California receives much of its precipitation from cool-season atmospheric rivers, which contribute to water resources and flooding. In winter 2017, a large number of atmospheric rivers caused anomalous winter precipitation, near saturated soils, and a partial melting of snowpack which led to excessive runoff that damaged the emergency spillway of the Oroville Dam. Given the positive and negative impacts ARs have in California, it is necessary to understand how they will change in a future climate. While prior studies have examined future changes in the frequency of atmospheric rives impacting the West Coast of the United States, these studies primarily use coarse global climate models that are unable to resolve the complex terrain of this region. Such a limitation is overcome by using a high-resolution convection-permitting regional climate model, which resolves complex topography and orographic rainfall processes that are the main drivers of heavy precipitation in land-falling atmospheric rivers. This high-resolution model is used to examine changes to precipitation and runoff in California’s cool-season from 2002–2013, particularly in flood-producing storms associated with atmospheric rivers, in a future, warmer climate using a pseudo-global warming approach. In 45 flood-producing storms, precipitation and runoff increase by 21–26% and 15–34%, respectively, while SWE decreases by 32–90%, with the greatest changes at mid-elevations. These trends are consistent with future precipitation changes during the entire cool-season. Results suggest more intense floods and less snowpack available for water resources in the future, which should be carefully considered in California’s future water management plans.

This content is only available as a PDF.