Search Results
You are looking at 11 - 14 of 14 items for
- Author or Editor: Alexis B. Long x
- Refine by Access: All Content x
Abstract
Infrared satellite photographs of the tropical oceanic regions within and around the GATE A/B array point to the existence of large, rapidly growing, cumulonimbus clouds. The region along 10°N experiences the greatest frequency of these storms. Also a pronounced diurnal variation is found in the times of initial development with maximum frequencies near midnight. In most cases, this anvil cloud grows to an areal extent ∼7000 km2 in about 4 h, then dissipates in another 3 h. The velocity divergence in the anvil is 1−3×10−4s−1 and the mass outflow is 100–200 kton s−1. These storms account for some of the difference in diurnal variation of high cloudiness that is observed between tropical oceanic and continental regions. A large number of rapidly growing cumulonimbus clouds was observed on 10 August 1974 in connection with a disturbance in the tropical easterlies that ultimately developed into Tropical Storm Alma.
Abstract
Infrared satellite photographs of the tropical oceanic regions within and around the GATE A/B array point to the existence of large, rapidly growing, cumulonimbus clouds. The region along 10°N experiences the greatest frequency of these storms. Also a pronounced diurnal variation is found in the times of initial development with maximum frequencies near midnight. In most cases, this anvil cloud grows to an areal extent ∼7000 km2 in about 4 h, then dissipates in another 3 h. The velocity divergence in the anvil is 1−3×10−4s−1 and the mass outflow is 100–200 kton s−1. These storms account for some of the difference in diurnal variation of high cloudiness that is observed between tropical oceanic and continental regions. A large number of rapidly growing cumulonimbus clouds was observed on 10 August 1974 in connection with a disturbance in the tropical easterlies that ultimately developed into Tropical Storm Alma.
Abstract
A comprehensive analysis of a deep winter storm system during its passage over the Tushar Mountains of southwestern Utah is reported. The case study, drawn from the 1985 Utah/NOAA cooperative weather modification experiment, is divided into descriptions of the synoptic and kinematic properties in Part I, and storm structure and composition here in Part II. In future parts of this series, the turbulence structure and indicated cloud seeding potential will be evaluated. The analysis presented here in Part II focuses on multiple remote sensor and surface microphysical observations collected from a midbarrier (2.57 km MSL) field site. The collocated remote sensors were a dual-channel microwave radiometer, a polarization lidar, and a Ka-band Doppler radar. These data are supplemented by upwind, valley-based C-band Doppler radar observations, which provided a considerably larger-scale view of the storm.
In general, storm properties above the barrier were either dominated by barrier-level orographic clouds or propagating mesoscale cloud systems. The orographic cloud component consisted of weakly (−3° to −10°C) supercooled liquid water (SLW) clouds in the form of an extended barrier-wide cap cloud that contained localized SLW concentrations. The spatial SLW distribution was linked to topographical features surrounding the midbarrier site, such as abrupt terrain rises and nearby ridges. This orographic cloud contributed to precipitation primarily through the riming of particles sedimenting from aloft, and also to some extent through an ice multiplication process involving graupel growth. In contrast, mesoscale precipitation bands associated with a slowly moving cold front generated much more significant amounts of snowfall. These precipitation bands periodically disrupted the shallow orographic SLW clouds. Mesoscale vertical circulations appear to have been particularly important in SLW and precipitation production along the leading edges of the bands. Since the SLW clouds during the latter part of the storm were based at the frontal boundary, SLW and precipitation gradually diminished as the barrier became submerged under the cold front.
Based on a winter storm conceptual model, we conclude that low-level orographic SLW clouds, when decoupled from the overlying ice cloud layers of the storm, are generally inefficient producers of precipitation due to the typically warm temperatures at these altitudes in our region.
Abstract
A comprehensive analysis of a deep winter storm system during its passage over the Tushar Mountains of southwestern Utah is reported. The case study, drawn from the 1985 Utah/NOAA cooperative weather modification experiment, is divided into descriptions of the synoptic and kinematic properties in Part I, and storm structure and composition here in Part II. In future parts of this series, the turbulence structure and indicated cloud seeding potential will be evaluated. The analysis presented here in Part II focuses on multiple remote sensor and surface microphysical observations collected from a midbarrier (2.57 km MSL) field site. The collocated remote sensors were a dual-channel microwave radiometer, a polarization lidar, and a Ka-band Doppler radar. These data are supplemented by upwind, valley-based C-band Doppler radar observations, which provided a considerably larger-scale view of the storm.
In general, storm properties above the barrier were either dominated by barrier-level orographic clouds or propagating mesoscale cloud systems. The orographic cloud component consisted of weakly (−3° to −10°C) supercooled liquid water (SLW) clouds in the form of an extended barrier-wide cap cloud that contained localized SLW concentrations. The spatial SLW distribution was linked to topographical features surrounding the midbarrier site, such as abrupt terrain rises and nearby ridges. This orographic cloud contributed to precipitation primarily through the riming of particles sedimenting from aloft, and also to some extent through an ice multiplication process involving graupel growth. In contrast, mesoscale precipitation bands associated with a slowly moving cold front generated much more significant amounts of snowfall. These precipitation bands periodically disrupted the shallow orographic SLW clouds. Mesoscale vertical circulations appear to have been particularly important in SLW and precipitation production along the leading edges of the bands. Since the SLW clouds during the latter part of the storm were based at the frontal boundary, SLW and precipitation gradually diminished as the barrier became submerged under the cold front.
Based on a winter storm conceptual model, we conclude that low-level orographic SLW clouds, when decoupled from the overlying ice cloud layers of the storm, are generally inefficient producers of precipitation due to the typically warm temperatures at these altitudes in our region.
Abstract
The hailstone size (diameter) distributions measured by hailpads during the 1972-74 randomized seeding experiment of the National Hail Research Experiment are analyzed statistically for evidence of seeding effects and differences from year to year. Two approaches are taken, one comparing the entire empirical size distributions on seed days and on control days and the other comparing the mean diameters. The latter is based on the consistency with the exponential distribution (truncated at a prescribed minimum diameter), since the exponential distribution can be characterized completely by the difference between the mean diameter and the minimum diameter. Both approaches yield statistically significant results (10% level) only for 1974, when the hailstones were larger on seed days than on control days on the average. This may have resulted from the addition of seeding by rockets in 1974 or from differences in the hailpads used in that year. However, the physical hypothesis for the experiment predicted smaller stones on seed days; that tendency did appear in 1973 (though not significantly) and the difference was negligible in 1972.
Abstract
The hailstone size (diameter) distributions measured by hailpads during the 1972-74 randomized seeding experiment of the National Hail Research Experiment are analyzed statistically for evidence of seeding effects and differences from year to year. Two approaches are taken, one comparing the entire empirical size distributions on seed days and on control days and the other comparing the mean diameters. The latter is based on the consistency with the exponential distribution (truncated at a prescribed minimum diameter), since the exponential distribution can be characterized completely by the difference between the mean diameter and the minimum diameter. Both approaches yield statistically significant results (10% level) only for 1974, when the hailstones were larger on seed days than on control days on the average. This may have resulted from the addition of seeding by rockets in 1974 or from differences in the hailpads used in that year. However, the physical hypothesis for the experiment predicted smaller stones on seed days; that tendency did appear in 1973 (though not significantly) and the difference was negligible in 1972.
Abstract
An extensive statistical analysis is made of the precipitation data collected during the randomized seeding experiment conducted by the National Hail Research Experiment during 1972-74, aimed at testing the feasibility of diminishing hail by seeding with silver iodide. The major conclusion is that no effect of seeding is detected at the 10% significance level. This is true regardless of whether hail or rainfall response variables are considered, which of two methods of obtaining daily values for the response variables over the target area is used, or what distribution, if any, is assumed for the variables. Even though the ratios of hailfall or rainfall on seed days to those on control days are generally greater than 1, the confidence intervals attached to these ratios are so large, because of the large natural variance in each response variable and the small sample sizes, that the true underlying seeding effects could in every case have ranged from substantial decreases to large increases. The large confidence intervals emphasize the necessity of large sample sizes, large experimental areas or effective covariates for obtaining definitive results in precipitation modification experiments.
Abstract
An extensive statistical analysis is made of the precipitation data collected during the randomized seeding experiment conducted by the National Hail Research Experiment during 1972-74, aimed at testing the feasibility of diminishing hail by seeding with silver iodide. The major conclusion is that no effect of seeding is detected at the 10% significance level. This is true regardless of whether hail or rainfall response variables are considered, which of two methods of obtaining daily values for the response variables over the target area is used, or what distribution, if any, is assumed for the variables. Even though the ratios of hailfall or rainfall on seed days to those on control days are generally greater than 1, the confidence intervals attached to these ratios are so large, because of the large natural variance in each response variable and the small sample sizes, that the true underlying seeding effects could in every case have ranged from substantial decreases to large increases. The large confidence intervals emphasize the necessity of large sample sizes, large experimental areas or effective covariates for obtaining definitive results in precipitation modification experiments.