Search Results
You are looking at 11 - 12 of 12 items for :
- Author or Editor: A. J. Illingworth x
- Article x
- Refine by Access: All Content x
Abstract
This paper presents a conically scanning spaceborne Dopplerized 94-GHz radar Earth science mission concept: Wind Velocity Radar Nephoscope (WIVERN). WIVERN aims to provide global measurements of in-cloud winds using the Doppler-shifted radar returns from hydrometeors. The conically scanning radar could provide wind data with daily revisits poleward of 50°, 50-km horizontal resolution, and approximately 1-km vertical resolution. The measured winds, when assimilated into weather forecasts and provided they are representative of the larger-scale mean flow, should lead to further improvements in the accuracy and effectiveness of forecasts of severe weather and better focusing of activities to limit damage and loss of life. It should also be possible to characterize the more variable winds associated with local convection. Polarization diversity would be used to enable high wind speeds to be unambiguously observed; analysis indicates that artifacts associated with polarization diversity are rare and can be identified. Winds should be measurable down to 1 km above the ocean surface and 2 km over land. The potential impact of the WIVERN winds on reducing forecast errors is estimated by comparison with the known positive impact of cloud motion and aircraft winds. The main thrust of WIVERN is observing in-cloud winds, but WIVERN should also provide global estimates of ice water content, cloud cover, and vertical distribution, continuing the data series started by CloudSat with the conical scan giving increased coverage. As with CloudSat, estimates of rainfall and snowfall rates should be possible. These nonwind products may also have a positive impact when assimilated into weather forecasts.
Abstract
This paper presents a conically scanning spaceborne Dopplerized 94-GHz radar Earth science mission concept: Wind Velocity Radar Nephoscope (WIVERN). WIVERN aims to provide global measurements of in-cloud winds using the Doppler-shifted radar returns from hydrometeors. The conically scanning radar could provide wind data with daily revisits poleward of 50°, 50-km horizontal resolution, and approximately 1-km vertical resolution. The measured winds, when assimilated into weather forecasts and provided they are representative of the larger-scale mean flow, should lead to further improvements in the accuracy and effectiveness of forecasts of severe weather and better focusing of activities to limit damage and loss of life. It should also be possible to characterize the more variable winds associated with local convection. Polarization diversity would be used to enable high wind speeds to be unambiguously observed; analysis indicates that artifacts associated with polarization diversity are rare and can be identified. Winds should be measurable down to 1 km above the ocean surface and 2 km over land. The potential impact of the WIVERN winds on reducing forecast errors is estimated by comparison with the known positive impact of cloud motion and aircraft winds. The main thrust of WIVERN is observing in-cloud winds, but WIVERN should also provide global estimates of ice water content, cloud cover, and vertical distribution, continuing the data series started by CloudSat with the conical scan giving increased coverage. As with CloudSat, estimates of rainfall and snowfall rates should be possible. These nonwind products may also have a positive impact when assimilated into weather forecasts.
Abstract
The collective representation within global models of aerosol, cloud, precipitation, and their radiative properties remains unsatisfactory. They constitute the largest source of uncertainty in predictions of climatic change and hamper the ability of numerical weather prediction models to forecast high-impact weather events. The joint European Space Agency (ESA)–Japan Aerospace Exploration Agency (JAXA) Earth Clouds, Aerosol and Radiation Explorer (EarthCARE) satellite mission, scheduled for launch in 2018, will help to resolve these weaknesses by providing global profiles of cloud, aerosol, precipitation, and associated radiative properties inferred from a combination of measurements made by its collocated active and passive sensors. EarthCARE will improve our understanding of cloud and aerosol processes by extending the invaluable dataset acquired by the A-Train satellites CloudSat, Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), and Aqua. Specifically, EarthCARE’s cloud profiling radar, with 7 dB more sensitivity than CloudSat, will detect more thin clouds and its Doppler capability will provide novel information on convection, precipitating ice particle, and raindrop fall speeds. EarthCARE’s 355-nm high-spectral-resolution lidar will measure directly and accurately cloud and aerosol extinction and optical depth. Combining this with backscatter and polarization information should lead to an unprecedented ability to identify aerosol type. The multispectral imager will provide a context for, and the ability to construct, the cloud and aerosol distribution in 3D domains around the narrow 2D retrieved cross section. The consistency of the retrievals will be assessed to within a target of ±10 W m–2 on the (10 km)2 scale by comparing the multiview broadband radiometer observations to the top-of-atmosphere fluxes estimated by 3D radiative transfer models acting on retrieved 3D domains.
Abstract
The collective representation within global models of aerosol, cloud, precipitation, and their radiative properties remains unsatisfactory. They constitute the largest source of uncertainty in predictions of climatic change and hamper the ability of numerical weather prediction models to forecast high-impact weather events. The joint European Space Agency (ESA)–Japan Aerospace Exploration Agency (JAXA) Earth Clouds, Aerosol and Radiation Explorer (EarthCARE) satellite mission, scheduled for launch in 2018, will help to resolve these weaknesses by providing global profiles of cloud, aerosol, precipitation, and associated radiative properties inferred from a combination of measurements made by its collocated active and passive sensors. EarthCARE will improve our understanding of cloud and aerosol processes by extending the invaluable dataset acquired by the A-Train satellites CloudSat, Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), and Aqua. Specifically, EarthCARE’s cloud profiling radar, with 7 dB more sensitivity than CloudSat, will detect more thin clouds and its Doppler capability will provide novel information on convection, precipitating ice particle, and raindrop fall speeds. EarthCARE’s 355-nm high-spectral-resolution lidar will measure directly and accurately cloud and aerosol extinction and optical depth. Combining this with backscatter and polarization information should lead to an unprecedented ability to identify aerosol type. The multispectral imager will provide a context for, and the ability to construct, the cloud and aerosol distribution in 3D domains around the narrow 2D retrieved cross section. The consistency of the retrievals will be assessed to within a target of ±10 W m–2 on the (10 km)2 scale by comparing the multiview broadband radiometer observations to the top-of-atmosphere fluxes estimated by 3D radiative transfer models acting on retrieved 3D domains.