Search Results

You are looking at 11 - 20 of 21 items for

  • Author or Editor: Antonietta Capotondi x
  • Refine by Access: All Content x
Clear All Modify Search
Yingying Zhao
,
Matthew Newman
,
Antonietta Capotondi
,
Emanuele Di Lorenzo
, and
Daoxun Sun

Abstract

Teleconnections from the tropics energize variations of the North Pacific climate, but detailed diagnosis of this relationship has proven difficult. Simple univariate methods, such as regression on El Niño–Southern Oscillation (ENSO) indices, may be inadequate since the key dynamical processes involved—including ENSO diversity in the tropics, re-emergence of mixed layer thermal anomalies, and oceanic Rossby wave propagation in the North Pacific—have a variety of overlapping spatial and temporal scales. Here we use a multivariate linear inverse model to quantify tropical and extratropical multiscale dynamical contributions to North Pacific variability, in both observations and CMIP6 models. In observations, we find that the tropics are responsible for almost half of the seasonal variance, and almost three-quarters of the decadal variance, along the North American coast and within the Subtropical Front region northwest of Hawaii. SST anomalies that are generated by local dynamics within the northeast Pacific have much shorter time scales, consistent with transient weather forcing by Aleutian low anomalies. Variability within the Kuroshio–Oyashio Extension (KOE) region is considerably less impacted by the tropics, on all time scales. Consequently, without tropical forcing the dominant pattern of North Pacific variability would be a KOE pattern, rather than the Pacific decadal oscillation (PDO). In contrast to observations, most CMIP6 historical simulations produce North Pacific variability that maximizes in the KOE region, with amplitude significantly higher than observed. Correspondingly, the simulated North Pacific in all CMIP6 models is shown to be relatively insensitive to the tropics, with a dominant spatial pattern generally resembling the KOE pattern, not the PDO.

Full access
Antonietta Capotondi
,
Michael A. Alexander
,
Clara Deser
, and
Arthur J. Miller

Abstract

The output from an ocean general circulation model (OGCM) driven by observed surface forcing is used in conjunction with simpler dynamical models to examine the physical mechanisms responsible for interannual to interdecadal pycnocline variability in the northeast Pacific Ocean during 1958–97, a period that includes the 1976–77 climate shift. After 1977 the pycnocline deepened in a broad band along the coast and shoaled in the central part of the Gulf of Alaska. The changes in pycnocline depth diagnosed from the model are in agreement with the pycnocline depth changes observed at two ocean stations in different areas of the Gulf of Alaska. A simple Ekman pumping model with linear damping explains a large fraction of pycnocline variability in the OGCM. The fit of the simple model to the OGCM is maximized in the central part of the Gulf of Alaska, where the pycnocline variability produced by the simple model can account for ∼70%–90% of the pycnocline depth variance in the OGCM. Evidence of westward-propagating Rossby waves is found in the OGCM, but they are not the dominant signal. On the contrary, large-scale pycnocline depth anomalies have primarily a standing character, thus explaining the success of the local Ekman pumping model. The agreement between the Ekman pumping model and OGCM deteriorates in a large band along the coast, where propagating disturbances within the pycnocline, due to either mean flow advection or boundary waves, appear to play an important role in pycnocline variability. Coastal propagation of pycnocline depth anomalies is especially relevant in the western part of the Gulf of Alaska, where local Ekman pumping-induced changes are anticorrelated with the OGCM pycnocline depth variations. The pycnocline depth changes associated with the 1976–77 climate regime shift do not seem to be consistent with Sverdrup dynamics, raising questions about the nature of the adjustment of the Alaska Gyre to low-frequency wind stress variability.

Full access
Michael Alexander
,
Jeffrey Yin
,
Grant Branstator
,
Antonietta Capotondi
,
Christophe Cassou
,
Richard Cullather
,
Young-oh Kwon
,
Joel Norris
,
James Scott
, and
Ilana Wainer

Abstract

Extratropical atmosphere–ocean variability over the Northern Hemisphere of the Community Climate System Model version 3 (CCSM3) is examined and compared to observations. Results are presented for an extended control integration with a horizontal resolution of T85 (1.4°) for the atmosphere and land and ∼1° for the ocean and sea ice.

Several atmospheric phenomena are investigated including storms, clouds, and patterns of variability, and their relationship to both tropical and extratropical SST anomalies. The mean storm track, the leading modes of storm track variability, and the relationship of the latter to tropical and midlatitude sea surface temperature (SST) anomalies are fairly well simulated in CCSM3. The positive correlations between extratropical SST and low-cloud anomalies in summer are reproduced by the model, but there are clear biases in the relationship between clouds and the near-surface meridional wind. The model accurately represents the circulation anomalies associated with the jet stream waveguide, the Pacific–North American (PNA) pattern, and fluctuations associated with the Aleutian low, including how the latter two features are influenced by the El Niño–Southern Oscillation (ENSO). CCSM3 has a reasonable depiction of the Pacific decadal oscillation (PDO), but it is not strongly connected to tropical Pacific SSTs as found in nature. There are biases in the position of the North Atlantic Oscillation (NAO) and other Atlantic regimes, as the mean Icelandic low in CCSM3 is stronger and displaced southeastward relative to observations.

Extratropical ocean processes in CCSM3, including upper-ocean mixing, thermocline variability, and extratropical to tropical flow within the thermocline, also influence climate variability. As in observations, the model includes the “reemergence mechanism” where seasonal variability in mixed layer depth (MLD) allows SST anomalies to recur in consecutive winters without persisting through the intervening summer. Remote wind stress curl anomalies drive thermocline variability in the Kuroshio–Oyashio Extension region, which influences SST, surface heat flux anomalies, and the local wind field. The interior ocean pathways connecting the subtropics to the equator in both the Pacific and Atlantic are less pronounced in CCSM3 than in nature or in ocean-only simulations forced by observed atmospheric conditions, and the flow from the subtropical North Atlantic does not appear to reach the equator through either the western boundary or interior pathways.

Full access
Clara Deser
,
Adam S. Phillips
,
Michael. A. Alexander
,
Dillon J. Amaya
,
Antonietta Capotondi
,
Michael G. Jacox
, and
James D. Scott

Abstract

The future evolution of sea surface temperature (SST) extremes is of great concern, not only for the health of marine ecosystems and sustainability of commercial fisheries, but also for precipitation extremes fueled by moisture evaporated from the ocean. This study examines the projected influence of anthropogenic climate change on the intensity and duration of monthly SST extremes, hereafter termed marine heat waves (MHWs) and marine cold waves (MCWs), based on initial-condition large ensembles with seven Earth system models. The large number of simulations (30–100) with each model allows for robust quantification of future changes in both the mean state and variability in each model. In general, models indicate that future changes in variability will cause MHW and MCW events to intensify in the northern extratropics and weaken in the tropics and Southern Ocean, and to shorten in duration in many areas. These changes are generally symmetric between MHWs and MCWs, except for the longitude of duration change in the tropical Pacific and sign of duration change in the Arctic. Projected changes in ENSO account for a large fraction of the variability-induced changes in MHW and MCW characteristics in each model and are responsible for much of the intermodel spread as a result of differences in future ENSO behavior. The variability-related changes in MHW and MCW characteristics noted above are superimposed upon large mean-state changes. Indeed, their contribution to the total change in SST during MHW and MCW events is generally <10% except in polar regions where they contribute upward of 50%.

Open access
Céline J. W. Bonfils
,
Benjamin D. Santer
,
Thomas J. Phillips
,
Kate Marvel
,
L. Ruby Leung
,
Charles Doutriaux
, and
Antonietta Capotondi

Abstract

El Niño–Southern Oscillation (ENSO) is an important driver of regional hydroclimate variability through far-reaching teleconnections. This study uses simulations performed with coupled general circulation models (CGCMs) to investigate how regional precipitation in the twenty-first century may be affected by changes in both ENSO-driven precipitation variability and slowly evolving mean rainfall. First, a dominant, time-invariant pattern of canonical ENSO variability (cENSO) is identified in observed SST data. Next, the fidelity with which 33 state-of-the-art CGCMs represent the spatial structure and temporal variability of this pattern (as well as its associated precipitation responses) is evaluated in simulations of twentieth-century climate change. Possible changes in both the temporal variability of this pattern and its associated precipitation teleconnections are investigated in twenty-first-century climate projections. Models with better representation of the observed structure of the cENSO pattern produce winter rainfall teleconnection patterns that are in better accord with twentieth-century observations and more stationary during the twenty-first century. Finally, the model-predicted twenty-first-century rainfall response to cENSO is decomposed into the sum of three terms: 1) the twenty-first-century change in the mean state of precipitation, 2) the historical precipitation response to the cENSO pattern, and 3) a future enhancement in the rainfall response to cENSO, which amplifies rainfall extremes. By examining the three terms jointly, this conceptual framework allows the identification of regions likely to experience future rainfall anomalies that are without precedent in the current climate.

Full access
Clara Deser
,
Adam S. Phillips
,
Robert A. Tomas
,
Yuko M. Okumura
,
Michael A. Alexander
,
Antonietta Capotondi
,
James D. Scott
,
Young-Oh Kwon
, and
Masamichi Ohba

Abstract

This study presents an overview of the El Niño–Southern Oscillation (ENSO) phenomenon and Pacific decadal variability (PDV) simulated in a multicentury preindustrial control integration of the NCAR Community Climate System Model version 4 (CCSM4) at nominal 1° latitude–longitude resolution. Several aspects of ENSO are improved in CCSM4 compared to its predecessor CCSM3, including the lengthened period (3–6 yr), the larger range of amplitude and frequency of events, and the longer duration of La Niña compared to El Niño. However, the overall magnitude of ENSO in CCSM4 is overestimated by ~30%. The simulated ENSO exhibits characteristics consistent with the delayed/recharge oscillator paradigm, including correspondence between the lengthened period and increased latitudinal width of the anomalous equatorial zonal wind stress. Global seasonal atmospheric teleconnections with accompanying impacts on precipitation and temperature are generally well simulated, although the wintertime deepening of the Aleutian low erroneously persists into spring. The vertical structure of the upper-ocean temperature response to ENSO in the north and south Pacific displays a realistic seasonal evolution, with notable asymmetries between warm and cold events. The model shows evidence of atmospheric circulation precursors over the North Pacific associated with the “seasonal footprinting mechanism,” similar to observations. Simulated PDV exhibits a significant spectral peak around 15 yr, with generally realistic spatial pattern and magnitude. However, PDV linkages between the tropics and extratropics are weaker than observed.

Full access
Eric Guilyardi
,
Andrew Wittenberg
,
Alexey Fedorov
,
Mat Collins
,
Chunzai Wang
,
Antonietta Capotondi
,
Geert Jan van Oldenborgh
, and
Tim Stockdale

Determining how El Niño and its impacts may change over the next 10 to 100 years remains a difficult scientific challenge. Ocean-atmosphere coupled general circulation models (CGCMs) are routinely used both to analyze El Niño mechanisms and teleconnections and to predict its evolution on a broad range of time scales, from seasonal to centennial. The ability to simulate El Niño as an emergent property of these models has largely improved over the last few years. Nevertheless, the diversity of model simulations of present-day El Niño indicates current limitations in our ability to model this climate phenomenon and to anticipate changes in its characteristics. A review of the several factors that contribute to this diversity, as well as potential means to improve the simulation of El Niño, is presented.

Full access
Samson Hagos
,
Gregory R. Foltz
,
Chidong Zhang
,
Elizabeth Thompson
,
Hyodae Seo
,
Sue Chen
,
Antonietta Capotondi
,
Kevin A. Reed
,
Charlotte DeMott
, and
Alain Protat
Free access
Dillon J. Amaya
,
Michael A. Alexander
,
Antonietta Capotondi
,
Clara Deser
,
Kristopher B. Karnauskas
,
Arthur J. Miller
, and
Nathan J. Mantua
Open access
Sarah M. Larson
,
Kay McMonigal
,
Yuko Okumura
,
Dillon Amaya
,
Antonietta Capotondi
,
Katinka Bellomo
,
Isla R. Simpson
, and
Amy C. Clement

Abstract

To improve understanding of ocean processes impacting monthly sea surface temperature (SST) variability, we analyze a Community Earth System Model version 2 hierarchy in which models vary only in their degree of ocean complexity. The most realistic ocean is a dynamical ocean model, as part of a fully coupled model (FCM). The next most realistic ocean, from a mechanically decoupled model (MDM), is like the FCM but excludes anomalous wind stress-driven ocean variability. The simplest ocean is a slab ocean model (SOM). Inclusion of a buoyancy coupled dynamic ocean as in the MDM, which includes temperature advection and vertical mixing absent in the SOM, leads to dampening of SST variance everywhere and reduced persistence of SST anomalies in the high latitudes and equatorial Pacific compared to the SOM. Inclusion of anomalous wind stress-driven ocean dynamics as in the FCM leads to higher SST variance and longer persistence timescales in most regions compared to the MDM. The net role of the dynamic ocean, as an overall dampener or amplifier of anomalous SST variance and persistence is regionally dependent. Notably, we find that efforts to reduce the complexity of the ocean models in the SOM and MDM configurations result in changes in the magnitude of the thermodynamic forcing of SST variability compared to the FCM. These changes, in part, stem from differences in the seasonally varying mixed layer depth and should be considered when attempting to quantify the relative contribution of certain ocean mechanisms to differences in SST variability between the models.

Restricted access