Abstract

Recently it has been suggested that natural variability in sea surface temperature (SST) patterns over the historical period causes a low bias in estimates of climate sensitivity based on instrumental records, in addition to that suggested by time-variation of the climate feedback parameter in atmospheric general circulation models (GCMs) coupled to dynamic oceans. This excess, unforced, historical "pattern effect" (the effect of evolving surface temperature patterns on climate feedback strength) has been found in simulations performed using GCMs driven by AMIPII SST and sea ice changes (amipPiForcing). Here we show in both amipPiForcing experiments with one GCM and through using Green's functions derived from another GCM, that whether such an unforced historical pattern effect is found depends on the underlying SST dataset used. When replacing the usual AMIPII SSTs with those from the HadISST1 dataset in amipPiForcing experiments, with sea ice changes unaltered, the first GCM indicates pattern effects that are indistinguishable from the forced pattern effect of the corresponding coupled GCM. Diagnosis of pattern effects using Green's functions derived from the second GCM supports this result for five out of six non-AMIPII SST reconstruction datasets. Moreover, internal variability in coupled GCMs is rarely sufficient to account for an unforced historical pattern effect of even one-quarter the strength previously reported. The presented evidence indicates that, if unforced pattern effects have been as small over the historical record as our findings suggest, they are unlikely to significantly bias climate sensitivity estimates that are based on long-term instrumental observations and account for forced pattern effects obtained from GCMs.

This content is only available as a PDF.
You do not currently have access to this content.