Search Results

You are looking at 101 - 110 of 117 items for

  • Author or Editor: Wei Wang x
  • Refine by Access: All Content x
Clear All Modify Search
Qinglan Li, Zenglu Li, Yulong Peng, Xiaoxue Wang, Lei Li, Hongping Lan, Shengzhong Feng, Liqun Sun, Guangxin Li, and Xiaolin Wei

Abstract

This study proposes a statistical regression scheme to forecast tropical cyclone (TC) intensity at 12, 24, 36, 48, 60, and 72 h in the northwestern Pacific region. This study utilizes best track data from the Shanghai Typhoon Institute (STI), China, and the Joint Typhoon Warning Center (JTWC), United States, from 2000 to 2015. In addition to conventional factors involving climatology and persistence, this study pays close attention to the land effect on TC intensity change by considering a new factor involving the ratio of seawater area to land area (SL ratio) in the statistical regression model. TC intensity changes are investigated over the entire life-span, over the open ocean, near the coast, and after landfall. Data from 2000 to 2011 are used for model calibration, and data from 2012 to 2015 are used for model validation. The results show that the intensity change during the previous 12 h (DVMAX), the potential future intensity change (POT), and the area-averaged (200–800 km) wind shear at 1000–300 hPa (SHRD) are the most significant predictors of the intensity change for TCs over the open ocean and near the coast. Intensity forecasting for TCs near the coast and over land is improved with the addition of the SL ratio compared with that of the models that do not consider the SL ratio. As this study has considered the TC intensity change over the entire TC life-span, the proposed models are valuable and practical for forecasting TC intensity change over the open ocean, near the coast, and after landfall.

Open access
Yachao Hu, Greg M. McFarquhar, Wei Wu, Yongjie Huang, Alfons Schwarzenboeck, Alain Protat, Alexei Korolev, Robert M Rauber, and Hongqing Wang

Abstract

High ice water content (HIWC) regions above tropical mesoscale convective systems are investigated using data from the second collaboration of the High Altitude Ice Crystals and High Ice Water Content projects (HAIC-HIWC) based in Cayenne, French Guiana, in 2015. Observations from in situ cloud probes on the French Falcon 20 determine the microphysical and thermodynamic properties of such regions. Data from a 2D stereo probe and precipitation imaging probe show how statistical distributions of ice crystal mass median diameter (MMD), ice water content (IWC), and total number concentration (N t) for particles with maximum dimension (D max) > 55 μm vary with environmental conditions, temperature (T), and convective properties such as vertical velocity (w), MCS age, distance away from convective peak (L), and surface characteristics. IWC is significantly correlated with w, whereas MMD decreases and N t increases with decreasing T consistent with aggregation, sedimentation, and vapor deposition processes at lower altitudes. MMD typically increases with IWC when IWC < 0.5 g m−3, but decreases with IWC when IWC > 0.5 g m−3 for −15° ≤ T ≤ −5°C. Trends also depend on environmental conditions, such as the presence of convective updrafts that are the ice crystal source, MMD being larger in older MCSs consistent with aggregation and less injection of small crystals into anvils, and IWCs decrease with increasing L at lower T. The relationship between IWC and MMD depends on environmental conditions, with correlations decreasing with decreasing T. The strength of correlation between IWC and N t increases as T decreases.

Restricted access
Ya-Chien Feng, Hsiu-Wei Hsu, Tammy M. Weckwerth, Pay-Liam Lin, Yu-Chieng Liou, and Tai-Chi Chen Wang

Abstract

The radar-retrieved refractivity fields provide detailed depictions of the near-surface moisture distribution at the meso-γ scale. This study represents a novel application of the refractivity fields by examining the spatiotemporal characteristics of moisture variability in a summertime coastal region in Taiwan over 4 weeks. The physiography in Taiwan lends itself to a variety of flow features and corresponding moisture behavior, which has not been well studied. High-resolution refractivity analyses demonstrate how a highly variable moisture field is related to the complex interaction between the synoptic-scale winds, diurnal local circulations, terrain, storms, and heterogeneous land use. On average, higher refractivity (water vapor) is observed along the coastline and refractivity decreases inland toward the foothills. Under weak synoptic forcing conditions, the daytime refractivity field develops differently under local surface wind directions determined by the synoptic-scale prevailing wind and the sea-breeze fronts. High moisture penetrates inland toward the foothills with southwesterly winds, but it stalls along the coastline with southerly and northwesterly winds. The moisture distribution may further affect the occurrence of the inland afternoon storms. During the nighttime, the dry downslope wind decreases the moisture from the foothills toward the coast and forms a refractivity gradient perpendicular to the meridionally oriented mountains. Furthermore, the refractivity fields illustrate higher-resolution moisture distribution over surface station point measurements by showing the lagged daytime sea-breeze front between the urban and rural areas and the detailed nighttime heterogeneous moisture distribution related to land-use and rivers.

Restricted access
Yaohui Li, Xing Yuan, Hongsheng Zhang, Runyuan Wang, Chenghai Wang, Xianhong Meng, Zhiqiang Zhang, Shanshan Wang, Yang Yang, Bo Han, Kai Zhang, Xiaoping Wang, Hong Zhao, Guangsheng Zhou, Qiang Zhang, Qing He, Ni Guo, Wei Hou, Cunjie Zhang, Guoju Xiao, Xuying Sun, Ping Yue, Sha Sha, Heling Wang, Tiejun Zhang, Jinsong Wang, and Yubi Yao

Abstract

A major experimental drought research project entitled “Mechanisms and Early Warning of Drought Disasters over Northern China” (DroughtEX_China) was launched by the Ministry of Science and Technology of China in 2015. The objective of DroughtEX_China is to investigate drought disaster mechanisms and provide early-warning information via multisource observations and multiscale modeling. Since the implementation of DroughtEX_China, a comprehensive V-shape in situ observation network has been established to integrate different observational experiment systems for different landscapes, including crops in northern China. In this article, we introduce the experimental area, observational network configuration, ground- and air-based observing/testing facilities, implementation scheme, and data management procedures and sharing policy. The preliminary observational and numerical experimental results show that the following are important processes for understanding and modeling drought disasters over arid and semiarid regions: 1) the soil water vapor–heat interactions that affect surface soil moisture variability, 2) the effect of intermittent turbulence on boundary layer energy exchange, 3) the drought–albedo feedback, and 4) the transition from stomatal to nonstomatal control of plant photosynthesis with increasing drought severity. A prototype of a drought monitoring and forecasting system developed from coupled hydroclimate prediction models and an integrated multisource drought information platform is also briefly introduced. DroughtEX_China lasted for four years (i.e., 2015–18) and its implementation now provides regional drought monitoring and forecasting, risk assessment information, and a multisource data-sharing platform for drought adaptation over northern China, contributing to the global drought information system (GDIS).

Open access
Jeffrey Beck, John Brown, Jimy Dudhia, David Gill, Tracy Hertneky, Joseph Klemp, Wei Wang, Christopher Williams, Ming Hu, Eric James, Jaymes Kenyon, Tanya Smirnova, and Jung-Hoon Kim

Abstract

A new hybrid, sigma-pressure vertical coordinate was recently added to the Weather Research and Forecasting (WRF) Model in an effort to reduce numerical noise in the model equations near complex terrain. Testing of this hybrid, terrain-following coordinate was undertaken in the WRF-based Rapid Refresh (RAP) and High-Resolution Rapid Refresh (HRRR) models to assess impacts on retrospective and real-time simulations. Initial cold-start simulations indicated that the majority of differences between the hybrid and traditional sigma coordinate were confined to regions downstream of mountainous terrain and focused in the upper levels. Week-long retrospective simulations generally resulted in small improvements for the RAP, and a neutral impact in the HRRR when the hybrid coordinate was used. However, one possibility is that the inclusion of data assimilation in the experiments may have minimized differences between the vertical coordinates. Finally, analysis of turbulence forecasts with the new hybrid coordinate indicate a significant reduction in spurious vertical motion over the full length of the Rocky Mountains. Overall, the results indicate a potential to improve forecast metrics through implementation of the hybrid coordinate, particularly at upper levels, and downstream of complex terrain.

Free access
Chong Shen, Xiaoyang Chen, Wei Dai, Xiaohui Li, Jie Wu, Qi Fan, Xuemei Wang, Liye Zhu, Pakwai Chan, Jian Hang, Shaojia Fan, and Weibiao Li

Abstract

On urban scales, the detailed characteristics of land-use information and building properties are vital to improving the meteorological model. The WRF Model with high-spatial-resolution urban fraction (UF) and urban morphology (UM) is used to study the impacts of these urban canopy parameters (UCPs) on dynamical and thermal meteorological fields in two representative seasons in Guangzhou. The results of two seasons are similar and as follows. 1) The impacts of updated UF and UM are obvious on wind speed but minor on temperature and humidity. In the urban environment, the results with updated UF and UM are more consistent with observations compared with the default UCPs, which means the performance of the model has been improved. 2) The dynamical factors associated with wind speed are analyzed. Turbulent kinetic energy (TKE) is significantly affected by UM but little by UF. And both UF and UM are found to influence friction velocity U*. The UM and greater UF attained larger U*. 3) In addition, the thermal fields are analyzed. The UM and increased UF induce higher surface skin temperature (TSK) and ground heat flux in the daytime, indicating that more heat is transported from the surface to the soil. At night, more heat is transported from the soil to the surface, producing higher TSK. For sensible heat flux (HFX), greater UF induces larger HFX during the daytime. But the effects of UM are complex, which makes HFX decrease during the daytime and increase at night. Finally, larger UF attains lower latent heat in the daytime.

Full access
Yang Shi, Jiahua Wei, Yan Ren, Zhen Qiao, Qiong Li, Xiaomei Zhu, Beiming Kang, Peichong Pan, Jiongwei Cao, Jun Qiu, Tiejian Li, and Guangqian Wang

Abstract

Acoustic agglomerations have increasingly attracted widespread attention as a cost-effective and environmentally friendly approach for fog removal and weather modification. In this study, research on precipitation interference and the agglomeration performance of droplet aerosols under large-scale acoustic waves was presented. In total, 49 field experiments in the source region of the Yellow River in the summer of 2019 were performed to reveal the influences of acoustic waves on precipitation, such as the radar reflectivity factor Z, rain rate R, and raindrop size distribution (DSD). A monitoring system that consisted of rain gauges and raindrop spectrometers was employed to monitor near-ground rainfall within a 5-km radius of the field site. The ground-based observations showed that acoustic waves could significantly affect the rainfall distribution and microstructure of precipitation particles. The average values of rainfall increased by 18.98%, 10.61%, and 8.74% within 2, 3, and 5 km, respectively, of the operation center with acoustic application. The changing trend of microphysical parameters of precipitation was roughly in line with variation of acoustic waves for stratiform cloud. Moreover, there was a good quadratic relationship between the spectral parameters λ and μ. Raindrop kinetic energy e K and the radar reflectivity factor Z both exhibited a power function relationship with R.

Restricted access
Fan Yang, Qing He, Jianping Huang, Ali Mamtimin, Xinghua Yang, Wen Huo, Chenglong Zhou, Xinchun Liu, Wenshou Wei, Caixia Cui, Minzhong Wang, Hongjun Li, Lianmei Yang, Hongsheng Zhang, Yuzhi Liu, Xinqian Zheng, Honglin Pan, Lili Jin, Han Zou, Libo Zhou, Yongqiang Liu, Jiantao Zhang, Lu Meng, Yu Wang, Xiaolin Qin, Yongjun Yao, Houyong Liu, Fumin Xue, and Wei Zheng

Abstract

As the second-largest shifting sand desert worldwide, the Taklimakan Desert (TD) represents the typical aeolian landforms in arid regions as an important source of global dust aerosols. It directly affects the ecological environment and human health across East Asia. Thus, establishing a comprehensive environment and climate observation network for field research in the TD region is essential to improve our understanding of the desert meteorology and environment, assess its impact, mitigate potential environmental issues, and promote sustainable development. With a nearly 20-yr effort under the extremely harsh conditions of the TD, the Desert Environment and Climate Observation Network (DECON) has been established completely covering the TD region. The core of DECON is the Tazhong station in the hinterland of the TD. Moreover, the network also includes 4 satellite stations located along the edge of the TD for synergistic observations, and 18 automatic weather stations interspersed between them. Thus, DECON marks a new chapter of environmental and meteorological observation capabilities over the TD, including dust storms, dust emission and transport mechanisms, desert land–atmosphere interactions, desert boundary layer structure, ground calibration for remote sensing monitoring, and desert carbon sinks. In addition, DECON promotes cooperation and communication within the research community in the field of desert environments and climate, which promotes a better understanding of the status and role of desert ecosystems. Finally, DECON is expected to provide the basic support necessary for coordinated environmental and meteorological monitoring and mitigation, joint construction of ecologically friendly communities, and sustainable development of central Asia.

Full access
Christopher Davis, Wei Wang, Shuyi S. Chen, Yongsheng Chen, Kristen Corbosiero, Mark DeMaria, Jimy Dudhia, Greg Holland, Joe Klemp, John Michalakes, Heather Reeves, Richard Rotunno, Chris Snyder, and Qingnong Xiao

Abstract

Real-time forecasts of five landfalling Atlantic hurricanes during 2005 using the Advanced Research Weather Research and Forecasting (WRF) (ARW) Model at grid spacings of 12 and 4 km revealed performance generally competitive with, and occasionally superior to, other operational forecasts for storm position and intensity. Recurring errors include 1) excessive intensification prior to landfall, 2) insufficient momentum exchange with the surface, and 3) inability to capture rapid intensification when observed. To address these errors several augmentations of the basic community model have been designed and tested as part of what is termed the Advanced Hurricane WRF (AHW) model. Based on sensitivity simulations of Katrina, the inner-core structure, particularly the size of the eye, was found to be sensitive to model resolution and surface momentum exchange. The forecast of rapid intensification and the structure of convective bands in Katrina were not significantly improved until the grid spacing approached 1 km. Coupling the atmospheric model to a columnar, mixed layer ocean model eliminated much of the erroneous intensification of Katrina prior to landfall noted in the real-time forecast.

Full access
William S. Olson, Christian D. Kummerow, Song Yang, Grant W. Petty, Wei-Kuo Tao, Thomas L. Bell, Scott A. Braun, Yansen Wang, Stephen E. Lang, Daniel E. Johnson, and Christine Chiu

Abstract

A revised Bayesian algorithm for estimating surface rain rate, convective rain proportion, and latent heating profiles from satellite-borne passive microwave radiometer observations over ocean backgrounds is described. The algorithm searches a large database of cloud-radiative model simulations to find cloud profiles that are radiatively consistent with a given set of microwave radiance measurements. The properties of these radiatively consistent profiles are then composited to obtain best estimates of the observed properties. The revised algorithm is supported by an expanded and more physically consistent database of cloud-radiative model simulations. The algorithm also features a better quantification of the convective and nonconvective contributions to total rainfall, a new geographic database, and an improved representation of background radiances in rain-free regions. Bias and random error estimates are derived from applications of the algorithm to synthetic radiance data, based upon a subset of cloud-resolving model simulations, and from the Bayesian formulation itself. Synthetic rain-rate and latent heating estimates exhibit a trend of high (low) bias for low (high) retrieved values. The Bayesian estimates of random error are propagated to represent errors at coarser time and space resolutions, based upon applications of the algorithm to TRMM Microwave Imager (TMI) data. Errors in TMI instantaneous rain-rate estimates at 0.5°-resolution range from approximately 50% at 1 mm h−1 to 20% at 14 mm h−1. Errors in collocated spaceborne radar rain-rate estimates are roughly 50%–80% of the TMI errors at this resolution. The estimated algorithm random error in TMI rain rates at monthly, 2.5° resolution is relatively small (less than 6% at 5 mm day−1) in comparison with the random error resulting from infrequent satellite temporal sampling (8%–35% at the same rain rate). Percentage errors resulting from sampling decrease with increasing rain rate, and sampling errors in latent heating rates follow the same trend. Averaging over 3 months reduces sampling errors in rain rates to 6%–15% at 5 mm day−1, with proportionate reductions in latent heating sampling errors.

Full access