Search Results

You are looking at 111 - 120 of 136 items for

  • Author or Editor: Yao Yao x
  • Refine by Access: All Content x
Clear All Modify Search
Jeng-Lin Tsai, Ben-Jei Tsuang, Po-Sheng Lu, Ken-Hui Chang, Ming-Hwi Yao, and Yuan Shen

Abstract

The aerodynamic roughness, Bowen ratio, and friction velocity were measured over a rice paddy using tethersonde and eddy covariance (EC) systems. In addition, the height ranges of the atmospheric inertial sublayer (ISL) were derived using the tethersonde data. Comparison of the friction velocity, latent and sensible heat fluxes, and Bowen ratio estimated from these systems show their correlation coefficients to be >0.7. This difference between the observational systems can be associated with their respective footprint areas. The aerodynamic roughness was observed to be about 0.03 m for wind blowing from a paddy-dominated area (PDA) and about 0.37 m from a rice paddy interspersed with buildings (PIB) based on the ISL profile. Results are close to the effective roughness length model of Mason, having the same shear stresses at the blending height. In contrast, both the geometric mean model of Taylor and the arithmetic mean model of Tsai and Tsuang underestimate the effective roughness over the PIB. During daylight hours, the height range of the ISL ranged from a few meters to 25 m above ground level (AGL) for wind blowing from the PDA and 14–42 m for wind blowing from the PIB.

Full access
Lanqiang Bai, Zhiyong Meng, Ling Huang, Lijun Yan, Zhaohui Li, Xuehu Mai, Yipeng Huang, Dan Yao, and Xi Wang

Abstract

This work presents an integrated damage, visual, and radar analysis of a tropical cyclone (TC) tornado that has not been documented as detailed as midlatitude tornadoes. On 4 October 2015, an enhanced Fujita 3 (EF3) tornado spawned into Typhoon Mujigae and hit Foshan, Guangdong Province, China. This tornado was generated in a minisupercell ∼350 km northeast of the TC center and lasted about 32 minutes, leaving a southeast-to-northwest damage swath 30.85 km long and 20–570 m wide. Near-surface wind patterns and the size of the tornado, juxtaposition of the condensation funnel with the damage swath and radar signatures, and consistency between near-surface wind speed estimated from visual observations and that estimated using EF scale were revealed based on ground and aerial surveys, radar and surface observations, photographs, and tornado videos. Tornado videos showed two occurrences of vertical subvortices followed by the formation of a horizontal vortex. Some features of the tornado, the parent supercell and mesocyclone, and the convective environment were compared to their U.S. counterparts. This work provides a case review of a tornado with the most comprehensive information ever in China. Damage indicators used to estimate the tornado intensity in this Chinese case were compared with those in the United States, demonstrating the potential applicability of the EF scale in tornado damage surveys outside the United States.

Open access
Hui Zhou, Hengchang Liu, Shuwen Tan, Wenlong Yang, Yao Li, Xueqi Liu, Qiang Ren, and William K. Dewar

Abstract

The structure and variations of the North Equatorial Countercurrent (NECC) in the far western Pacific Ocean during 2014–16 are investigated using repeated in situ hydrographic data, altimeter data, Argo data, and reanalysis data. The NECC shifted ~1° southward and intensified significantly with its transport exceeding 40 Sv (1 Sv ≡ 106 m3 s−1), nearly double its climatology value, during the developing phase of the 2015/16 El Niño event. Observations show that the 2015/16 El Niño exerted a comparable impact on the NECC with that of the extreme 1997/98 El Niño in the far western Pacific Ocean. Baroclinic instability provided the primary energy source for the eddy kinetic energy (EKE) in the 2015/16 El Niño, which differs from the traditional understanding of the energy source of EKE as barotropic instability in low-latitude ocean. The enhanced vertical shear and the reduced density jump between the NECC layer and the North Equatorial Subsurface Current (NESC) layer renders the NECC–NESC system baroclinically unstable in the western Pacific Ocean during El Niño developing phase. The eddy–mean flow interactions here are diverse associated with various states of El Niño–Southern Oscillation (ENSO).

Open access
Qiang Wang, Lili Zeng, Yeqiang Shu, Jian Li, Ju Chen, Yunkai He, Jinglong Yao, Dongxiao Wang, and Weidong Zhou

Abstract

Topographic Rossby waves (TRWs) are reported to make a significant contribution to the deep-ocean current variability. On the northern South China Sea (NSCS) continental slope, TRWs with peak spectral energy at ~14.5 days are observed over about a year at deep moorings aligned east–west around the Dongsha Islands. The TRWs with a group velocity of O(10) cm s−1 contribute more than 40% of total bottom velocity fluctuations at the two mooring stations. The energy propagation and source are further identified using a ray-tracing model. The TRW energy mainly propagates westward along the NSCS continental slope with a slight downslope component. The possible energy source is upper-ocean 10–20-day fluctuations on the east side of the Dongsha Islands, which are transferred through the first baroclinic mode (i.e., the second EOF mode). These 10–20-day fluctuations in the upper ocean are associated with mesoscale eddies. However, to the west of the Dongsha Islands, the 10–20-day fluctuations in the upper ocean are too weak to effectively generate TRWs locally. This work provides an interesting insight toward understanding the NSCS deep current variability and the linkage between the upper- and deep-ocean currents.

Full access
Yuhong Zhang, Yan Du, W. N. D. S Jayarathna, Qiwei Sun, Ying Zhang, Fengchao Yao, and Ming Feng

Abstract

A prolonged high-salinity event in the northern Arabian Sea, to the east of the Gulf of Oman, during 2014–17 was identified based on Argo datasets. The prolonged event was manifested as enhanced spreading of the surface Arabian Sea high-salinity water and the intermediate Persian Gulf water. We used satellite altimetric data and geostrophic current data to understand the oceanic processes and the salt budget associated with the high-salinity event. The results indicated that the strengthened high-salinity advection from the Gulf of Oman was one of the main causes of the salinity increase in the northern Arabian Sea. The changes of the seasonally dependent eddies near the mouth of the Gulf of Oman dominated the strengthened high-salinity advection during the event as compared with the previous 4-yr period: the westward shifted cyclonic eddy during early winter stretched to the remote western Gulf of Oman, which carried the higher-salinity water to the northern Arabian Sea along the south coast of the Gulf. An anomalous eddy dipole during early summer intensified the eastward Ras Al Hadd Jet and its high-salinity advection into the northern Arabian Sea. In addition, the weakened low-salinity advection by coastal currents along the Omani coast caused by the weakened southwest monsoon contributed to the maintenance of the high-salinity event. This prolonged high-salinity event reflects the upper-ocean responses to the monsoon change and may affect the regional hydrography and biogeochemistry extensively.

Free access
Shizuo Liu, Qigang Wu, Steven R. Schroeder, Yonghong Yao, Yang Zhang, Tongwen Wu, Lei Wang, and Haibo Hu

Abstract

Previous studies show that there are substantial influences of winter–spring Tibetan Plateau (TP) snow anomalies on the Asian summer monsoon and that autumn–winter TP heavy snow can lead to persisting hemispheric Pacific–North America-like responses. This study further investigates global atmospheric responses to realistic extensive spring TP snow anomalies using observations and ensemble transient model integrations. Model ensemble simulations are forced by satellite-derived observed March–May TP snow cover extent and snow water equivalent in years with heavy or light TP snow. Heavy spring TP snow causes simultaneous significant local surface cooling and precipitation decreases over and near the TP snow anomaly. Distant responses include weaker surface cooling over most Asian areas surrounding the TP, a weaker drying band extending east and northeast into the North Pacific Ocean, and increased precipitation in a region surrounding this drying band. Also, there is tropospheric cooling from the TP into the North Pacific and over most of North America and the North Atlantic Ocean. The TP snow anomaly induces a negative North Pacific Oscillation/western Pacific–like teleconnection response throughout the troposphere and stratosphere. Atmospheric responses also include significantly increased Pacific trade winds, a strengthened intertropical convergence zone over the equatorial Pacific Ocean, and an enhanced local Hadley circulation. This result suggests a near-global impact of the TP snow anomaly in nearly all seasons.

Open access
Yingbin He, Dongmei Liu, Yanmin Yao, Qing Huang, Jianping Li, Youqi Chen, Shuqin Shi, Li Wan, Shikai Yu, and Deying Wang

Abstract

In this paper, an integrated indicator-based system is established to map the suitability of spring soybean cultivation in northeast China. The indicator system incorporates both biophysical and socioeconomic factors, including the effects of temperature, precipitation, and sunshine on the individual development stages of the spring soybean life cycle. Spatial estimates of crop suitability derived using this indicator system are also compared with spring soybean planting areas to identify locations where there is scope for structural adjustment in soybean farming. Results of this study indicate that northeast China is moderately suited to spring soybean cultivation. Areas classified as suitable, moderately suitable, and unsuitable for soybean cultivation, respectively, occupy approximately 9.09 × 104, 11.45 × 104, and 7.99 × 104 km2, accounting for 11.5%, 10.11%, and 14.49% of the total area of northeast China. The Songnen and Sanjiang Plains are identified as the most and least suitable places, respectively, for spring soybean growth. A comparative analysis indicates that the suitable, moderately suitable, and unsuitable areas account for 24.78%, 46.30%, and 28.92%, respectively, of the total area presently under soybean cultivation. The analysis suggests that soybean cultivation in Heilongjiang Province is generally unfavorable, with equivalent percentages of 15.39%, 51.70%, and 32.91%. Results suggest that agricultural structural adjustment may be required to encourage farmers to grow spring soybeans. It is anticipated that this study will provide a basis for follow-up studies on crop cultivation suitability.

Full access
Robert S. Schrom, Marcus van Lier-Walqui, Matthew R. Kumjian, Jerry Y. Harrington, Anders A. Jensen, and Yao-Sheng Chen

Abstract

The potential for polarimetric Doppler radar measurements to improve predictions of ice microphysical processes within an idealized model–observational framework is examined. In an effort to more rigorously constrain ice growth processes (e.g., vapor deposition) with observations of natural clouds, a novel framework is developed to compare simulated and observed radar measurements, coupling a bulk adaptive-habit model of vapor growth to a polarimetric radar forward model. Bayesian inference on key microphysical model parameters is then used, via a Markov chain Monte Carlo sampler, to estimate the probability distribution of the model parameters. The statistical formalism of this method allows for robust estimates of the optimal parameter values, along with (non-Gaussian) estimates of their uncertainty. To demonstrate this framework, observations from Department of Energy radars in the Arctic during a case of pristine ice precipitation are used to constrain vapor deposition parameters in the adaptive habit model. The resulting parameter probability distributions provide physically plausible changes in ice particle density and aspect ratio during growth. A lack of direct constraint on the number concentration produces a range of possible mean particle sizes, with the mean size inversely correlated to number concentration. Consistency is found between the estimated inherent growth ratio and independent laboratory measurements, increasing confidence in the parameter PDFs and demonstrating the effectiveness of the radar measurements in constraining the parameters. The combined Doppler and polarimetric observations produce the highest-confidence estimates of the parameter PDFs, with the Doppler measurements providing a stronger constraint for this case.

Restricted access
Daehyun Kim, Adam H. Sobel, Anthony D. Del Genio, Yonghua Chen, Suzana J. Camargo, Mao-Sung Yao, Maxwell Kelley, and Larissa Nazarenko

Abstract

The tropical subseasonal variability simulated by the Goddard Institute for Space Studies general circulation model, Model E2, is examined. Several versions of Model E2 were developed with changes to the convective parameterization in order to improve the simulation of the Madden–Julian oscillation (MJO). When the convective scheme is modified to have a greater fractional entrainment rate, Model E2 is able to simulate MJO-like disturbances with proper spatial and temporal scales. Increasing the rate of rain reevaporation has additional positive impacts on the simulated MJO. The improvement in MJO simulation comes at the cost of increased biases in the mean state, consistent in structure and amplitude with those found in other GCMs when tuned to have a stronger MJO. By reinitializing a relatively poor-MJO version with restart files from a relatively better-MJO version, a series of 30-day integrations is constructed to examine the impacts of the parameterization changes on the organization of tropical convection. The poor-MJO version with smaller entrainment rate has a tendency to allow convection to be activated over a broader area and to reduce the contrast between dry and wet regimes so that tropical convection becomes less organized. Besides the MJO, the number of tropical-cyclone-like vortices simulated by the model is also affected by changes in the convection scheme. The model simulates a smaller number of such storms globally with a larger entrainment rate, while the number increases significantly with a greater rain reevaporation rate.

Full access
Shunlin Liang, Jie Cheng, Kun Jia, Bo Jiang, Qiang Liu, Zhiqiang Xiao, Yunjun Yao, Wenping Yuan, Xiaotong Zhang, Xiang Zhao, and Ji Zhou

Abstract:

The Global Land Surface Satellite (GLASS) product suite currently contains 12 products, including leaf area index, fraction of absorbed photosynthetically active radiation, fraction of green vegetation coverage, gross primary production, broadband albedo, broadband longwave emissivity, downward shortwave radiation and photosynthetically active radiation, land surface temperature, downward and upwelling thermal radiation, all-wave net radiation, and evapotranspiration. These products are generated from the Advanced Very High Resolution Radiometer and Moderate Resolution Imaging Spectroradiometer satellite data. Their unique features include long-term temporal coverage (many from 1981 to the present), high spatial resolutions of the surface radiation products (1 km and 0.05°), spatial continuities without missing pixels, and high quality and accuracy based on extensive validation using in situ measurements and intercomparisons with other existing satellite products. Moreover, the GLASS products are based on robust algorithms that have been published in peer-reviewed literature. Herein, we provide an overview of the algorithm development, product characteristics, and some preliminary applications of these products. We also describe the next steps, such as improving the existing GLASS products, generating more climate data records (CDRs), broadening product dissemination, and fostering their wider utilization. The GLASS products are freely available to the public.

Full access