This study investigates the trend in destructive potential of landfalling tropical cyclones (TCs) in terms of power dissipation index (PDI) over mainland China in the period of 1980–2018. Results show that both the accumulated PDI and averaged PDI after landfall show significant increasing trends. The increasing trends are found to be contributed primarily by the increasing mean duration of TCs over land and the increasing TC intensity at landfall. Further analyses indicate that the increase in landfalling TC intensity prior to and at landfall, the decrease in intensity weakening rate after landfall, and the northward shift of landfalling TC track density all contribute to the longer duration of TCs after landfall. Moreover, the conducive large-scale conditions, such as the increases in coastal sea surface temperature and land surface temperature and soil moisture, the decrease in low-level vertical wind shear, and the increase in upper-level divergence, are all favorable for intense landfalling TCs and their survival after landfall, thus contributing to the increasing destructive potential of landfalling TCs over China.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).
You do not currently have access to this content.