Search Results

You are looking at 91 - 100 of 108 items for

  • Author or Editor: Michael McPhaden x
  • Refine by Access: All Content x
Clear All Modify Search
Zeng-Zhen Hu
,
Arun Kumar
,
Bohua Huang
,
Jieshun Zhu
,
Michelle L’Heureux
,
Michael J. McPhaden
, and
Jin-Yi Yu

Abstract

Following the interdecadal shift of El Niño–Southern Oscillation (ENSO) properties that occurred in 1976/77, another regime shift happened in 1999/2000 that featured a decrease of variability and an increase in ENSO frequency. Specifically, the frequency spectrum of Niño-3.4 sea surface temperature shifted from dominant variations at quasi-quadrennial (~4 yr) periods during 1979–99 to weaker fluctuations at quasi-biennial (~2 yr) periods during 2000–18. Also, the spectrum of warm water volume (WWV) index had almost no peak in 2000–18, implying a nearly white noise process. The regime shift was associated with an enhanced zonal gradient of the mean state, a westward shift in the atmosphere–ocean coupling in the tropical Pacific, and an increase in the static stability of the troposphere. This shift had several important implications. The whitening of the subsurface ocean temperature led to a breakdown of the relationship between WWV and ENSO, reducing the efficacy of WWV as a key predictor for ENSO and thus leading to a decrease in ENSO prediction skill. Another consequence of the higher ENSO frequency after 1999/2000 was that the forecasted peak of sea surface temperature anomaly often lagged that observed by several months, and the lag increased with the lead time. The ENSO regime shift may have altered ENSO influences on extratropical climate. Thus, the regime shift of ENSO in 1999/2000 as well as the model default may account for the higher false alarm and lower skill in predicting ENSO since 1999/2000.

Free access
Russ E. Davis
,
Lynne D. Talley
,
Dean Roemmich
,
W. Brechner Owens
,
Daniel L. Rudnick
,
John Toole
,
Robert Weller
,
Michael J. McPhaden
, and
John A. Barth

Abstract

The history of over 100 years of observing the ocean is reviewed. The evolution of particular classes of ocean measurements (e.g., shipboard hydrography, moorings, and drifting floats) are summarized along with some of the discoveries and dynamical understanding they made possible. By the 1970s, isolated and “expedition” observational approaches were evolving into experimental campaigns that covered large ocean areas and addressed multiscale phenomena using diverse instrumental suites and associated modeling and analysis teams. The Mid-Ocean Dynamics Experiment (MODE) addressed mesoscale “eddies” and their interaction with larger-scale currents using new ocean modeling and experiment design techniques and a suite of developing observational methods. Following MODE, new instrument networks were established to study processes that dominated ocean behavior in different regions. The Tropical Ocean Global Atmosphere program gathered multiyear time series in the tropical Pacific to understand, and eventually predict, evolution of coupled ocean–atmosphere phenomena like El Niño–Southern Oscillation (ENSO). The World Ocean Circulation Experiment (WOCE) sought to quantify ocean transport throughout the global ocean using temperature, salinity, and other tracer measurements along with fewer direct velocity measurements with floats and moorings. Western and eastern boundary currents attracted comprehensive measurements, and various coastal regions, each with its unique scientific and societally important phenomena, became home to regional observing systems. Today, the trend toward networked observing arrays of many instrument types continues to be a productive way to understand and predict large-scale ocean phenomena.

Full access
Lei Zhang
,
Weiqing Han
,
Gerald A. Meehl
,
Aixue Hu
,
Nan Rosenbloom
,
Toshiaki Shinoda
, and
Michael J. McPhaden

Abstract

Understanding the impact of the Indian Ocean dipole (IOD) on El Niño–Southern Oscillation (ENSO) is important for climate prediction. By analyzing observational data and performing Indian and Pacific Ocean pacemaker experiments using a state-of-the-art climate model, we find that a positive IOD (pIOD) can favor both cold and warm sea surface temperature anomalies (SSTA) in the tropical Pacific, in contrast to the previously identified pIOD–El Niño connection. The diverse impacts of the pIOD on ENSO are related to SSTA in the Seychelles–Chagos thermocline ridge (SCTR; 60°–85°E, 7°–15°S) as part of the warm pole of the pIOD. Specifically, a pIOD with SCTR warming can cause warm SSTA in the southeastern Indian Ocean, which induces La Niña–like conditions in the tropical Pacific through interbasin interaction processes associated with a recently identified climate phenomenon dubbed the “warm pool dipole.” This study identifies a new pIOD–ENSO relationship and examines the associated mechanisms.

Full access
Jacques Servain
,
Antonio J. Busalacchi
,
Michael J. McPhaden
,
Antonio D. Moura
,
Gilles Reverdin
,
Marcio Vianna
, and
Stephen E. Zebiak

The tropical Atlantic Ocean is characterized by a large seasonal cycle around which there are climatically significant interannual and decadal timescale variations. The most pronounced of these interannual variations are equatorial warm events, somewhat similar to the El Niño events for the Pacific, and the so-called Atlantic sea surface temperature dipole. Both of these phenomena in turn may be related to El Niño-Southern Oscillation variability in the tropical Pacific and other modes of regional climatic variability in ways that are not yet fully understood. PIRATA (Pilot Research Moored Array in the Tropical Atlantic) will address the lack of oceanic and atmospheric data in the tropical Atlantic, which limits our ability to make progress on these important climate issues. The PIRATA array consists of 12 moored Autonomous Temperature Line Acquisition System buoy sites to be occupied during the years 1997–2000 for monitoring the surface variables and upper-ocean thermal structure at key locations in the tropical Atlantic. Meteorological and oceanographical measurements are transmitted via satellite in real time and are available to all interested users in the research or operational communities. The total number of moorings is a compromise between the need to put out a large enough array for a long enough period of time to gain fundamentally new insights into coupled ocean–atmosphere interactions in the region, while at the same time recognizing the practical constraints of resource limitations in terms of funding, ship time, and personnel. Seen as a pilot Global Ocean Observing System/Global Climate Observing System experiment, PIRATA contributes to monitoring the tropical Atlantic in real time and anticipates a comprehensive observing system that could be operational in the region for the 2000s.

Full access
Worth D. Nowlin Jr.
,
Melbourne Briscoe
,
Neville Smith
,
Michael J. McPhaden
,
Dean Roemmich
,
Piers Chapman
, and
J. Frederick Grassle

The Global Ocean Observing System (GOOS) was initiated in the early 1990s with sponsorship by the Intergovernmental Oceanographic Commission, the International Council for Science, the United Nations Environment Programme, and the World Meteorological Organization. Its objective is to design and assist with the implementation of a sustained, integrated, multidisciplinary ocean observing system focused on the production and delivery of data and products to a wide variety of users. The initial design for the GOOS is nearing completion, and implementation has begun.

The initial task in developing a sustained observing system is to identify the requirements of users for sustained data and products. Once such needs are known, the next task is to examine observing system elements that already exist; many necessary elements will be found to exist. The next tasks are to identify and integrate the useful elements into an efficient and effective system, while removing the unneeded elements, and to develop and implement effective data management activities. Moreover, the system must be augmented with new elements because some requirements cannot be met with existing elements and because of technological advances.

Our key objective is to discuss the mechanism whereby new candidate observing system elements are transformed from development status into elements of the sustained system. Candidate systems normally will pass through many different phases on the path from idea and concept to a mature, robust technique. These stages are discussed and examples are given:

  1. Development of an observational/analysis technique within the ocean community.

  2. Community acceptance of the methodology gained through experience within pilot projects to demonstrate the utility of the methods and data.

  3. Pre-operational use of the methods and data by researchers, application groups, and other end users, to ensure proper integration within the global system and to ensure that the intended augmentation (and perhaps phased withdrawal of an old technique) does not have any negative impact on the integrity of the GOOS data set and its dependent products.

  4. Incorporation of the methods and data into an operational framework with sustained support and sustained use to meet societal objectives.

Full access
Worth D. Nowlin Jr.
,
Neville Smith
,
George Needler
,
Peter K. Taylor
,
Robert Weller
,
Ray Schmitt
,
Liliane Merlivat
,
Alain Vézina
,
Arthur Alexiou
,
Michael McPhaden
, and
Massaaki Wakatsuchi

Designs and implementation are proceeding for a Global Ocean Observing System (GOOS) and a Global Climate Observing System (GCOS). The initial design for the ocean component of the GCOS, which is also the climate module of the GOOS, was completed in 1995 by the Ocean Observing System Development Panel (OOSDP). This design for an ocean observing system for climate aims to provide ocean observations leading to gridded products, analyses, forecasts, indexes, assessments, and other items needed to detect, monitor, understand, and predict climate variations and change. A summary of the OOSDP report is presented here, beginning with the rationale for such a system and the series of specific goals and subgoals used to focus the design. The instruments, platforms, transmission systems, or processing required to observe the climate variables or quantifiable aspects of the climate system to meet these subgoals are identified. These observing system elements are divided into three categories: 1) elements of existing operational systems, 2) those that should be added now to complete the initial observing system, or 3) elements perhaps not now readily attainable but that should be added to the system at the earliest feasible time. Future research and development likely needed for further development of the system are also identified in the report. The elements needed for each subgoal are ranked as to feasibility (i.e., routine, systematic, timely, and cost-effective characteristics) versus their impact on attaining the subgoal. Priorities among the various subgoals are presented based on the panel's perception of where the immediate and important issues lie. This then provides the basis for an incremental approach to implementation, leading to a coherent conceptual design.

Full access
Eric Guilyardi
,
Andrew Wittenberg
,
Magdalena Balmaseda
,
Wenju Cai
,
Matthew Collins
,
Michael J. McPhaden
,
Masahiro Watanabe
, and
Sang-Wook Yeh
Full access
Weiqing Han
,
Jérôme Vialard
,
Michael J. McPhaden
,
Tong Lee
,
Yukio Masumoto
,
Ming Feng
, and
Will P.M. de Ruijter

The international scientific community has highlighted decadal and multidecadal climate variability as a priority area for climate research. The Indian Ocean rim region is home to one-third of the world's population, mostly living in developing countries that are vulnerable to climate variability and to the increasing pressure of anthropogenic climate change. Yet, while prominent decadal and multidecadal variations occur in the Indian Ocean, they have been less studied than those in the Pacific and Atlantic Oceans. This paper reviews existing literature on these Indian Ocean variations, including observational evidence, physical mechanisms, and climatic impacts. This paper also identifies major issues and challenges for future Indian Ocean research on decadal and multidecadal variability.

Full access
Jérôme Vialard
,
Christophe Menkes
,
Jean-Philippe Boulanger
,
Pascale Delecluse
,
Eric Guilyardi
,
Michael J. McPhaden
, and
Gurvan Madec

Abstract

In this study, the processes affecting sea surface temperature variability over the 1992–98 period, encompassing the very strong 1997–98 El Niño event, are analyzed. A tropical Pacific Ocean general circulation model, forced by a combination of weekly ERS1–2 and TAO wind stresses, and climatological heat and freshwater fluxes, is first validated against observations. The model reproduces the main features of the tropical Pacific mean state, despite a weaker than observed thermal stratification, a 0.1 m s−1 too strong (weak) South Equatorial Current (North Equatorial Countercurrent), and a slight underestimate of the Equatorial Undercurrent. Good agreement is found between the model dynamic height and TOPEX/Poseidon sea level variability, with correlation/rms differences of 0.80/4.7 cm on average in the 10°N–10°S band. The model sea surface temperature variability is a bit weak, but reproduces the main features of interannual variability during the 1992–98 period. The model compares well with the TAO current variability at the equator, with correlation/rms differences of 0.81/0.23 m s−1 for surface currents. The model therefore reproduces well the observed interannual variability, with wind stress as the only interannually varying forcing.

This good agreement with observations provides confidence in the comprehensive three-dimensional circulation and thermal structure of the model. A close examination of mixed layer heat balance is thus undertaken, contrasting the mean seasonal cycle of the 1993–96 period and the 1997–98 El Niño. In the eastern Pacific, cooling by exchanges with the subsurface (vertical advection, mixing, and entrainment), the atmospheric forcing, and the eddies (mainly the tropical instability waves) are the three main contributors to the heat budget. In the central–western Pacific, the zonal advection by low-frequency currents becomes the main contributor. Westerly wind bursts (in December 1996 and March and June 1997) were found to play a decisive role in the onset of the 1997–98 El Niño. They contributed to the early warming in the eastern Pacific because the downwelling Kelvin waves that they excited diminished subsurface cooling there. But it is mainly through eastward advection of the warm pool that they generated temperature anomalies in the central Pacific. The end of El Niño can be linked to the large-scale easterly anomalies that developed in the western Pacific and spread eastward, from the end of 1997 onward. In the far-western Pacific, because of the shallower than normal thermocline, these easterlies cooled the SST by vertical processes. In the central Pacific, easterlies pushed the warm pool back to the west. In the east, they led to a shallower thermocline, which ultimately allowed subsurface cooling to resume and to quickly cool the surface layer.

Full access
Janet Sprintall
,
Motoki Nagura
,
Juliet Hermes
,
M. K. Roxy
,
Michael J. McPhaden
,
E. Pattabhi Rama Rao
,
Srinivasa Kumar Tummala
,
Sidney Thurston
,
Jing Li
,
Mathieu Belbeoch
, and
Victor Turpin

Abstract

Observing and understanding the state of the Indian Ocean and its influence on climate and maritime resources is of critical importance to the populous nations that rim its border. Acute gaps have occurred in the Indian Ocean Observing System, which underpins monitoring and forecasting of regional climate, since the start of the COVID pandemic. The pandemic disrupted the deployment and maintenance cruises for the observational array and also resulted in supply chain issues for procurement and refurbishment of equipment. In particular, the observational platforms that provide key measurements of upper ocean heat variability have experienced serious multiyear declines. There is now record-low data reporting and the platforms that are successfully reporting are old and quickly surpassing their expected period of reliable operation. The overall impact on the observing system will take a few years to fully comprehend. In the meantime, there is a critical need to document the gaps that have appeared over the past few years and how this will impact our ability to improve understanding and model representations of the real world that support regional weather and climate forecasts. The article outlines the expected slow road to recovery for the Indian Ocean Observing System, documents case studies of successful international collaborative efforts that will revive the observing system and provides guidelines for resilience from unexpected external factors in the future.

Open access