This paper addresses the dynamics of internal hemispheric-scale multidecadal climate variability by postulating an energy-balance (EBM) model comprising two deep-ocean oscillators in the Atlantic and Pacific basins, coupled through their surface mixed layers via atmospheric teleconnections. This system is linear and driven by the atmospheric noise. Two sets of the EBM model parameters are developed by fitting the EBM-based mixed-layer temperature covariance structure to best mimic basin-average North Atlantic/Pacific sea surface temperature (SST) covariability in either observations or control simulations of comprehensive climate models within the CMIP5 project. The differences between the dynamics underlying the observed and CMIP5-simulated multidecadal climate variability and predictability are encapsulated in the algebraic structure of the two EBM model versions so obtained: EBMCMIP5 and EBMOBS. The multidecadal variability in EBMCMIP5 is overall weaker and amounts to a smaller fraction of the total SST variability than in EBMOBS, pointing to a lower potential decadal predictability of virtual CMIP5 climates relative to that of the actual climate. The EBMCMIP5 decadal hemispheric teleconnections (and, by inference, those in CMIP5 models) are largely controlled by the variability of the Pacific, in which the ocean, due to its large thermal and dynamical memory, acts as a passive integrator of atmospheric noise. By contrast, EBMOBS features a stronger two-way coupling between the Atlantic and Pacific multidecadal oscillators, thereby suggesting the existence of a hemispheric-scale and, perhaps, global multidecadal mode associated with internal ocean dynamics. The inferred differences between the observed and CMIP5 simulated climate variability stem from a stronger communication between the deep ocean and surface processes implicit in the observational data.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).
You do not currently have access to this content.