Search Results
You are looking at 11 - 16 of 16 items for
- Author or Editor: Andréa S. Taschetto x
- Refine by Access: All Content x
Abstract
This study explores the impact of meridional sea surface temperature (SST) gradients across the eastern Indian Ocean on interannual variations in Australian precipitation. Atmospheric general circulation model (AGCM) experiments are conducted in which the sign and magnitude of eastern Indian Ocean SST gradients are perturbed. This results in significant rainfall changes for western and southeastern Australia. A reduction (increase) in the meridional SST gradient drives a corresponding response in the atmospheric thickness gradients and results in anomalous dry (wet) conditions over Australia. During simulated wet years, this seems to be due to westerly anomalies in the thermal wind over Australia and anomalous onshore moisture advection, with a suggestion that the opposite occurs during dry conditions. Thus, an asymmetry is seen in the magnitude of the forced circulation and precipitation response between the dry and wet simulations. To assess the relative contribution of the SST anomalies making up the meridional gradient, the SST pattern is decomposed into its constituent “poles,” that is, the eastern tropical pole off the northwest shelf of Australia versus the southern pole in the central subtropical Indian Ocean. Overall, the simulated Australian rainfall response is linear with regard to the sign and magnitude of the eastern Indian Ocean SST gradient. The tropical eastern pole has a larger impact on the atmospheric circulation and Australian precipitation changes relative to the southern subtropical pole. However, there is clear evidence of the importance of the southern pole in enhancing the Australian rainfall response, when occurring in conjunction with but of opposite sign to the eastern tropical pole. The observed relationship between the meridional SST gradient in the eastern Indian Ocean and rainfall over western and southeastern Australia is also analyzed for the period 1970–2005. The observed relationship is found to be consistent with the AGCM results.
Abstract
This study explores the impact of meridional sea surface temperature (SST) gradients across the eastern Indian Ocean on interannual variations in Australian precipitation. Atmospheric general circulation model (AGCM) experiments are conducted in which the sign and magnitude of eastern Indian Ocean SST gradients are perturbed. This results in significant rainfall changes for western and southeastern Australia. A reduction (increase) in the meridional SST gradient drives a corresponding response in the atmospheric thickness gradients and results in anomalous dry (wet) conditions over Australia. During simulated wet years, this seems to be due to westerly anomalies in the thermal wind over Australia and anomalous onshore moisture advection, with a suggestion that the opposite occurs during dry conditions. Thus, an asymmetry is seen in the magnitude of the forced circulation and precipitation response between the dry and wet simulations. To assess the relative contribution of the SST anomalies making up the meridional gradient, the SST pattern is decomposed into its constituent “poles,” that is, the eastern tropical pole off the northwest shelf of Australia versus the southern pole in the central subtropical Indian Ocean. Overall, the simulated Australian rainfall response is linear with regard to the sign and magnitude of the eastern Indian Ocean SST gradient. The tropical eastern pole has a larger impact on the atmospheric circulation and Australian precipitation changes relative to the southern subtropical pole. However, there is clear evidence of the importance of the southern pole in enhancing the Australian rainfall response, when occurring in conjunction with but of opposite sign to the eastern tropical pole. The observed relationship between the meridional SST gradient in the eastern Indian Ocean and rainfall over western and southeastern Australia is also analyzed for the period 1970–2005. The observed relationship is found to be consistent with the AGCM results.
Abstract
Anomalous conditions in the tropical oceans, such as those related to El Niño–Southern Oscillation and the Indian Ocean dipole, have been previously blamed for extended droughts and wet periods in Australia. Yet the extent to which Australian wet and dry spells can be driven by internal atmospheric variability remains unclear. Natural variability experiments are examined to determine whether prolonged extreme wet and dry periods can arise from internal atmospheric and land variability alone. Results reveal that this is indeed the case; however, these dry and wet events are found to be less severe than in simulations incorporating coupled oceanic variability. Overall, ocean feedback processes increase the magnitude of Australian rainfall variability by about 30% and give rise to more spatially coherent rainfall impacts. Over mainland Australia, ocean interactions lead to more frequent extreme events, particularly during the rainy season. Over Tasmania, in contrast, ocean–atmosphere coupling increases mean rainfall throughout the year. While ocean variability makes Australian rainfall anomalies more severe, droughts and wet spells of duration longer than three years are equally likely to occur in both atmospheric- and ocean-driven simulations. Moreover, they are essentially indistinguishable from what one expects from a Gaussian white noise distribution. Internal atmosphere–land-driven megadroughts and megapluvials that last as long as ocean-driven events are also identified in the simulations. This suggests that oceanic variability may be less important than previously assumed for the long-term persistence of Australian rainfall anomalies. This poses a challenge to accurate prediction of long-term dry and wet spells for Australia.
Abstract
Anomalous conditions in the tropical oceans, such as those related to El Niño–Southern Oscillation and the Indian Ocean dipole, have been previously blamed for extended droughts and wet periods in Australia. Yet the extent to which Australian wet and dry spells can be driven by internal atmospheric variability remains unclear. Natural variability experiments are examined to determine whether prolonged extreme wet and dry periods can arise from internal atmospheric and land variability alone. Results reveal that this is indeed the case; however, these dry and wet events are found to be less severe than in simulations incorporating coupled oceanic variability. Overall, ocean feedback processes increase the magnitude of Australian rainfall variability by about 30% and give rise to more spatially coherent rainfall impacts. Over mainland Australia, ocean interactions lead to more frequent extreme events, particularly during the rainy season. Over Tasmania, in contrast, ocean–atmosphere coupling increases mean rainfall throughout the year. While ocean variability makes Australian rainfall anomalies more severe, droughts and wet spells of duration longer than three years are equally likely to occur in both atmospheric- and ocean-driven simulations. Moreover, they are essentially indistinguishable from what one expects from a Gaussian white noise distribution. Internal atmosphere–land-driven megadroughts and megapluvials that last as long as ocean-driven events are also identified in the simulations. This suggests that oceanic variability may be less important than previously assumed for the long-term persistence of Australian rainfall anomalies. This poses a challenge to accurate prediction of long-term dry and wet spells for Australia.
Abstract
Fidelity and projected changes in the climate models, used for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4), are assessed with regard to the Southern Hemisphere extratropical ocean and sea ice systems. While individual models span different physical parameterizations and resolutions, a major component of intermodel variability results from surface wind differences. Projected changes to the surface wind field are also central in modifying future extratropical circulation and internal properties. A robust southward shift of the circumpolar current and subtropical gyres is projected, with a strong spinup of the Atlantic gyre. An associated increase in the core strength of the circumpolar circulation is evident; however, this does not translate into robust increases in Drake Passage transport. While an overarching oceanic warming is projected, the circulation-driven poleward shift of the temperature field explains much of the midlatitude warming pattern. The effect of this shift is less clear for salinity, where, instead, surface freshwater forcing dominates. Surface warming and high-latitude freshwater increases drive intensified stratification, and a shoaling and southward shift of the deep mixed layers. Despite large intermodel differences, there is also a robust weakening in bottom water formation and its northward outflow. At the same time the wind intensification invigorates the upwelling of deep water, transporting warm, salty water southward and upward, with major implications for sequestration and outgassing of CO2. A robust decrease is projected for both the sea ice concentration and the seasonal cycling of ice volume, potentially altering the salt and heat budget at high latitudes.
Abstract
Fidelity and projected changes in the climate models, used for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4), are assessed with regard to the Southern Hemisphere extratropical ocean and sea ice systems. While individual models span different physical parameterizations and resolutions, a major component of intermodel variability results from surface wind differences. Projected changes to the surface wind field are also central in modifying future extratropical circulation and internal properties. A robust southward shift of the circumpolar current and subtropical gyres is projected, with a strong spinup of the Atlantic gyre. An associated increase in the core strength of the circumpolar circulation is evident; however, this does not translate into robust increases in Drake Passage transport. While an overarching oceanic warming is projected, the circulation-driven poleward shift of the temperature field explains much of the midlatitude warming pattern. The effect of this shift is less clear for salinity, where, instead, surface freshwater forcing dominates. Surface warming and high-latitude freshwater increases drive intensified stratification, and a shoaling and southward shift of the deep mixed layers. Despite large intermodel differences, there is also a robust weakening in bottom water formation and its northward outflow. At the same time the wind intensification invigorates the upwelling of deep water, transporting warm, salty water southward and upward, with major implications for sequestration and outgassing of CO2. A robust decrease is projected for both the sea ice concentration and the seasonal cycling of ice volume, potentially altering the salt and heat budget at high latitudes.
Abstract
The representation of the El Niño–Southern Oscillation (ENSO) under historical forcing and future projections is analyzed in 34 models from the Coupled Model Intercomparison Project phase 5 (CMIP5). Most models realistically simulate the observed intensity and location of maximum sea surface temperature (SST) anomalies during ENSO events. However, there exist systematic biases in the westward extent of ENSO-related SST anomalies, driven by unrealistic westward displacement and enhancement of the equatorial wind stress in the western Pacific. Almost all CMIP5 models capture the observed asymmetry in magnitude between the warm and cold events (i.e., El Niños are stronger than La Niñas) and between the two types of El Niños: that is, cold tongue (CT) El Niños are stronger than warm pool (WP) El Niños. However, most models fail to reproduce the asymmetry between the two types of La Niñas, with CT stronger than WP events, which is opposite to observations. Most models capture the observed peak in ENSO amplitude around December; however, the seasonal evolution of ENSO has a large range of behavior across the models. The CMIP5 models generally reproduce the duration of CT El Niños but have biases in the evolution of the other types of events. The evolution of WP El Niños suggests that the decay of this event occurs through heat content discharge in the models rather than the advection of SST via anomalous zonal currents, as seems to occur in observations. No consistent changes are seen across the models in the location and magnitude of maximum SST anomalies, frequency, or temporal evolution of these events in a warmer world.
Abstract
The representation of the El Niño–Southern Oscillation (ENSO) under historical forcing and future projections is analyzed in 34 models from the Coupled Model Intercomparison Project phase 5 (CMIP5). Most models realistically simulate the observed intensity and location of maximum sea surface temperature (SST) anomalies during ENSO events. However, there exist systematic biases in the westward extent of ENSO-related SST anomalies, driven by unrealistic westward displacement and enhancement of the equatorial wind stress in the western Pacific. Almost all CMIP5 models capture the observed asymmetry in magnitude between the warm and cold events (i.e., El Niños are stronger than La Niñas) and between the two types of El Niños: that is, cold tongue (CT) El Niños are stronger than warm pool (WP) El Niños. However, most models fail to reproduce the asymmetry between the two types of La Niñas, with CT stronger than WP events, which is opposite to observations. Most models capture the observed peak in ENSO amplitude around December; however, the seasonal evolution of ENSO has a large range of behavior across the models. The CMIP5 models generally reproduce the duration of CT El Niños but have biases in the evolution of the other types of events. The evolution of WP El Niños suggests that the decay of this event occurs through heat content discharge in the models rather than the advection of SST via anomalous zonal currents, as seems to occur in observations. No consistent changes are seen across the models in the location and magnitude of maximum SST anomalies, frequency, or temporal evolution of these events in a warmer world.
Abstract
The objective of this study is to investigate the mechanisms that cause the anomalous intensification of tropical Australian rainfall at the height of the monsoon during El Niño Modoki events. In such events, northwestern Australia tends to be wetter in January and February when the SST warming is displaced to the central west Pacific, the opposite response to that associated with a traditional El Niño. In addition, during the bounding months, that is, December and March, there is below-average rainfall induced by an anomalous Walker circulation. This behavior tends to narrow and intensify the annual rainfall cycle over northwestern Australia relative to the climatology, causing a delayed monsoonal onset and an earlier retreat over the region. Observational datasets and numerical experiments with a general circulation model are used to examine the atmospheric response to the central west Pacific SST warming. It is shown here that the increase of precipitation, particularly in February, is phased locked to the seasonal cycle when the intertropical convergence zone is displaced southward and the South Pacific convergence zone is strengthened. An interaction between the interannual SST variability associated with El Niño Modoki events and the evolution of the seasonal cycle intensifies deep convection in the central west Pacific, driving a Gill–Matsuno-type response to the diabatic heating. The westward-propagating disturbance associated with the Gill–Matsuno mechanism generates an anomalous cyclonic circulation over northwestern Australia, leading to convergence of moisture and increased precipitation. The Gill–Matsuno-type response overwhelms the subsidence of the anomalous Walker circulation associated with Modoki events over Australia during the peak of the monsoon.
Abstract
The objective of this study is to investigate the mechanisms that cause the anomalous intensification of tropical Australian rainfall at the height of the monsoon during El Niño Modoki events. In such events, northwestern Australia tends to be wetter in January and February when the SST warming is displaced to the central west Pacific, the opposite response to that associated with a traditional El Niño. In addition, during the bounding months, that is, December and March, there is below-average rainfall induced by an anomalous Walker circulation. This behavior tends to narrow and intensify the annual rainfall cycle over northwestern Australia relative to the climatology, causing a delayed monsoonal onset and an earlier retreat over the region. Observational datasets and numerical experiments with a general circulation model are used to examine the atmospheric response to the central west Pacific SST warming. It is shown here that the increase of precipitation, particularly in February, is phased locked to the seasonal cycle when the intertropical convergence zone is displaced southward and the South Pacific convergence zone is strengthened. An interaction between the interannual SST variability associated with El Niño Modoki events and the evolution of the seasonal cycle intensifies deep convection in the central west Pacific, driving a Gill–Matsuno-type response to the diabatic heating. The westward-propagating disturbance associated with the Gill–Matsuno mechanism generates an anomalous cyclonic circulation over northwestern Australia, leading to convergence of moisture and increased precipitation. The Gill–Matsuno-type response overwhelms the subsidence of the anomalous Walker circulation associated with Modoki events over Australia during the peak of the monsoon.
Abstract
El Niño and La Niña, the warm and cold phases of El Niño–Southern Oscillation (ENSO), cause significant year-to-year disruptions in global climate, including in the atmosphere, oceans, and cryosphere. Australia is one of the countries where its climate, including droughts and flooding rains, is highly sensitive to the temporal and spatial variations of ENSO. The dramatic impacts of ENSO on the environment, society, health, and economies worldwide make the application of reliable ENSO predictions a powerful way to manage risks and resources. An improved understanding of ENSO dynamics in a changing climate has the potential to lead to more accurate and reliable ENSO predictions by facilitating improved forecast systems. This motivated an Australian national workshop on ENSO dynamics and prediction that was held in Sydney, Australia, in November 2017. This workshop followed the aftermath of the 2015/16 extreme El Niño, which exhibited different characteristics to previous extreme El Niños and whose early evolution since 2014 was challenging to predict. This essay summarizes the collective workshop perspective on recent progress and challenges in understanding ENSO dynamics and predictability and improving forecast systems. While this essay discusses key issues from an Australian perspective, many of the same issues are important for other ENSO-affected countries and for the international ENSO research community.
Abstract
El Niño and La Niña, the warm and cold phases of El Niño–Southern Oscillation (ENSO), cause significant year-to-year disruptions in global climate, including in the atmosphere, oceans, and cryosphere. Australia is one of the countries where its climate, including droughts and flooding rains, is highly sensitive to the temporal and spatial variations of ENSO. The dramatic impacts of ENSO on the environment, society, health, and economies worldwide make the application of reliable ENSO predictions a powerful way to manage risks and resources. An improved understanding of ENSO dynamics in a changing climate has the potential to lead to more accurate and reliable ENSO predictions by facilitating improved forecast systems. This motivated an Australian national workshop on ENSO dynamics and prediction that was held in Sydney, Australia, in November 2017. This workshop followed the aftermath of the 2015/16 extreme El Niño, which exhibited different characteristics to previous extreme El Niños and whose early evolution since 2014 was challenging to predict. This essay summarizes the collective workshop perspective on recent progress and challenges in understanding ENSO dynamics and predictability and improving forecast systems. While this essay discusses key issues from an Australian perspective, many of the same issues are important for other ENSO-affected countries and for the international ENSO research community.