Abstract

The Hurricane Research Division collected radar reflectivity data with a portable recorder attached to National Weather Service (NWS) WSR-57 radar as Hurricanes Alicia of 1983 and Elena of 1985 approached the coastline of the United States. The reflectivity data were used to estimate rain rates for the eyewall region, including the rain-free eye, and the rainbands in the annular area outside the eyewall, but within 75 km of the center of the eye. The rain rates include reflectivity corrections that were based upon the variation of average returned power with range in four hurricanes

This study examines the temporal and spatial variations of rain rates in the cores of Hurricanes Alicia and Elena. In Alicia, variations of area-averaged rain rate (R) in the eyewall region were caused by the growth and decay of mesoscale convective areas. In Elena, the life cycles of individual convective cells also accounted for large changes in the eyewall R. In both hurricanes, the time series of R in the rainband region was less variable than the eyewall R, because the rainband region was larger than the eyewall and contained a smaller percentage of convection.

The distribution of precipitation in the eyewall and rainband regions was asymmetric. For several hours early in the observing period, the maximum rain rates in the eyewall and rainband regions of Alicia occurred in the left-front quadrant relative to the storm motion. Then, the heaviest rain in the eyewall region shifted to the right-front quadrant and that in the rainband region moved to the right of the storm track. In Elena, the maximum rain rates in the eyewall and rainband regions remained in the right-front quadrant throughout the computational period. About 55% of the precipitation in Elena's eyewall region occurred in the right-front quadrant.

This content is only available as a PDF.