Consistent and continuous fields provided by precipitation analyses are valuable for hydrometeorological applications and land data assimilation modeling, among others. Providing uncertainty estimates is a logical step in the analysis development, and a consistent approach to reach this objective is the production of an ensemble analysis. In the present study, a 6-hour High-Resolution Ensemble Precipitation Analysis (HREPA) was developed for the domain covering Canada and the northern part of the contiguous USA. The data assimilation system is the same as the Canadian Precipitation Analysis (CaPA) and is based on optimal interpolation (OI). Precipitation from the Canadian national 2.5-km atmospheric prediction system constitutes the background field of the analysis, while at-site records and radar quantitative precipitation estimates (QPE) compose the observation datasets. By using stochastic perturbations, multiple observation and background field random realizations were generated to subsequently feed the data assimilation system and provide 24 HREPA members plus one control run. Based on one summer and one winter experiment, HREPA capabilities in terms of bias and skill were verified against at-site observations for different climatic regions. The results indicated HREPA’s reliability and skill for almost all types of precipitation events in winter, and for precipitation of medium intensity in summer. For both seasons, HREPA displayed resolution and sharpness. The overall good performance of HREPA and the lack of ensemble precipitation analysis (PA) at such spatiotemporal resolution in the literature motivates further investigations on transitional seasons and more advanced perturbation approaches.

This content is only available as a PDF.