After publication of Gunn et al. (2020), an error in the rotation of the ADCP data at moorings C and D was identified. This error resulted in the publication of incorrect values for the time-mean volume and salt transports, transport-weighted salinity, and leakage. Critically, this error has no effect on the variability of the velocity and salinity fields, from which the key conclusions of Gunn et al. (2020) are drawn.

There are four corrections to the text. First, the time-mean jet volume transport is 287 Sv, and the time-mean box volume transport is 286 Sv. Corrections are to sentences in the abstract, section 3d, section 4, and the appendix. Second, the time-mean salt transport is 3305 Sv psu (corrections are to the abstract, section 3d, and section 4). Third, the time-mean transport-weighted salinity is 35.04, and its range is 34.80–35.52 psu. Fourth, the corrected leakage estimate is that 24 Sv of Indian Ocean water leaks into the Atlantic Ocean, which corresponds to $9 \times 10^{13} \text{ kg yr}^{-1}$ of salt on average. Leakage and transport-weighted salinity corrections are made to section 3d only. These corrections have no impact on the main result of this study, which is that salinity variability is driven by both shifting (i.e., changes in location) and pulsing (i.e., changes in strength) of the current.

Corrected versions of Table 1 and Figs. 6–8 are included in this corrigendum. Note that for Figs. 6 and 7 the only change is the box volume transport time series (T_{xy}; red line in Figs. 6c and 7b, respectively). We apologize for any inconvenience this error may have caused.

REFERENCES

Corresponding author: Kathryn Gunn, kathy.gunn@csiro.au; kgunn.sc@gmail.com

DOI: 10.1175/JPO-D-21-0172.1

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).
FIG. 6. Second mode of variability of salinity field calculated in depth space, EOF2: (a) Space-dependent pattern of EOF2 between 0- and 1-km depth. Red and blue shading = positive and negative salinity anomaly, respectively; solid black lines = contours of salinity anomaly every 0.05 psu; labeled white circles = surface loci of moorings A–G; white triangles = loci of CPIES 1, 3, 4, and 5; white circles = time-mean pressure levels of microCATs; dotted lines = vertical extent of ASCA moorings; black dashed lines = neutral density surfaces; black shading = seabed. (b) EOF2 between 1- and 5-km depth. The symbols are as in (a). (c) Time-dependent amplitude of EOF2, PC2. Solid black line and left axis = PC2; red line and right axis = volume transport time series calculated using box definition (T_{v0}); gray boxes = meander periods; red boxes = r between time series. (d) Middepth anomalies of SICW (negative values indicate shoaling). Orange line and right axis = middepth anomaly of SICW at 40-km range; blue line and right axis = middepth anomaly of SICW at 140-km range. The other symbols are as in (c).
FIG. 7. Second mode of variability of salinity field calculated in density space, DEOF2:
(a) Space-dependent pattern of DEOF2. Red and blue shading = positive and negative salinity anomaly, respectively; solid black lines = contours of salinity anomaly every 0.05 psu; labeled white circles = surface loci of moorings A–G; white triangles = loci of CPIES 4 and 5; dotted lines = vertical extent of ASCA moorings; black dashed lines = neutral density surfaces. (b) Time-dependent amplitude of DEOF2, DPC2. Solid black line and left axis = DPC2; red line and right axis = T_w; gray boxes = meander periods; red box = r between time series. (c) Anomaly of isopycnal slope, dp/dx, of SICW measured between moorings A and F, $\Delta dp/dx$. Solid black line = DPC2; red line and right axis = $\Delta dp/dx$ (positive values indicate flatter slope); red box = r between time series.
Table 1. Statistics of time series for T_v, T_s, and transport-weighted salinity.

<table>
<thead>
<tr>
<th></th>
<th>T_v (Sv)</th>
<th>T_s (Sv psu)</th>
<th>Transport-weighted salinity (psu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± std error</td>
<td>-87 ± 11</td>
<td>-3050 ± 130</td>
<td>35.04 ± 0.05</td>
</tr>
<tr>
<td>Std dev</td>
<td>22</td>
<td>770</td>
<td>0.05</td>
</tr>
<tr>
<td>Max</td>
<td>-5</td>
<td>-177</td>
<td>35.52</td>
</tr>
<tr>
<td>Min</td>
<td>-154</td>
<td>-5395</td>
<td>34.80</td>
</tr>
<tr>
<td>Dec–Feb mean</td>
<td>-88</td>
<td>-3080</td>
<td>35.03</td>
</tr>
<tr>
<td>Jun–Sep mean</td>
<td>-79</td>
<td>-2755</td>
<td>35.06</td>
</tr>
</tbody>
</table>

Fig. 8. Time series of fluxes across ASCA transect: (a) Volume transport. Solid black and red lines = calculated T_v and T_w time series, respectively, at 20-h intervals; blue circles = available estimates of time-mean T_v in other western boundary currents (BC = Brazil Current; EAC = East Australian Current; KC = Kuroshio; GS = Gulf Stream; Stramma 1989; Qiu 2001; McDonagh et al. 2015; Sloyan et al. 2016); pink circle = 20-yr time-mean transport of Indonesian Throughflow (ITF; Sprintall et al. 2009); orange circle = time-mean between 2010 and 2013 measured in the Agulhas Current (AC; Beal et al. 2015); white circle = time-mean and standard deviation of T_v in AC between 2016 and 2018; gray band = meander periods. (b) Salt transport. Solid black line = calculated T_s time series at 20-h intervals for jet-defined current. Pink circle = ITF salt transport based on time-mean volume and salinity (Sprintall et al. 2009; Wijffels et al. 2008). (c) Transport-weighted salinity. Solid black line = calculated time series at 20-h intervals for jet-defined current. Pink circle = ITF transport-weighted salinity (Wijffels et al. 2008).