Abstract

Data from the Microwave Limb Sounder instrument on the Upper Atmosphere Research Satellite are used to compare two periods of Kelvin wave activity during different stages of the equatorial quasi-biennial oscillation. The analysis is carried out using an asynoptic mapping technique. A wide bandpass filter is used to isolate the frequency bands where Kelvin waves have been identified in previous studies. Time–height and time–latitude plots of the bandpassed data are used to identify Kelvin wave activity in the temperature and ozone fields. Frequency spectra of temperature and ozone amplitudes are constructed to further analyze the latitudinal and meridional distribution of Kelvin wave activity in zonal wavenumbers 1 and 2. The characteristics identified in these plots agree well with theoretical predictions and previous observations of middle atmosphere Kelvin waves.

The time–height and time–latitude plots support the existence of Kelvin waves in discrete frequency bands; the slow, fast, and ultrafast Kelvin modes are all identified in the data. The characteristics of these modes do not vary much despite different mean flow conditions in the two periods examined.

For the Kelvin wave–induced perturbations in ozone, the change from a transport-dominated regime below 10 hPa to a photochemically controlled regime above 10 hPa is clearly apparent in the height dependence of the phase difference between temperature and ozone. The ratios of the ozone perturbation amplitude to the temperature perturbation amplitude for the various observed Kelvin wave modes are in agreement with model estimates and LIMS (Limb Infrared Monitor of the Stratosphere) observations in the lower half of the region sampled but appear to be too large in the upper stratosphere and lower mesosphere.

This content is only available as a PDF.