Summer monsoon rainfall supplies over 55% of annual precipitation to global monsoon regions. As shown by more than 70% of models, including 30 models from CMIP5 and 30 models from CMIP6 under high-emission scenarios, North American (NAM) monsoon rainfall decreases in a warmer climate, in sharp contrast to the robust increase in Asian–African monsoon rainfall. A hierarchy of model experiments is analyzed to understand the mechanism for the reduced NAM monsoon rainfall in this study. Modeling evidence shows that the reduction of NAM monsoon rainfall is related to both direct radiative forcing of increased CO2 concentration and SST warming, manifested as fast and slow responses to abrupt CO2 quadrupling in coupled GCMs. A cyclone anomaly forms over the Eurasian–African continental area due to enhanced land–sea thermal contrast under increased CO2 concentration, and this leads to a subsidence anomaly on its western flank, suppressing the NAM monsoon rainfall. The SST warming acts to further reduce the rainfall over the NAM monsoon region, and the El Niño–like SST warming pattern with enhanced SST warming over the equatorial Pacific plays a key role in suppressing NAM rainfall, whereas relative cooling over the subtropical North Atlantic has no contribution. A positive feedback between monsoon precipitation and atmospheric circulation helps to amplify the responses of monsoon rainfall.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).
You do not currently have access to this content.