stream coordinate may always be com-
puted after the fact. However, the technique does not
easily extend to two active layers, as Huang (1990)
shows. Further, the treatment for a continuously strat-
ified system remains notoriously difficult.

Acknowledgments. Bram Hauer provided the dia-
grams and numerical solutions in this paper. Ted
Johnson suggested the line in section 5. A referee pro-
vided much useful debate and distinctly improved the
paper.

APPENDIX
The Behavior near the Interior
a. The general case

Returning to a dimensional system, we may follow
Moore (1963) and linearize Eq. (14) for g about the
interior solution v = 0, u = u;(y), which yields to lead-
ing order

UV + B+ D, =0, x— . (Al)

If the dissipation could be sufficiently small that it
would play no role in this equation, then (A1) shows
that when u; is positive (i.e., when there is outflow
from the boundary layer), there would only be an os-
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cillatory solution for v, which does not decay. Thus,
D must enter the balance in (A1) to leading order (an
example of which is given in Cessi et al. 1990). In the
case of inflow when ; is negative, D can be zero, since
there would still be a solution decaying eastward; hence
the existence of friction is not #necessary in the inflow
region.
If D is given by

D= xv (A2)

for some linear drag «, then v varies as exp(ax), where
« is a root of

wa’+ka+8=0,

whose roots are real (both negative) if k2 > 4u,(, giving
an exponential decay for v. If « is smaller than this
value, the solutions decay oscillatorily and v will have
both positive and negative values, which case is con-
sidered in section 5. If we take as typical values u;
~1.5X1072ms™, 8~ 107" m™ ! s7!, then x must
be larger than 8 X 10~7 s~! for a nonoscillatory bound-
ary layer. This value is fairly typical in the literature
and corresponds to a Stommel width (x/8) of 80 km.
However, if the drag is given by

D = —yv,,, (A3)

then the decay coeflicient « satisfies the cubic
—va®+ua® +8=0,

which only possesses damped oscillatory solutions; this

case is considered by Cessi et al. (1990).

b. The solutions for linear D

It is also necessary to examine the behavior of the
(section 3) solutions with linear D as x becomes large;
that is, as Y approaches its interior value ;. Let us
define the small quantity

¢ =¥ —¥(y)<0.
Then, expanding (20) gives

f

2
~ — — er— 2 LI
h h1+h1¢ 2h?¢ + (A4)

We also know v from (27). We can expand this also,
to give

2
v2=2{B(y1) + ¢B'(Y;) + %—B"(¢,) U —
"_f_¢+—2¢2+-.._E} (A5)
hy 2h} :

Let us first consider the case y < y;. In this case the
O(1)and O(¢) terms cancel identically, leaving merely

2
v?= ¢2(B”(¢1) + 2—;) —2FE. (A6)
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Now E is defined by (29) and (34), and is straightfor-
ward to show that for small ¢ it takes the value
oy) ,
E~—="9¢
¥
so that

2
o ~ ¢2(B"<¢,> +Ls —5) (A7)

which, together with the identity
VAR
BII + LA s

WO+ 5 ™ v
gives

2~_1_ € _ 2
v AP ale?, (A8)

which immediately limits the size of « in the range y
< Y-

€
a<—=a .
hy (y1)
Thus, the friction cannot be too large in the southern
half of the western boundary current.
Then we can write

(A9)

e — aly
hiyy
(The apparent singularity when y reaches y; can be
shown not to occur, and in fact the behavior with ¢ is

similar; the algebra is, however, tedious and is not
shown.) Solving (A10) gives

1 1/2
¢x=—=vh~h1( ) (¥r—¥). (Al0)

€ — a 1/2
¥~ ¥ = Yo(y) eXp[—xhz(——,hi) ] (AL1)
Wi
for large x, for some unknown y;,(y). Thus, the be-
havior of both ¥ and v is a simple exponential decay
with x.

The case y > y, gives similar results, but rather more
lengthily. As before, the O(1) and O(¢) terms cancel
identically, so that v? is again O(¢?2). After some al-
gebra involved in the value of E, we find

2 o)

2 o A2 B” J
# = oo =i

)=¢K, say.

(Al12)

Now this is identical to (A7) save that fand A; are
evaluated at y > y,. Since f(y) > f(¥) and A(y)
< hy(¥) under most conditions, the bracket in (A12)
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is larger than that in (A7). Hence if (A7) is satisfied,

(A12) is usually well behaved. Note that neither (A9)

nor (A12) limit o y) for y > y, [but see Eq. (40)].
Then we find that

¥~ ¥~ Yo(y) exp(—xhK'"?)  (A13)

for large x, which is the same behavior as when y
< y;. It is, then, simple to show that u varies as

u ~ u; + xL exp(—xh K'/?)

(adopting the latter notation), for some K, L. In the
y-momentum equation, the leading terms ( other than
the interior balance) are those of order x times the
exponential, and these are purely geostrophic; the dis-
sipative term is only of order exponential, and so does
not enter at this order. Of course, the term balance in
the vorticity equation has all terms of the same order,
showing again that the dissipation must be of the same
order as the other terms here.
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