Search Results

You are looking at 91 - 100 of 136 items for

  • Author or Editor: Yao Yao x
  • Refine by Access: All Content x
Clear All Modify Search
Ruiyang Ma, Dong Zheng, Yijun Zhang, Wen Yao, Wenjuan Zhang, and Deqing Cuomu

Abstract

Herein, we compared data on the spatiotemporal distribution of lightning activity obtained from the World Wide Lightning Location Network (WWLLN) with that from the Lightning Imaging Sensor (LIS). The WWLLN and LIS both suggest intense lightning activity over the central and southeastern Tibetan Plateau (TP) during May–September. Meanwhile, the WWLLN indicates relatively weak lightning activity over the northeastern TP, where the LIS suggests very intense lightning activity, and it also indicates a high-density lightning center over the southwestern TP that is not suggested by the LIS. Furthermore, the WWLLN lightning peaks in August in terms of monthly variation and in late August in terms of 10-day variation, unlike the corresponding LIS lightning peaks of July and late June, respectively. Other observation data were also introduced into the comparison. The blackbody temperature (TBB) data from the Fengyun-2E geostationary satellite (as a proxy of deep convection) and thunderstorm-day data support the spatial distribution of the WWLLN lightning more. Meanwhile, for seasonal variation, the TBB data are more analogous to the LIS data, whereas the cloud-to-ground (CG) lightning data from a local CG lightning location system are closer to the WWLLN data. It is speculated that the different WWLLN and LIS observation modes may cause their data to represent different dominant types of lightning, thereby leading to differences in the spatiotemporal distributions of their data. The results may further imply that there exist regional differences and seasonal variations in the electrical properties of thunderstorms over the TP.

Restricted access
Xiaoxin Yang, Tandong Yao, Wulin Yang, Baiqing Xu, You He, and Dongmei Qu

Abstract

The onset of the Asian summer monsoon is noticeably controversial, spatially and temporally. The stable oxygen isotope δ 18O in precipitation has long been used to trace water vapor source, particularly to capture the summer monsoon precipitation signal. The abrupt decrease of precipitation δ 18O in the Asian summer monsoon region closely corresponds to the summer monsoon onset. Two stations have therefore been set up at Guangzhou and Lulang in the East Asian summer monsoon domain to clarify the summer monsoon onset dates. Event-based precipitation δ 18O during 2007/08 is much lower at Lulang than at Guangzhou and is attributable mainly to the altitude effect offset by different isotopic compositions in marine moisture sources. The earlier appearance of low δ 18Owt at Lulang than at Guangzhou confirms the earlier summer monsoon onset in the Bay of Bengal. Isotopically identified summer monsoon evolutions from precipitation δ 18O at both stations are verifiable with NCEP–NCAR reanalysis data, indicating that precipitation δ 18O offers an alternative approach to studying the summer monsoon circulation from precipitation δ 18O.

Full access
Qiang Wang, Lili Zeng, Jian Li, Ju Chen, Yunkai He, Jinglong Yao, Dongxiao Wang, and Weidong Zhou

Abstract

Cross-shelf flow induced by mesoscale eddies has been investigated in the northern South China Sea (NSCS) using velocity observations from Long Ranger ADCP moorings. Mesoscale eddies influenced the three mooring stations during almost all the observation period. Four quadrants have been defined with the mooring location as the origin, and it is found that warm (cold) mesoscale eddies induce onshore (offshore) movement in the eastern two quadrants and offshore (onshore) movement in the western two quadrants. When an eddy propagates past a mooring station, net cross-shelf flow at the mooring station can be induced by asymmetry in the horizontal and vertical structure of the eddy and by its evolution. As an eddy propagates westward, its shape changes continually and the vertical modes also transform from high to lower modes, which contributes to the net cross-shelf flow. Based on the quasigeostrophic potential vorticity equation, it is confirmed that the net cross-shelf flow is mainly induced by the eddy evolution and suppressed by nonlinear effect. Because of dispersion characteristics of the mesoscale eddy, barotropic mode will restructure at the baroclinic mode area after separating from the baroclinic mode, which will be enhanced by topography slope.

Full access
Anthony D. Del Genio, Jingbo Wu, Audrey B. Wolf, Yonghua Chen, Mao-Sung Yao, and Daehyun Kim

Abstract

Two recent activities offer an opportunity to test general circulation model (GCM) convection and its interaction with large-scale dynamics for observed Madden–Julian oscillation (MJO) events. This study evaluates the sensitivity of the Goddard Institute for Space Studies (GISS) GCM to entrainment, rain evaporation, downdrafts, and cold pools. Single Column Model versions that restrict weakly entraining convection produce the most realistic dependence of convection depth on column water vapor (CWV) during the Atmospheric Radiation Measurement MJO Investigation Experiment at Gan Island. Differences among models are primarily at intermediate CWV where the transition from shallow to deeper convection occurs. GCM 20-day hindcasts during the Year of Tropical Convection that best capture the shallow–deep transition also produce strong MJOs, with significant predictability compared to Tropical Rainfall Measuring Mission data. The dry anomaly east of the disturbance on hindcast day 1 is a good predictor of MJO onset and evolution. Initial CWV there is near the shallow–deep transition point, implicating premature onset of deep convection as a predictor of a poor MJO simulation. Convection weakly moistens the dry region in good MJO simulations in the first week; weakening of large-scale subsidence over this time may also affect MJO onset. Longwave radiation anomalies are weakest in the worst model version, consistent with previous analyses of cloud/moisture greenhouse enhancement as the primary MJO energy source. The authors’ results suggest that both cloud-/moisture-radiative interactions and convection–moisture sensitivity are required to produce a successful MJO simulation.

Full access
Xudong Liang, Yanxin Xie, Jinfang Yin, Yi Luo, Dan Yao, and Feng Li

Abstract

Dealiasing is a common procedure in radar radial velocity quality control. Generally, there are two dealiasing steps: a continuity check and a reference check. In this paper, a modified version that uses azimuthal variance of radial velocity is introduced based on the integrating velocity–azimuth process (IVAP) method, referred to as the V-IVAP method. The new method can retrieve the averaged winds within a local area instead of averaged wind within a full range circle by the velocity–azimuth display (VAD) or the modified VAD method. The V-IVAP method is insensitive to the alias of the velocity, and provides a better way to produce reference velocities for a reference check. Instead of a continuity check, we use the IVAP method for a fine reference check because of its high-frequency filtering function. Then a dealiasing procedure with two steps of reference check is developed. The performance of the automatic dealiasing procedure is demonstrated by retrieving the wind field of a tornado. Using the dealiased radar velocities, the retrieved winds reveal a clear mesoscale vortex. A test based on radar network observations also has shown that the two-step dealiasing procedure based on V-IVAP and IVAP methods is reliable.

Full access
Shiyuan Zhong, Ju Li, C. David Whiteman, Xindi Bian, and Wenqing Yao

Abstract

The climatology of high wind events in the Owens Valley, California, a deep valley located just east of the southern Sierra Nevada, is described using data from six automated weather stations distributed along the valley axis in combination with the North American Regional Reanalysis dataset. Potential mechanisms for the development of strong winds in the valley are examined.

Contrary to the common belief that strong winds in the Owens Valley are westerly downslope windstorms that develop on the eastern slope of the Sierra Nevada, strong westerly winds are rare in the valley. Instead, strong winds are highly bidirectional, blowing either up (northward) or down (southward) the valley axis. High wind events are most frequent in spring and early fall and they occur more often during daytime than during nighttime, with a peak frequency in the afternoon. Unlike thermally driven valley winds that blow up valley during daytime and down valley during nighttime, strong winds may blow in either direction regardless of the time of the day. The southerly up-valley winds appear most often in the afternoon, a time when there is a weak minimum of northerly down-valley winds, indicating that strong wind events are modulated by local along-valley thermal forcing.

Several mechanisms, including downward momentum transfer, forced channeling, and pressure-driven channeling all play a role in the development of southerly high wind events. These events are typically accompanied by strong south-southwesterly synoptic winds ahead of an upper-level trough off the California coast. The northerly high wind events, which typically occur when winds aloft are from the northwest ahead of an approaching upper-level ridge, are predominantly caused by the passage of a cold front when fast-moving cold air behind the surface front undercuts and displaces the warmer air in the valley. Forced channeling by the sidewalls of the relatively narrow valley aligns the wind direction with the valley axis and enhances the wind speeds.

Full access
Chao-Lin Wang, Shao-Bo Zhong, Guan-Nan Yao, and Quan-Yi Huang

Abstract

Drought disasters cause great economic losses in China every year, especially in its southwest, and they have had a major influence on economic development, lives, and property. In this study, precipitation and drought hazards were examined for a region covering Yunnan, Guizhou, and Guangxi Provinces to assess the spatial and temporal distribution of different drought hazard grades in this region. Annual precipitation data from 90 meteorological stations in or around the study area were collected and organized for the period of 1964–2013. A spatiotemporal covariance model was calculated and fitted. The Bayesian maximum entropy (BME) method, which considers physical knowledge bases to reduce errors, was used to provide an optimal estimation of annual precipitation. Regional annual precipitation distributions were determined. To analyze the spatiotemporal patterns of the drought hazard, the annual standardized precipitation index was used to measure drought severity. A method that involves space–time scan statistics was used to detect the most likely spatiotemporal clusters of the drought hazards. Test-significance p values for all of the calculated clusters were less than 0.001, indicating a high significance level. The results showed that Yunnan Province was a drought-prone area, especially in its northwest and center, followed by Guizhou Province. In addition, Yunnan and Guizhou Provinces were cluster areas of severe and extreme drought. The most likely cluster year was 1966; it was clustered five times during the study period. In this study, the evolutionary process of drought hazards, including spatiotemporal distribution and spatiotemporal clustering characteristics, was considered. The results may be used to provide support for prevention and mitigation of drought in the study area such as optimizing the distribution of drought-resisting resources, drought monitoring, and evaluating potential drought impacts.

Full access
Junchen Yao, Tianjun Zhou, Zhun Guo, Xiaolong Chen, Liwei Zou, and Yong Sun

Abstract

Simulating the East Asian summer monsoon (EASM) rain belt has been proven challenging for climate models. In this study, the impacts of high resolution to the simulation of spatial distributions and rainfall intensity of the EASM rain belt are revealed based on Atmospheric Model Intercomparison Project (AMIP) simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5) models. A set of sensitivity experiments is further performed to eliminate the potential influences of differences among CMIP5 models. The results show that the high-resolution models improve the intensity and the spatial pattern of the EASM rainfall compared to the low-resolution models, further valid in the sensitivity experiments. The diagnosis of moist static energy (MSE) balance and moisture budgets is further performed to understand the mechanisms underlying the enhancements. Both analyses indicate that the improved EASM rainfall benefits from the intensified meridional convergence along the EASM rain belt simulated by the high-resolution models. In addition, such convergence is mainly contributed by intensified stationary meridional eddy northerly flows over the central northern areas of China and southerly flows over the south of Japan due to increased model resolution, which is robust in the sensitivity experiments. Further analysis indicates that the stationary meridional eddy flow changes in high-resolution simulations are related to the barotropic Rossby wave downstream of the Tibetan Plateau resulting from increased resolution.

Open access
Qingjing Hu, Peiran Yu, Yujiao Zhu, Kai Li, Huiwang Gao, and Xiaohong Yao

Abstract

In this paper, the concentration, the size distribution, and the formation of dimethylaminium (DMA+) and trimethylaminium (TMA+) ions in atmospheric particles were studied during a cruise campaign over the Yellow Sea and the Bohai Sea of China in May 2012. The concentrations of DMA+ and TMA+ in particles smaller than 11 µm were 4.4 ± 3.7 and 7.2 ± 7.1 nmol m−3, respectively. The two ions had a good correlation (R 2 = 0.86), and both had a moderately good correlation with chlorophyll a fluorescence (R 2 = 0.66–0.67). The observed concentrations were from one to three orders of magnitude larger than the concentrations reported in other marine atmospheres. They were also much larger than the values observed at a coastal site neighboring the Yellow Sea in May–June 2013. The high concentrations of DMA+ and TMA+ observed in the marine atmosphere were probably associated with local biogenic activity instead of the long-range transport of these species from adjacent continents. The calculated mole ratios of (DMA+ + TMA+) to in different-sized particles over the seas indicated that (DMA+ + TMA+) most likely played an important role in neutralizing acidic species in particles less than 0.43 µm but not in particles of other sizes. Size distributions of DMA+ and TMA+ in the marine and coastal atmospheres were analyzed in terms of the respective contribution of gas–particle partitioning, cloud/fog processing of TMA+ and DMA+, bioaerosols, and sea-salt aerosols to the observed concentrations of the two ions over the seas.

Full access
Dan-Qing Huang, Jian Zhu, Yao-Cun Zhang, Jun Wang, and Xue-Yuan Kuang

Abstract

Spring persistent rainfall (SPR) over southern China has great impact on its society and economics. A remarkable feature of the SPR is high frequency. However, SPR frequency obviously decreases over the period of 1997–2011. In this study, the possible causes have been investigated from the perspective of the individual and concurrent effects of the East Asian subtropical jet (EASJ) and East Asian polar front jet (EAPJ). A close relationship is detected between SPR frequency and EASJ intensity (but not EAPJ intensity). Associated with strong EASJ, abundant water vapor is transported to southern China by the southwesterly flow, which may trigger the SPR. Additionally, frequencies of both strong EASJ and weak EAPJ events are positively correlated with SPR frequency. Further investigation of the concurrent effect indicates a significant positive correlation between the frequencies of SPR and the strong EASJ–weak EAPJ configuration. Associated with this configuration, southwesterly flow strengthens in the lower troposphere, while northerly wind weakens in the upper troposphere. This provides a dynamic and moist condition, as enhanced ascending motion and intensified convergence of abundant water vapor over southern China, which favors the SPR. All analyses suggest that the EASJ may play a dominant role in the SPR occurrence and that the EAPJ may play a modulation role. Finally, a possible mechanism maintaining the strong EASJ–weak EAPJ configuration is proposed. Significant cooling over the northeastern Tibetan Plateau may induce a cyclone anomaly in the upper troposphere, which could result in an accelerating EASJ and a decelerating EAPJ.

Full access