Vertical profiles of temperature, relative humidity, cloud particle concentration, median mass dimension, and mass content were derived using instruments on the NOAA P-3 aircraft for 37 spiral ascents/descents flown within five mesoscale convective systems (MCSs) during the 2015 Plains Elevated Convection at Night (PECAN) project, and 16 spiral descents of the NOAA P-3 within 10 MCSs during the 2003 Bow Echo and Mesoscale Convective Vortex Experiment (BAMEX). The statistical distribution of thermodynamic and microphysical properties within these spirals is presented in context of three primary MCS regions—the transition zone (TZ), enhanced stratiform rain region (ESR), and the anvil region (AR)—allowing deductions concerning the relative importance and nature of microphysical processes in each region.

Aggregation was ubiquitous across all MCS zones at subfreezing temperatures, where the degree of ambient subsaturation, if present, moderated the effectiveness of this process via sublimation. The predominately ice-supersaturated ESR experienced the least impact of sublimation on microphysical characteristics relative to the TZ and AR. Aggregation was most limited by sublimation in the ice-subsaturated AR, where total particle number and mass concentrations decreased most rapidly with increasing temperature. Sublimation cooling at the surface of ice particles in the TZ, the driest of the three regions, allowed ice to survive to temperatures as high as +6.8°C.

Two spirals executed behind a frontal squall line exhibited a high incidence of pristine ice crystals, and notably different characteristics from most other spirals. Gradual meso- to synoptic scale ascent in this region likely contributed to the observed differences.

This content is only available as a PDF.


Current affiliations

This article is included in the Plains Elevated Convection At Night (PECAN) Special Collection.